
Measurement Automation Monitoring, Sep. 2015, vol. 61, no. 01  1

Jacek BORKO, Grzegorz DULNIK, Adam GRZELKA, Adam ŁUCZAK, Adam PASZKOWSKI
CHAIR OF MULTIMEDIA TELECOMMUNICATIONS AND MICROELECTRONICS
Poznań University of Technology

Polanka 3, 60-965 Poznań, POLAND DOI 10.1000/182

Parametric synthesizer of audio signals on FPGA

Abstract

The article shows sound synthesizer dedicated to parametric sound

compression, but also able to generate any signal in audible band. The
synthesizer is realized on FPGA platform, and it uses additive sound
synthesis. Synthesizer is characterized by high quality, faithful
reproduction of sound and low power consumption.

Keywords: FPGA, Sound Synthesis

1. Introduction

Sound synthesis comprises a wide field of research, including

many sound generation methods. Unfortunately, the most accurate

and universal methods are characterized by high complexity and

demand for power. Fortunately, dynamic development of

electronics allows to elaborate more efficient implementations for

complex processes, like sound synthesis.

There is many FPGA-based sound synthesizers described in

literature, also in MAM (formerly PAK) magazine. Most of these

projects similarly as in article [1] use piano keyboard to deliver

input parameters and produces finite number of built-in tones and

effects. Thus, the amount of sounds they generate is limited.

The goal of presented solution is to design a synthesizer that can

generate any signal in audible band. One of the applications of

such synthesizer can be a parametric sound coding system [3]. The

synthesizer constitutes a part of a decoder where, based on

parameters of sinusoidal components, the sound is generated.

In the presented solution additive synthesis has been used,

because of its universality and fidelity. This method consists of

adding together many independent sinusoidal components [2].

Each component is described by amplitude, phase, and

frequency, as shown in Figure 1. The more components, the more

realistic sound. The realism of generated sound is achieved by

using several hundred of independent components with

variable parameters. The parameters can be obtained by spectral

analysis of particular sound, which is to be imitated. That rule is

used in parametric sound coding [3], where parameters of

sinusoidal components are coded.

0 1 m-2 m-1. . . .

A, F, φ A, F, φ A, F, φ A, F, φ

Figure 1. Additive sound synthesis

In order to implement additive synthesis, only one sine

generator needs to be designed, because the rest of sinusoidal

components is generated in the same way.

2. Implementation

 In the discussed solution the samples of sine are generated by

interpolation based on reference 16-bit samples from one period of

sine, calculated in Matlab. Due to properties of sine signal, only

one quarter of period has to be calculated and remembered.

Sample values in other quarters are the same, just with different

sign or order, as in Figure 2. Based on relations between quarters

of sine period, we can define samples from the whole period,

storing just one quarter in memory. This allows to store 4 times

more referent samples in memory, so the sine can be sampled 4

times more densely, which increases final precision of generated

samples. Most FPGA devices have block RAM memory size of

1MB or more, so the solution involves 1 MB of referent 16-bit

samples, to be universal. It gives 512 referent samples per quarter

of sinus period.

 Q1 = sin(mT) Q2 = sin(Ts\4 – mT)

 Q3 = -sin(mT) Q4 = -sin(Ts\4 – mT)

Figure 2. Samples in one period of sine

Successive samples of sinusoidal component with given

parameters are generated by moving across the sine period.

Specified space, dependent of frequency and phase parameters,

is added to the position of the previous sample. As a result, the

position of the next sample is obtained. Thus, for example,

assuming 48 kHz output sampling frequency, in 12kHz sine

component with 0 phase, the interspace between samples is

quarter of period, as illustrated in Figure 3.

Figure 3. Location of samples in 12 kHz sine example

The actual position is the remainder from division by sine

period(Ts), so it moves only across one period. Otherwise, the

position would exceed the size of a referent sample table. Once

the sample position is calculated, it is known in which quarter the

sample is (Q1,Q2,Q3 or Q4). This information allows to define the

sign of sample. Also, based on previously mentioned relations

between quarters, it is possible to find the sample position in 16-

bit referent samples table (quarter period size).

Densely sampled reference sine allows for using simple linear

interpolation while maintaining satisfying precision of synthesized

samples. Knowing the position in reference quarter, two

neighboring reference 16-bit samples are used to interpolate

desired sample at certain position, as in Figure 4.

2  Measurement Automation Monitoring vol. 61, nr 01/2015

Figure 4. Linear Interpolation

In that process a 24-bit sample is obtained. Finally, taking into

account amplitude parameter and previously defined sign, the

sample extends to 25 bits. That is the way, a sample of sinusoidal

component is generated. Next samples are calculated the same

way. All there is left to do is to duplicate such generators, and add

their outputs to obtain the final signal.

3. FPGA realization

It is easy to notice, that the structure of every sine generator is

the same. Therefore, the system performs the same operation all

the time, just with different input parameters. This allows for

pipeline processing, which is the domain of FPGA devices [4].

Instead of many generators, only one sine generator has been

designed but it works in pipeline. In considered solution, the

process of generating one sample of one sinusoidal component

takes over 20 clock cycles. With the use of pipeline processing, it

is possible to obtain effectively one component sample per

clock cycle, which is a huge gain. The assumed number of

components, which allows for faithful sound reproduction is 256.

So one output sound sample is created from 256 component

samples, and one component sample is produced per one clock

cycle. As the target of the synthesis are audio signals, the selected

output sample frequency is 48 kHz, so system clock frequency is:

256 * 48000 * 1(sample\cycle) = 12.288 MHz.

The simplified diagram of synthesizer is shown in Figure 5.

Figure 5. Simplified synthesiser diagram

Based on frequency and phase, the position in referent samples

table is calculated, as it is described in the first part of the article.

Then, two neighboring referent samples are read from ROM

memories. Based on these two samples, the searched component

sample is interpolated in the next step. The result is multiplied by

amplitude parameter and modified depending on the sign. The

next step is to add the obtained component sample to accumulator.

This process is executed in pipeline, until all 256 component

samples are added to accumulator. Then, the final output sample

from accumulator is written to FIFO queue, accumulator is set to

0, and all process starts over. FIFO queue is used to send samples

to other modules, also those unsynchronized with the synthesizer

module.

4. Validating

To verify the design in a real time, a runtime environment has

been set up, as shown in Figure 6. FPGA modules are launched on

Xilinx Spartan 6. Communication with computer or other external

device is provided by UART PORT using RS232 protocol.

Parameters sent from a computer are written to 3 RAM modules,

corresponding to 3 input parameters. The synthesizer reads

parameters from RAM, calculates samples, and sends them to I2S

module. There the conversion to I2S interface serialized form takes

place, used in D/A converter.

Figure 6. Runtime environment diagram

The system arranged this way, allows delivering input parameters

to synthesizer and hearing the synthesized sound. The board with

Xilinx Spartan 6 and D/C converters, used for real time tests is

shown in Figure 7.

Figure 7. Board with FPGA and D/C converters

The use of logic resources by the synthesizer on Xilinx Spartan 6

is shown in Figure 8.

Figure 8. Resources usage on Spartan 6 XC6SLX45T

The precision of synthesizer was measured by comparing 2048

synthesized samples in a quarter of sine period with samples

calculated in Matlab. Peak sine value compared to error was at

least 43,01 dB (0.005% of peak sine amplitude), as shown in

Figure 9.

Figure 9. Synthesis error

There is a non-negligible error, caused by simple linear

interpolation. In order to reduce the error, the simplest way is to

sample the reference sine more densely, if there is more memory

Measurement Automation Monitoring, Sep. 2015, vol. 61, no. 01  3

in FPGA device. Other way is to use more accurate type of

interpolation than linear one. Such modification should not

enlarge the synthesizer module dramatically.
 .

5. Conclusion

 The presented project effectively implements additive sound

synthesis. Additionally can also be used to generate any signal in

audible band. The input parameters can be changed every sample,

which allows a fully controlled output signal. Due to pipeline

processing one component sample is generated per one clock

cycle. The system is universal, the number of components and

output sampling frequency can be easily changed, and the system

clock is described by the equation:

CLK= c * f *1
1 - clock cycles per component sample, c - number of components,

f – output sample frequency

In the tested scenario, with 256 components and 48 kHz output

sample frequency, the clock is only 12.288 Mhz. Low clock

frequency causes low power consumption. 25 bit wide output

signal provides high quality. Very low use of logic resources on

Spartan 6 XC6SLX45T (low-medium size FPGA) means that the

synthesizer module can fit in almost every currently manufactured

FPGA with DSP blocks, including the smallest (cheapest) ones.

Thanks to additive synthesis method and many component sines

used, the device is able to generate any kind of sound, unlike most

of other FPGA-based synthesizers, which often have limitations.

This is why the presented design can be used in efficient audio

coding, e.g. as a part of decoder in parametric audio coding system

[5].

 The only issue to improve, is the error level. In order to minimize

it, the reference sine signal should be sampled more densely, or a

more accurate interpolation method should be used.

6. Acknowledgements

The presented work has been funded by the Polish Ministry of

Science and Higher Education within the status activity task

“Signal processing and antenna optimization for acquisition,

processing, analysis and presentation in 3D television systems”

in 2015.

7. References

[1] M.Łazoryszczak:” An experimental reconfigurable platform

for sound processing applications”, PAK 2014 nr 07, s. 420-

422

[2] T.Tolonen, V.Välimäki, M.Karjalainen: „Evaluation of

Modern Sound Synthesis Method”, Helsinki University of

Technology, March 1998

[3] R. McAulay, Th. Quatieri: “Speech Analysis/Synthesis Based

on a Sinusoidal Representation”, in IEEE Transactions on

Acoustics, Speech, and Signal Processing, August

1986

[4] S. Kilts: “Advanced FPGA Design – Architecture,

Implementation and Optimization”, Spectrum Design

Solutions, June 2007

[5] M.Bartkowiak: “State-of-the-art in audio coding”, Poznan

University of Technology, 2006

Received: 00.00.2014 Paper reviewed Accepted: 05.01.2015

Ph.D. Adam ŁUCZAK

Received his M.Sc. and Ph.D. degrees from Poznan

University of Technology in 1997 and 2001,

respectively. In 1997 he joined the image processing

team at Poznan University of Technology. Member of

of Polish Society Theoretical and Applied Electrical

Engineering (PTETiS). His research activities include

video coders control, MPEG-4/H.264 systems and

hardware implementations of digital signal processing

algorithms. He received Annual Fellowship for Young

Scientist from the Foundation for Polish Science

(FNP) and also a Group Award of the Minister of the

National Education for research in the National

Education for research in image compression.

Currently he is involved in some project on video

coding and video delivery.

e-mail: aluczak@multimedia.edu.pl

M.Sc. Adam GRZELKA

Received M.Sc. degree from Poznan University of

Technology in 2014. He is a Ph.D. student at the Chair

of Multimedia Telecommunications and

Microelectronics. The main area of his professional

activities are image processing, FTV (Free Viewpoint

Television) and FPGA – especially implementation of

compression algorithms and communication

interfaces.

e-mail: agrzelka@multimedia.edu.pl

Eng. Grzegorz DULNIK

He is a M.Sc. student at the Chair of Multimedia

Telecommunications and Microelectronics. The main

area of his interests are FPGA devices and

microcontroller programming.

e-mail: dulnik.g@wp.pl

Eng. Adam PASZKOWSKI

He is a M.Sc. student at the Chair of Multimedia

Telecommunications and Microelectronics. The main

area of his interests are FPGA boards and

microcontroller programming.

e-mail: adam9205@wp.pl

Eng. Jacek Borko

He is a M.Sc. student at the Chair of Multimedia

Telecommunications and Microelectronics. He

is interested in microcontrollers, FPGA boards

and high level programming.

e-mail: jacekborko@gmail.com

