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ANFIC: Image Compression Using Augmented Normalizing Flows

Yung-Han Ho, Chih-Chun Chan, Wen-Hsiao Peng, Senior Member, IEEE, Hsueh-Ming Hang, Fellow, IEEE,
and Marek Domański, Senior Member, IEEE

This paper introduces an end-to-end learned image compression system, termed ANFIC, based on Augmented Normalizing Flows
(ANF). ANF is a new type of flow model, which stacks multiple variational autoencoders (VAE) for greater model expressiveness.
The VAE-based image compression has gone mainstream, showing promising compression performance. Our work presents the
first attempt to leverage VAE-based compression in a flow-based framework. ANFIC advances further compression efficiency by
stacking and extending hierarchically multiple VAE’s. The invertibility of ANF, together with our training strategies, enables ANFIC
to support a wide range of quality levels without changing the encoding and decoding networks. Extensive experimental results
show that in terms of PSNR-RGB, ANFIC performs comparably to or better than the state-of-the-art learned image compression.
Moreover, it performs close to VVC intra coding, from low-rate compression up to perceptually lossless compression. In particular,
ANFIC achieves the state-of-the-art performance, when extended with conditional convolution for variable rate compression with a
single model. The source code of ANFIC can be found at https://github.com/dororojames/ANFIC.

Index Terms—Learning-based image compression, flow-based image compression, augmented normalizing flows, perceptually
lossless image compression, variable rate image compression

I. INTRODUCTION

Image compression has been a thriving research area for
decades due to the storage and transmission requirements in
various applications that underpin our modern digital life.
Image compression also appears in the form of intra-frame
coding for video compression [1]. The rapid advances in inter-
frame prediction make efficient intra-frame coding become
increasingly important because intra-coded frames often pre-
dominate over the bit rate of a compressed video. Therefore, it
is much desirable to achieve even higher image compression
efficiency.

The state-of-the-art image compression methods, e.g. BPG
and VVC intra coding, usually involve block-based intra
prediction, block-based transform coding of residuals, and
context-adaptive binary arithmetic coding. Over the years,
tremendous research effort has been invested to better every
component in a way that seeks higher compression efficiency
at the expense of an acceptable complexity increase. These
hand-crafted codecs, although achieving a good balance be-
tween compression efficiency and complexity, lacks the op-
portunity to optimize all the components jointly in a seamless,
end-to-end manner.

The rising of deep learning recently spurred a new wave of
developments in image compression, with end-to-end learned
systems attracting lots of attention. Among them, the varia-
tional autoencoder (VAE)-based methods [2], [3], [4], [5] have
achieved compression performance very close to the latest
VVC intra coding. Different from traditional hand-crafted
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codecs, the VAE-based methods usually implement an image-
level non-linear transform that converts an input image into a
compact set of latent features, the dimensions of which are
much smaller than the input image. Ever since the advent
of the first VAE-based scheme [6], several improvements
have been made on the expressiveness [4], [5], [7] of the
autoencoder and the efficiency of entropy coding [2], [3], [4],
[5], [8], [9], [10]. Up to now, the VAE-based methods have
become the mainstream approach to end-to-end learned image
compression.

However, one issue with most VAE-based schemes is that
the autoencoder is generally lossy. There is no guarantee
that its non-linear transform can reconstruct the input image
losslessly even without quantizing the latent features of the
image. This is unlike the traditional transforms, such as
Discrete Cosine Transform and Wavelet Transform, which
have the desirable property of perfect reconstruction and allow
the codec to offer a wide range of quality levels by merely
changing the quantization step size.

Recently, the flow-based models [11], [12] emerged as
attractive alternatives. These models have the striking feature
of realizing a bijective and invertible mapping between the
input image and its latent features via the use of reversible
networks composed of affine coupling layers [13], [14]. This
invertibility is utilized to develop lossless image compression
in [15], while the affine coupling layers are used in place of
the lossy autoencoder in [11], [12] to achieve both lossy and
lossless (or perceptually lossless) compression with a single
unified model. The reversible networks, however, are quite
distinct from the commonly used autoencoders, making these
two types of compression systems not compatible with each
other.

In this paper, we propose a novel end-to-end lossy image
compression system, termed ANFIC, based on Augmented
Normalizing Flows (ANF) [16]. ANF is a new type of flow
models that work on augmented input space to offer greater
transformation ability than the ordinary flow models. Our
scheme ANFIC is motivated by the fact that ANF is a gener-
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alization of VAE that stacks multiple VAE’s as a flow model.
In a sense, this allows ANFIC to extend any existing VAE-
based compression system in a flow-based framework to enjoy
the benefits of both approaches. ANFIC is novel and unique
in that (1) it distinguishes from flow-based compression by
operating in augmented input space, being able to leverage the
representation power of any VAE-based image compression,
and that (2) it is more general than the VAE-based compression
by allowing VAE to be stacked and/or extended hierarchically.

Extensive experimental results on Kodak, Tecnick, and
CLIC validation datasets show that ANFIC performs compa-
rably to or better than the state-of-the-art end-to-end image
compression in terms of PSNR-RGB. It performs close to
VVC intra over a wide range of quality levels from low-
rate compression up to perceptually lossless compression. In
particular, ANFIC achieves the state-of-the-art performance
among the competing methods, when extended with condi-
tional convolutional layers [17] for variate rate compression
with a single model.

Our main contributions are three-fold:
• We propose ANFIC, which uses augmented normalizing

flows for image compression, as the first work that
leverages VAE-based image compression in a flow-based
framework.

• We offer extensive ablation studies to understand and
visualize the inner workings of ANFIC.

• Extensive experimental results show that ANFIC is
competitive with the state-of-the-art image compression,
VAE-based and flow-based, over a wide range of quality
levels and performs close to VVC intra coding.

This work improves on our previous publication [18] by (1)
replacing the affine coupling layers with additive coupling
layers to improve the training stability and avoid degrading
the performance, (2) introducing the Gaussian mixture model
along with the autoregressive module for better entropy cod-
ing, and (3) providing more comprehensive ablation studies of
ANFIC.

The remainder of this paper is organized as follows: Sec-
tion II reviews VAE-based image compression and the basics
of ANF. Section III elaborates the design of ANFIC. Sec-
tion IV compares ANFIC with the state-of-the-art methods
in terms of objective compression performance and subjective
image quality. Section V presents our ablation studies. Finally,
we provide concluding remarks in Section VI.

II. RELATED WORK

In this paper, we propose an ANF-based image compres-
sion. It can be viewed as an extension of VAE-based image
compression. Hence, this section focuses on the recent devel-
opments of VAE-based image compression and introduces the
fundamentals of ANF to ease the understanding of our scheme.

A. VAE-based Image Compression

VAE-based image compression [2], [3], [4], [5], [6], [8],
[9] is the most popular approach to end-to-end learned image
compression. Its training framework includes three major
components: the analysis transform, the prior distribution, and

the synthesis transform. These components are implemented
by neural networks.

The analysis transform ga encodes the raw image x through
an encoding distribution qgaφ (y|x) with the latent representa-
tion y uniformly quantized as ŷ. The ŷ is then entropy encoded
into a bitstream using a learned prior pπ(ŷ) implemented by
a network π. Finally, the synthesis transform gs reconstructs
approximately the input x from ŷ by a decoding distribution
pgsθ (x|ŷ).

All the network parameters are trained end-to-end by min-
imizing

L(φ, θ, π) = −Eqgaφ (ŷ|x)[log p
gs
θ (x|ŷ)]︸ ︷︷ ︸

D

−Eqgaφ (ŷ|x)[log pπ(ŷ)]︸ ︷︷ ︸
R

,

(1)
where the first term, denoted by D, aims to minimize the
negative log-likelihood of x and the second term minimizes
the rate R needed for signaling ŷ. In particular, it is shown that
minimizing Eq. (1) amounts to maximizing the evidence lower
bound (ELBO) of a latent variable model [19], which is spec-
ified by pπ(ŷ) and pgsθ (x|ŷ), with qgaφ (ŷ|x) taking a uniform
distribution that models the effect of uniform quantization. In
a more general setting, a hyper-parameter λ is introduced to
balance between D and R, yielding L = λD +R.

Balle et al. [6] are the first to introduce the aforementioned
VAE framework together with a learned factorized prior to
image compression. In entropy coding the image latents, they
assume the prior distribution pπ(ŷ) over ŷ to be factorial and
learn the distribution by the network π. Their analysis and
synthesis transforms are composed of convolutional neural
networks and the general division normalization (GDN) layers,
which originate from [20].

Even since the advent of the VAE-based compression frame-
work, several efforts have been made to advance its coding
efficiency. In particular, some [2], [3], [4], [5], [8], [9], [10]
improve the prior estimation for better entropy coding while
others [4], [5], [7] address the analysis and syntheses trans-
forms (referred collectively to as the autoencoding transform).
We summarize briefly these efforts as follows.

Enhanced Prior Estimation: The prior distribution pπ(ŷ)
crucially determines the number of bits (i.e. the rate) needed
to signal the quantized image latents ŷ. Recognizing the
suboptimality of the factorized prior pπ(ŷ), where feature
samples in every channel of ŷ are independently and iden-
tically distributed, Balle et al. [8] propose the notion of
hyperprior to model every feature sample separately by a
Gaussian distribution. To this end, additional side information
ẑ is extracted from the image latent y and sent to the
decoder, making the density estimation of ŷ dependent on
the input x. The ŷ and ẑ form the latent representation of
the input x. The hyperprior thus bears the interpretation of
factorizing the joint distribution p(ŷ, ẑ) as p(ŷ|ẑ)p(ẑ), where
p(ŷ|ẑ) and p(ẑ) are assumed to be Gaussian and factorial,
respectively. Hu et al. [3], [10] extend the idea to include
more than one layer of hyperprior, leading to a factorization
of p(ŷ, ẑ1, ẑ2, . . . , ẑn) = p(ŷ|ẑ1)p(ẑ1|ẑ2), . . . , p(ẑn), where
ẑ1, ẑ2, . . . , ẑn form a multi-layer hyperprior. In addition to
the use of hyperprior, Minnen et al. [2], Lee et al. [9], Chen
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(a) Normalizing flows (b) ANFIC

Fig. 1: Flow-based image compression with (a) normalizing
flows [11] and (b) augmented normalizing flows (ours).

et al. [4], and Cheng et al. [5] incorporate an autoregressive
prior by 2D [2], [5], [9] or 3D [4] masked convolution [21], in
order to utilize causal contextual information for better density
estimation. In particular, Cheng et al. [5] model p(ŷ|ẑ) with
a Gaussian mixture distribution instead of a Gaussian.

Enhanced Autoencoding Transform: The capacity of the
autoencoding transform determines its expressiveness. Chen
et al. [4] add residual blocks to the autoencoder along
with several non-local attention modules (NLAM). NLAM
is shown to facilitate spatial bit allocation among coding
areas of varied texture complexity. Unlike most of the VAE-
based systems, which operate at image level, the block-
based autoencoder in [7] divides the input image into non-
overlapping macroblocks, each of which contains multiple
sub-blocks coded sequentially using recurrent-based analysis
and synthesis transforms. It has the striking feature of allowing
high degree of computational parallelism at macroblock level.
In general, most autoencoders are not guaranteed to reconstruct
the input perfectly even when no quantization is involved.

B. Flow-based Image Compression

Recently, flow-based models [13], [14] emerge as an at-
tractive alternative to VAE [19] or other autoencoders. They
are characterized by the bijective mapping between the input
and its latent representation, ensuring that the input can
be perfectly reconstructed from its latent in the absence of
quantization. Ma et al. [12] make an interesting attempt to
introduce lifting-based coupling layers, which are a specialized
implementation of additive coupling layers [13], [14] often
used to construct a flow model, as the analysis and synthesis
backbone. In particular, they split an input image, first row-
wise and then column-wise, into latent subbands, the result-
ing decomposition being similar to 2D wavelet transform.
Helminger et al. [11] also use additive coupling layers but
with the factor-out splitting to generate a multi-scale image
representation as shown in Fig. 1a. Their work extends the
notion of integer discrete flows for lossless compression [15] to

(a) (b)

Fig. 2: The architectures of ANF: (a) one-step ANF, composed
of the encoding gencπ and the decoding gdecπ transforms, and
(b) one-step hierarchical ANF.

lossy compression. In common, these works show the potential
of flow-based models to offer a wide range of quality levels
ranging from low-rate compression to nearly-lossless or even
lossless compression.

Our work aims to leverage the developments of VAE-based
schemes in a flow-based framework to enjoy the benefits of
both (see Fig. 1b). For this purpose, we resort to augmented
normalizing flows [16], the basics of which are presented next.

C. Augmented Normalizing Flows (ANF)

The ANF model [16] is an invertible latent variable model.
It is composed of multiple autoencoding transforms, each
of which comprises a pair of the encoding and decoding
transforms as depicted in Fig. 2a. Consider the example of
ANF with one autoencoding transform (i.e. one-step ANF). It
converts the input x coupled with an independent noise e into
their latent representation (y, z) with one pair of encoding and
decoding transforms:

gencπ (x, e) = (x, sencπ (x)� e+menc
π (x)) = (x, z) (2)

gdecπ (x, z) = ((x− µdecπ (z))/σdecπ (z), z) = (y, z) (3)

where sencπ , menc
π , µencπ , and σencπ are element-wise affine

transformation parameters. These learnable parameters are
driven by the encoding and decoding neural networks, the
weights of which are referred collectively to as π. Compared
with ordinary flow models, ANF augments the input with an
independent noise. It is shown in [16] that the augmented input
space allows a smoother transformation to the required latent
space.

Multi-step ANF and Hierarchical ANF: From Fig. 2a and
according to Eqs. (2) and (3), the encoding gencπ or decoding
gdecπ transform implements an invertible affine coupling layer.
Stacking pairs of these coupling layers leads to an invert-
ible network, termed multi-step ANF, with much improved
capacity than one-step ANF. Another way to increase the
model capacity is to augment more noise inputs as hierarchical
ANF (see Fig. 2b). Particularly, these two approaches can be
combined in a flexible way for even higher model capacity.

Training ANF: Like the ordinary flow models, ANF can
be trained by maximizing the augmented joint likelihood, i.e.
argmaxπ pπ(x, e):

pπ(x, e) = p(Gπ(x, e))

∣∣∣∣det∂Gπ(x, e)∂(x, e)

∣∣∣∣ , (4)
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where Gπ = gdecπN ◦ g
enc
πN ◦ . . . ◦ g

dec
π1
◦ gencπ1

is the alternate
composition of the encoding and decoding transforms with
π = {π1, · · ·, πN} and p(Gπ(x, e)) represents the specified
or learned prior distribution over the latents (y, z). It is
shown in [16] that maximizing the augmented joint likelihood
pπ(x, e) in ANF amounts to maximizing a lower bound on
the marginal likelihood pπ(x), with the gap attributed to the
model’s incapability of modeling e independently of x.

VAE as One-step ANF: Notably, VAE can be viewed
as one-step ANF by (1) letting e ∼ N (0, I) be a Gaus-
sian noise, (2) transforming e into z via re-parameterizing
the VAE’s encoding distribution qencπ (z|x) of the form
N (menc

π (x), (sencπ (x))2), and (3) normalizing x as y =
(x − µdecπ (z))/σdecπ (z) via the VAE’s decoding distribution
pdecπ (x|z) = N (µdecπ (z), (σdecπ (z))2). The resulting y then
follows N (0, I) and so does the aggregated distribution of
z from various inputs x. Maximizing Eq. (4) for such an one-
step ANF is shown in [16] to be identical to maximizing the
ELBO of VAE [19].

III. PROPOSED METHOD

Inspired by the fact that most learned image compression
is VAE-based and that VAE is equivalent to one-step ANF,
we propose an ANF-based image compression framework,
termed ANFIC. We first outline the ANFIC framework in
Section III-A, with a focus on how to extend VAE-based image
compression with hyperprior by multi-step and hierarchical
ANF. This is followed by discussions on the entropy coding
of the latent representation (Section III-B), the modeling of the
prior distribution in ANFIC (Section III-A), and the training
objective (Section III-C).

To the best of our knowledge, ANFIC is the first work that
combines VAE and flow models in a unified framework. It
distinguishes from flow-based compression in that it operates
on augmented input space (see Fig. 1b), being able to leverage
the representation power of any existing VAE-based image
compression. Moreover, ANFIC is more general than the VAE-
based scheme by allowing it to be stacked and/or extended
hierarchically (see Fig. 2).

A. ANFIC Framework

Fig. 3a describes the framework of ANFIC. From bottom
to top, it stacks two autoencoding transforms (i.e. two-step
ANF), with the top one extended further to the right to form
a hierarchical ANF [16] that implements the hyperprior. More
autoencoding transforms can be added straightforwardly to
create a multi-step ANF. In particular, the gencπ and gdecπ in
the autoencoding transform follow Eqs. (2) and (3), except
that we make them purely additive by removing sencπ (x) and
σdecπ (z) for better convergence as with some other flow-based
schemes [11], [12].

The autoencoding transform of the hyperprior, which as-
sumes each sample in the latent representation z2 is a Gaus-
sian, is defined as

hencπ3
(z2, eh) = (z2, eh +menc

π3
(z2)) = (z2, ĥ2), (5)

hdecπ3
(z2, ĥ2) = (bz2 − µdecπ3

(ĥ2)e, ĥ2) = (ẑ2, ĥ2), (6)

(a) (b)

Fig. 3: (a) The overall architecture of our proposed ANF-
based image compression (ANFIC). (b) Error propagation due
to the quantization of the image latents x2, z2. To alleviate
propagation errors, we place a quality enhancement (QE)
network at the end of the reverse path (the red dotted line).

where b·e (depicted as Q in Fig. 3a) denotes the nearest-
integer rounding for quantizing the residual between z2 and
the predicted mean µdecπ3

(ĥ2) of the Gaussian distibution from
the hyperprior ĥ2. This part implements the autoregressive
hyperprior in [2], with z2 denoting the image latents whose
distributions are signaled as the side information ĥ2.

The encoding of ANFIC proceeds by passing the augmented
input (x, ez, eh) through the autoencoding and hyperprior
transforms, i.e. Gπ = gdecπ2

◦ hdecπ3
◦ hencπ3

◦ gencπ2
◦ gdecπ1

◦ gencπ1
,

to obtain the latent representation (x2, ẑ2, ĥ2). In particular, x
represents the input image, ez = 0 denotes the augmented
input, and eh ∼ U(−0.5, 0.5), another augmented input,
simulates the additive quantization noise of the hyperprior
during training. To achieve lossy compression, we want ẑ2
and ĥ2 to capture most of the information about the input x
and regularize x2 during training to approximate noughts. As
such, only ẑ2 and ĥ2 are entropy coded into bitstreams. Note
that due to the volume-preserving property of ANF (or any
flow model), x2 has the same dimensionality as the input x
while that of ẑ2 and ĥ2 is usually much smaller depending
on the design choice. This flexibility allows us to incorporate
any existing VAE-based compression scheme as one specific
realization of the autoencoding transform in ANFIC. For
example, the encoder of any VAE-based compression can
be used to implement menc

π (x) for the encoding transform
in Eq. (2); likewise, its decoder can realize µdecπ (x) for the
decoding transform in Eq. (3). Note that we have assumed the
use of additive coupling layers.

To decode the input x, we apply the inverse mapping
function G−1π to the quantized latents (0, ẑ2, ĥ2), where x2 is
set to noughts. In ANFIC, there are two sources of distortion
that cause the reconstruction to be lossy: the quantization
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error of z2 and the error of setting x2 to noughts during
the inverse operation. Essentially, ANFIC is an ANF model,
which is bijective and invertible. The errors between the
encoding latents (x2, z2) and their quantized version (0, ẑ2)
will introduce distortion to the reconstructed image, as shown
in Fig. 3b.

To mitigate the effect of quantization errors on the decoded
image quality, we incorporate a quality enhancement (QE)
network at the end of the reverse path, as illustrated in Fig. 3b.
This enhancement network is an integral part of ANFIC, which
is constrained by the fact that the analysis and the synthesis
transforms must share the same autoencoding transforms (i.e.
invertible coupling layers). This constraint makes it difficult
to learn a synthesis transform that can effectively compensate
for quantization errors while maintaining the invertibility. The
same observation was made in [12]. In this paper, we adopt
the same lightweight quality enhancement network as [12].

B. Prior Distribution

The prior distribution of ANFIC refers to the joint distribu-
tion p(x2, ẑ2, ĥ2) of the latents (x2, ẑ2, ĥ2), which like VAE-
based schemes plays a crucial role in determining the rate
needed to signal the image latents. Rather than manually spec-
ifying the prior distribution, we adopt a parametric approach
to learn p(x2, ẑ2, ĥ2), for the sake of balancing between rate
and distortion. As noted previously, our ANFIC has the latent
ẑ2 and the hyperprior ĥ2 capture most of the information of
the input x. We thus regularize the latent x2 to follow a zero-
mean Gaussian with a small variance σ2 and to be independent
of ẑ2, ĥ2. That is, p(x2, ẑ2, ĥ2) factorizes as:

p(x2, ẑ2, ĥ2) = p(x2)p(ẑ2|ĥ2)p(ĥ2), (7)

with
p(x2) = N (0, σ2), (8)

and the remaining terms, p(ẑ2|ĥ2) and p(ĥ2), learned from
data by neural networks.

Similar to VAE-based schemes [8], we assume p(ĥ2) to be
a non-parametric distribution and p(ẑ2|ĥ2) to be a conditional
Gaussian. Recall that ẑ2 and ĥ2 are the quantized version of
the primary image latent z2 and its hyperprior menc

π3
(z2) (see

Eq. (5)), which is output by the encoding transform of hencπ3

(see Fig. 3a). We follow the additive noise model for quanti-
zation during training. As a result, we have ĥ2 = menc

π3
(z2)+

eh, eh ∼ U(−0.5, 0.5) and ẑ2 = bz2 − µdecπ3
(ĥ2)e follow a

distribution given by the convolution ofN (0, (σdecπ3 (ĥ2))
2) and

U(−0.5, 0.5). In symbols, p(ĥ2) and p(ẑ2|ẑ2) have the forms
of

p(ẑ2|ĥ2) = N (0, (σdecπ3
(ĥ2))

2) ∗ U(−0.5, 0.5)
p(ĥ2) = Pĥ2|ψ ∗ U(−0.5, 0.5)

(9)

where ∗ denotes convolution and Pĥ2|ψ is a learned distribu-
tion parameterized by ψ. Note that unless otherwise specified,
p(x2), p(ẑ2|ĥ2), p(ĥ2) are all assumed to be factorial over the
elements of x2, ẑ2, ĥ2, respectively.

Algorithm 1 and 2 present the encoding and decoding
procedures of ANFIC, respectively, where the x̃1, z̃2, and

Algorithm 1 The encoding procedure of ANFIC
1: Input: The image x and the augmented inputs ez , eh
2: Output: The bitstream of ẑ2 and ĥ2
3: z1 = mencπ1

(x) + ez
4: x1 = x− µdecπ1

(z1)
5: z2 = z1 +mencπ2

(x1)

6: ĥ2 = mencπ3
(z2) + eh (replaced with the nearest-integer rounding of

mencπ3
(z2) at inference time)

7: Encode ĥ2 using p(ĥ2) in Eq. (9)
8: ẑ2 = bz2 − µdecπ3

(ĥ2)e
9: Encode ẑ2 using p(ẑ2|ĥ2) in Eq. (9)

10: x2 = x1 − µdecπ2
(ẑ2)

Algorithm 2 The decoding procedure of ANFIC

1: Input: The bitstream of ẑ2 and ĥ2
2: Output: The reconstructed image x̂
3: Set x2 to 0
4: Decode ĥ2 using p(ĥ2) in Eq. (9)
5: Decode ẑ2 using p(ẑ2|ĥ2) in Eq. (9)
6: x̃1 = µdecπ2

(ẑ2)

7: z̃2 = ẑ2 + µdecπ3
(ĥ2)

8: z̃1 = z̃2 −mencπ2
(x̃1)

9: x̃ = x̃1 + µdecπ1
(z̃1)

10: x̂ = QE(x̃)

x̃ stand for the reconstructed version of x1, x2, and x,
respectively (See Fig. 3b).

Gaussian Mixtures Extension: ANFIC is flexible in ac-
commodating more sophisticated modeling of p(ẑ2|ĥ2), such
as Gaussian mixture models. Unlike the single Gaussian
model, the mixture model requires to estimate the mixing
probabilities w(k), k = 1, 2, . . . ,K for K components as well
as the corresponding mean µ(k) and variance σ(k). All these
parameters are functions of the hyperprior ĥ2. In the present
case, the decoding transform hdecπ3

(see Eq. (6)) is changed
to hdecπ3

(z2, ĥ2) = (bz2e, ĥ2) = (ẑ2, ĥ2)–namely, an identity
transform followed by the quantization of z2. This change is
necessary because with the mixture model, the subtraction of
a single predicted mean from z2 is not feasible. In addition,
p(ẑ2|ĥ2) follows a distribution given by

p(ẑ2|ĥ2) =

(
K∑
k=1

w(k)(ĥ2)N (µdecπ3(k)
(ĥ2), (σ

dec
π3(k)

(ĥ2))
2)

)
∗ U(−0.5, 0.5)

(10)

C. Training Objective

Training ANFIC can be achieved by minimiz-
ing the negative augmented log-likelihood, i.e.
argminπ,ψ − log pπ,ψ(x, ez, eh). This leads to the following
loss function:

L(x, ez, eh;π, ψ) =− log p(ĥ2)− log p(ẑ2|ĥ2) + λ1‖x2 − 0‖2

− log
∣∣∣∣det∂Gπ(x, ez, eh)∂(x, ez, eh)

∣∣∣∣ ,
(11)

where the Jacobian log-determinant generally prevents the
collapse of the latent space. In our implementation, we replace
it with a reconstruction loss λ2d(x, x̂), with the distortion
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metric d(·, ·) being the mean-squared error (MSE) or multi-
scale structure similarity index (MS-SSIM):

L(x, ez, eh;π, ψ)
= − log p(ĥ2)− log p(ẑ2|ĥ2)︸ ︷︷ ︸

R

+λ1‖x2 − 0‖2 + λ2d(x, x̂)︸ ︷︷ ︸
D

,

(12)

where π, ψ refer to the parameters of all the networks, includ-
ing the quality enhancement network. Unlike the traditional
weighted sum of rate R and distortion D, our training objective
has the additional requirement that x2 should approximate
noughts. This drives ẑ2, ĥ2 to encode most of the information
about the input x, provided that the reconstructed image x̂ ap-
proximate x closely. In passing, we note that the reconstruction
loss also prevents the latent space from collapsing. Apparently,
it would be difficult to recover the input x if different x’s are
all mapped to the same point in the latent space.

IV. EXPERIMENTAL RESULTS

This section evaluates the performance of ANFIC both
objectively and subjectively. We first present the network
architectures, training details, evaluation methodologies, and
the baseline methods in Section IV-A. Next, we compare the
rate-distorton performance of ANFIC with several state-of-the-
art methods on commonly used datasets in Section IV-B.
Lastly, we evaluate the subjective quality of the reconstructed
images in Section IV-C.

A. Settings and Implementation Details

Network Architectures: Our autoencoding transforms for
feature extraction (the left branch in Fig. 4) and hyperprior
(the right branch in Fig. 4) share similar architectures to
the VAE-based scheme in [2]. In addition, we use the same
lightweight de-quantization network in [12] as the quality
enhancement network. All the autoencoding transforms in our
model have separate network weights. To keep the overall
model size comparable to that of [2], we reduce the number
of channels in every convolutional layer to 128. We adopt the
autoregressive and Gaussian mixture model (Section III-B) for
entropy coding in all the experiments, with the number K of
mixture components set empirically to 3, which is found to be
most effective in [5].

Training: For training, we use vimeo-90k dataset from [22].
It contains 91,701 training videos, each having 7 frames. In a
training iteration, we randomly choose one frame from each
video and crop it to 256 × 256. We adopt the Adam [23]
optimizer with a batch size of 32. The learning rate is fixed
at 1e−4 during the first 3M iterations, and then we decay to
1e−5 for fine-tuning. The two hyper-parameters (see Eq. (12))
are chosen to have λ1 = 0.01 ∗ λ2, where λ2 is one of
the values from {0.1, 0.05, 0.02, 0.01, 0.005, 0.002} for MSE
optimization and from {200, 100, 40, 20, 10, 4} for optimizing
MS-SSIM. In particular, we first train our model for the
highest rate point. It is then fine tuned with few epochs to
obtain the models for lower rate points.

Evaluation: We evaluate our model on commonly used
datasets, Kodak [24] and Tecnick [25], which include 24

Fig. 4: The network architecture of our proposed ANFIC
(L = 128, N = 320,M = 192,K = 3). We adopt
the autoregressive and Gaussian mixture model for entropy
coding. AC and mask denote arithmetic coding and masked
convolution, respectively.

uncompressed images of size 768×512 and 40 images of size
1200× 1200, respectively. Additionally, we test our model on
the CLIC validation datasets [26]. It contains two subdivided
datasets: professional and mobile. The former has 41 higher
resolution images and the latter 61 images. To evaluate the
rate-distortion performance, we report rates in bits per pixel
(bpp) and quality in PSNR-RGB and MS-SSIM. Moreover, we
use BPG as an anchor in reporting the BD-rates. Note that rate
inflation as compared to BPG is reflected by positive BD-rates
while rate saving is shown as negative BD-rates.

Baselines: For comparison, the baseline methods in-
clude VTM-444, BPG-444, ICLR’18 [8], NIPS’18 [2],
ICLR’19 [9], TPAMI’20 [12], CVPR’20 [5], TPAMI’21 [10],
and TIP’21 [4]. It is worth noting that TPAMI’20 [12] is a
flow-based model, while the other learned codecs are VAE-
based.

B. Rate-Distortion Performance

Fig. 5 compares the rate-distortion performance of the com-
peting methods on Kodak, Tecnick, and CLIC (professional
and mobile combined) datasets, with the BD-rate numbers
summarized in Table I. Following some prior works, the
BD-rate figures for CLIC professional dataset are reported
separately in Table I.
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(a) Kodak, PSNR (b) Kodak, MS-SSIM

(c) Tecnick, PSNR (d) Tecnick, MS-SSIM

(e) CLIC, PSNR (f) CLIC, MS-SSIM

Fig. 5: Rate-distortion performance evaluation on Kodak, Tecnick, and CLIC datasets for both PSNR and MS-SSIM. The
numbers in the parentheses are the BD-rates with BPG-444 as anchor.

In terms of PSNR-RGB, one can see that our method
shows comparable performance to the state-of-the-art learned
codecs, CVPR’20 [5] and TPAMI’20 [12], on Kodak and
CLIC datasets. Remarkably, it achieves the best performance
among all the learned codecs on Tecnick and CLIC datasets.
It however falls short of the VTM model slightly on Kodak,
Tecnick and CLIC datasets. In particular, ANFIC displays a
tendency to perform worse at low rates. This may be attributed
to the fact that additive coupling layers are susceptible to the

accumulation and propagation of quantization errors (Fig. 3b).
It is important to note in Table I that ANFIC is inferior to
VTM in BD-rate saving by a significant margin (7%) on CLIC
Professional dataset. Careful examination of the dataset reveals
that some images are extremely challenging and not typical
of the images found in our training data. All the competing
methods are faced with the same issue. It is expected that
increasing the diversity of training data will help. Nevertheless,
the superiority of ANFIC over BPG is apparent on all the
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TABLE I: Comparison of the BD-rate savings and model sizes
of the competing methods (optimized by MSE). The BD-rate
savings are reported with BPG-444 serving as the anchor. The
best performer is marked with “†”, and the second best with
“∗”.

Methods BD-rate (%) Model SizeKodak Tecnick CLIC CLIC Pro
ICLR’18 [8] 5.0 2.9 13.2 - 12M
NIPS’18 [2] -3.0 -15.6 0.3 - 20M
ICLR’19 [9] -3.0 -10.1 -7.5 -13.8 73M

TPAMI’20 [12] -16.3∗ -22.6 -18.1 -20.3 18M
CVPR’20 [5] -14.5 - - -25.3∗ 27M

TPAMI’21 [10] -8.8 -15.0 -13.0 - 73M
ANFIC (Ours) -15.3 -26.5∗ -18.5∗ -24.5 23M

VTM-444 -17.9† -29.7† -22.6† -31.3† -

datasets.
In terms of MS-SSIM, our method performs among top two.

It is slightly worse than the top performer, CVPR’20 [5], on
Kodak dataset, especially at low rates (See Fig. 5b), but is
comparable to ICLR’19 [9], which achieves the best MS-SSIM
performance on the CLIC dataset. It is worth mentioning that
TPAMI’20 [12], a strong baseline when evaluated with PSNR-
RGB, exhibits poor MS-SSIM results because the released
model is optimized for MSE only. Also, as noted previously in
other studies, the learned codecs outperform VTM and BPG
considerably when trained and tested by MS-SSIM.

The model size comparison in Table I suggests that the rate-
distortion benefits of ANFIC do not come at the expense of
unreasonably huge models. Its model size is between that of
TPAMI’20 [12] and CVPR’20 [5], both show competitive rate-
distortion performance.

C. Subjective Quality Comparison

Figs. 6 and 7 show the subjective quality comparison
between ANFIC (ours), VVC, BPG, and TPAMI’20 [12] on
images kodim01 and kodim16 from Kodak dataset. It is
seen that our MSE model achieves comparable subjective
quality to VVC and TPAMI’20 [12]. As expected, ANFIC
optimized for MSE tends to smooth the highly-textured areas,
while VVC and HEVC generates clear blocking artifacts in
Fig. 7. In particular, TPAMI’20 [12] suffers from geometric
distortion especially in the ”door” area in Fig. 6 and produces
some artificial noisy dots on the ”water surface” in Fig. 7. In
contrast, our MS-SSIM model shows much better subjective
quality, preserving most high-frequency details.

V. ABLATION STUDIES

In this section, we conduct ablation studies to understand
ANFIC’s properties. Firstly, we show how the ANF framework
improves the VAE-based scheme by stacking its autoencoding
transform (Section V-A). Secondly, we investigate the effect
of the quality enhancement network on ANFIC and its VAE-
based counterpart (Section V-B). Thirdly, we discuss the effect
of imposing different regularization strategies on x2 (Sec-
tion V-C). Fourthly, we analyze the inner workings of ANFIC
by visualizing the output of each autoencoding transform in
both spatial and frequency domains (Section V-D). Fifthly, we
study the compression performance of ANFIC across low and
high rates (Section V-E). Finally, we extend ANFIC to support

variable rate compression and compare its performance with
the other baselines (Section V-F). Unless otherwise specified,
Kodak dataset is used for ablation experiments.

A. Number of Autoencoding Transforms

To see the rate-distortion benefits of stacking autoencoding
transforms, we compare between the VAE-based scheme [2]
and ANFIC with a varied number of autoencoding transforms.
It is important to note that the VAE-based scheme can be
interpreted as one-step ANFIC (see Section III-A). For a
fair comparison, the VAE-based scheme (which is termed
“NIPS’18+GMM” and is modified from [2] by additionally
including Gaussian mixture-based entropy coding and the
quality enhancement network [12]) and ANFIC share the same
autoencoding architecture, entropy coding scheme, and quality
enhancement network. To keep the model size comparable, the
channel number of every autoencoding transform in ANFIC is
set to 128 (See Fig. 4), while that of the VAE-based counter-
part is 192. This ensures that ANFIC with two autoencoding
transforms (the main setting used throughout this paper) has a
similar model size to the VAE-based one. Nevertheless, when
the number of autoencoding transforms increases beyond two,
the model size of ANFIC increases linearly.

From Fig. 8, it is seen that increasing the number of
autoencoding transforms from one layer (VAE-based) to two
layers (Ours 2-step) improves the rate-distortion performance
significantly. However, the gain diminishes sharply when the
number goes beyond two. We thus choose two autoencoding
transforms as our default setting.

A side experiment shows that increasing the channel number
(i.e. the L value in Fig. 4) of the autoencoding transform
from 128 to 192 improves the BD-rate saving only marginally
by 1.1%. The channel number is defaulted to 128 for lower
complexity and fair comparison.

B. Effect of Quality Enhancement Networks

Fig. 9 shows the effect of the quality enhancement network
(as a post-processing network) on the rate-distortion perfor-
mance of ANFIC and the VAE-based scheme [2]. In addition
to the default quality enhancement network from [12], we
experiment with another popular one, known as MCNet [1],
which is often used in the end-to-end learned video codecs to
enhance the quality of the motion-compensated frame [1]. The
two quality enhancement networks have similar model sizes.
The major difference between them is that the default one [12]
does not have striding and pooling operations, whereas MC-
Net [1] has a U-net structure, where the resolution of the
feature maps shrinks first and stretches later.

We observe that ANFIC benefits more from the use of the
default quality enhancement network [12], which boosts the
BD-rate saving of ANFIC by 6.6% as compared to 3.5%
with the NIPS’18+GMM (VAE-based with default quality
enhancement network [12]) scheme [2]. This suggests that
ANFIC literally separates the image transformation and the
(quantization) error compensation into two orthogonal parts.
The former is addressed by invertible autoencoding transforms
while the latter relies on the quality enhancement network. The
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Fig. 6: Subjective quality comparison of image kodim01 from Kodak dataset.

Fig. 7: Subjective quality comparison of image kodim16 from Kodak dataset.

Fig. 8: Rate-distortion curves for different number of autoen-
coding transforms.

fact that the feature extraction and the image reconstruction in
ANFIC have to go through the same invertible coupling layers
make it difficult to learn autoencoding transforms that can
handle well both image representation and error compensation.
This however is not the case with the NIPS’18+GMM (VAE-

Fig. 9: Rate-distortion performance with and without the
quality enhancement network.

based) scheme, where the analysis and the synthesis transforms
do not share the same network. Usually, the synthesis trans-
form can learn to compensate partially for quantization errors.
As such, the gain from the quality enhancement network
becomes limited when the synthesis network is already capable



10

Fig. 10: ANFIC with different regularization strategies im-
posed on x2.

enough.
From Fig. 9, it is also seen that the default quality enhance-

ment network [12] shows better rate-distortion performance
than MCNet [1], especially at lower rates. This may be
attributed to the fact that the striding and pooling of MCNet [1]
could cause the loss of some spatial information. In any case,
ANFIC with either quality enhancement network outperforms
NIPS’18+GMM.

C. Effect of x2 Regularization

Fig. 10 compares the rate-distortion curves for different
regularization strategies imposed on x2, including (1) weak
regularization (λ1 = 0.01∗λ2) with the L2 norm (the proposed
method), (2) weak regularization (λ1 = 0.01 ∗ λ2) with the
L1 norm, (3) heavy regularization (λ1 = 1 ∗ λ2) with the
L2 norm, and (4) no regularization (λ1 = 0). It can be
observed that weak regularization with either the L2 norm
or L1 norm achieves the best rate-distortion performance,
presenting 15.3% BD-rate reductions. Heavy regularization
with the L2 norm, however, degrades the rate-distortion perfor-
mance, because the regularization loss is weighted equally as
the reconstruction loss. No regularization, interestingly, shows
marginally worse rate-distortion performance (15.2% BD-rate
reduction) than the weak regularization with the L2 norm (the
proposed method).

The fact that no regularization shows marginal impact
on the final rate-distortion performance has partially to do
with our setting x2 to 0 for reconstruction during training.
Recall that the mapping between the input (x, ez, eh) and the
latent representation (x2, z2, h2) is invertible (See Fig. 3a).
In the absence of quantization, using (0, z2, h2) in place of
(x2, z2, h2) for decoding while ensuring the invertibility by
minimizing the reconstruction loss d(x, x̂) would compel x2 to
approximate noughts during encoding without any additional
regularization. The same trend carries roughly over to the
case when x2, z2, h2 are quantized. We however notice that
imposing weak regularization on x2 during encoding will
make the training more stable.

D. Visualization of Autoencoding Transforms

Fig. 11 visualizes how our ANFIC model (see Fig. 4) trans-
forms the input image x step-by-step into a residual image x2

x x1 = x− µdecπ1
x2 = x1 − µdecπ2

x3 = x2 − µdecπ3

µdecπ1
µdecπ2

µdecπ3
x̂

Fig. 11: Visualization of the autoencoding transform outputs
{xi}3i=1 and the decoder outputs {µdecπi }

3
i=1 in the autoencod-

ing transforms in three-step ANFIC, where the average image
intensity has been shifted to 128 for better viewing. The signal
spectra in frequency domain are plotted as heatmaps.

Fig. 12: Visualization of x2, ẑ2, and z2, where only few
channels with the largest variances are shown for ẑ2 and z2.
The Mean Square Error (MSE) of x2 is measured against a
zero image while that of ẑ2 is against z2.

and what information is captured by the corresponding latent
code zi, i = 1, 2 in each step. Additionally, the corresponding
signal spectra in frequency domain are presented to understand
the system response of every autoencoding transform. For
better visualizing the evolution of signals, we extend the
architecture in Fig. 4 to three-step ANFIC, with the final
outputs being x3 and z3 (instead of x2 and z2 as depicted in
Fig. 4). Also presented in this figure are the decoder outputs
{µdecπi }

3
i=1 of the autoencoding transforms (see Eq. (3) and

Fig. 4), which reveal the information captured by the latent
code {zi}3i=1. As an example, the first autoencoding transform
converts the image x into the latent code z1, which is then
decoded as µdecπ1

to be subtracted from x. Hence, µdecπ1
stands

for an estimate of x that is derived from the latent z1.
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From left to right in the top two rows, one can see that the
high-frequency details of the input image x are filtered out
in successive autoencoding transforms, arriving at a residual
image x3 with little high-frequency information (see the sub-
figure in the top-right corner). As such, the autoencoding
transforms in ANFIC act as low-pass filters, where their cut-off
frequency decreases with the increasing transform step in the
feature extraction process. Because x3 will be discarded dur-
ing the reconstruction process, the remaining high-frequency
details in x3 will be lost completely. Thus, ANFIC is lossy.

The decoder outputs of the autoencoding transforms further
shed light on how the latent code is transformed from ez into
a form suitable for compression (i.e. ez → z1 → z2 → z3).
From left to right in the bottom two rows, we see that
µdecπ1

(decoded from z1) presents a rough estimate of the
input x. Its spectrum looks similar to that of x, but is not
exactly the same. We conjecture that µdecπ1

focuses more on
the approximation of the high-frequency part of the input x.
The corroborating fact is that when it is subtracted from x,
the resulting output x1 = x − µdecπ1

has relatively less high-
frequency information. This becomes even more obvious in the
following autoencoding transform, where µdecπ2

(decoded from
z2) addresses primarily the remaining mid-frequency part in
x1; as a result, the output x2 = x1 − µdecπ2

of the second
transform becomes an even lower-frequency signal. In the
end, the latent code z3, which will be compressed into the
bitstream, only needs to represent a low-pass filtered version
of the original input, which is relatively easy to compress.
The reconstruction process updates a zero image in x3 by
those decoder outputs in reverse order (i.e. µdecπ3

→ µdecπ2
→

µdecπ1
→ x), to recover the low-frequency, mid-frequency, and

high-frequency details of the input x step-by-step.
Fig. 12 further visualizes x2, z2, and ẑ2 at different bit

rates ranging from 0.135bpp to 1.194bpp. It is seen that
more residuals appear in x2 at low rates than at high rates,
suggesting that setting x2 to a zero image at low rates would
introduce more distortion than at high rates. As for z2 and ẑ2,
because a fixed, uniform quantization step size, i.e. 1, is used
for all the rate points, the MSE between z2 and ẑ2 does not
change significantly. However, the network learns to adjust the
variance of z2 in order to control the signal-to-noise ratio in
the latent space. We see that the higher the bit rate is, the more
information is captured by z2; namely, z2 tends to have larger
variances at high rates. All in all, the information captured by
x2 decreases with the increasing bit rate, whereas that by z2
increases accordingly.

E. Compression Performance across Low and High Rates

This study investigates the compression performance of
ANFIC over a wide range of bit rates. It is reported in [11],
[12] that most VAE-based compression schemes suffer from
the autoencoder limitation; that is, the reconstruction by the
autoencder is generally lossy, even without quantization. As a
result, it is difficult for a VAE-based model to support efficient
compression over a wide rage of bit rates without changing
the network architecture, for example, by adjusting the number
of channels. ANFIC, although being a flow-based model, is

Fig. 13: Rate-distortion comparison between our ANFIC and
VAE-based schemes across low and high rates.

lossy due to discarding the high-frequency information in the
residual image x2 (see Fig. 4) for reconstruction.

Fig. 13 compares ANFIC with two state-of-the-art VAE-
based schemes over a wide range of bit rates. In particular,
ANFIC has the same number of channels (i.e. 320 channels)
in latent space as NIPS’18 [2], whereas CVPR’20 [5] has
only 192 channels yet with a larger model size. We see that
our ANFIC (w/o transmitting x̂2) matches the performance
of VTM closely from extremely low-rate compression up to
perceptually lossless compression, while the two VAE-based
schemes tend to fall short of VTM and even BPG at high rates.
The reason why ANFIC is able to work well across low and
high rates are two-fold: (1) the ANF-based backbone is fully
invertible, and (2) our training strategies, which require x2 to
approximate noughts in the feature extraction process and use
noughts exactly for x2 during reconstruction, force the image
latent ẑ2 and its hyperprior ĥ2 to capture as much information
about the input x as possible (see Fig. 4).

To further study the invertibility of ANFIC by additionally
encoding x2, we model the distribution of the quantized x2,
denoted by x̂2 = bx1 − µdecπ2

(ẑ2)e, by the convolution of
a Gaussian and a uniform distribution. For better coding
efficiency, the distribution is conditional on ẑ2:

p(x̂2|ẑ2) = N (0, σdecπ2
(ẑ2)

2) ∗ U(−0.5, 0.5) (13)

A closer look at the rate-distortion performance w/o and w/
transmitting x̂2 in Fig. 13 reveals that (1) at lower rates,
transmitting x̂2 shows worse rate-distortion performance than
not transmitting x̂2, and that (2) at higher rates, transmitting
x̂2 helps mitigate the quality gap between lossy and (mathe-
matically) lossless compression. In particular, not transmitting
x̂2 puts a limit on the highest achievable reconstruction
quality (i.e. the rate-distortion curve plateaus after 6bpp). The
second observation is in line with the invertibility property of
ANF. Focusing on lossy image compression, we opt for not
transmitting x̂2 in this paper. However, how to adapt ANFIC to
support mathematically lossless coding is an interesting open
issue that is among our future work.

F. Variable Rate Compression

Recognizing that ANFIC can work well over a wide range of
bit rates, we take one step further to adapt ANFIC to variable
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Fig. 14: Rate-distortion comparison between variable rate
models. Multi-model: separate models for distinct rate points;
Single-model: a single model for multiple rate points.

rate compression with a single model. To this end, we imple-
ment the notion of the conditional convolution in [17], replac-
ing every convolutional layer with one that is conditional on
the λ2 (see Eq. (12)). The conditional convolution layer applies
an affine transformation to every feature map, with the affine
parameters derived from a network conditional on the rate
parameter λ2. For the experiment, we train a single ANFIC
model using 5 distinct λ2 values {0.1, 0.05, 0.02, 0.01, 0.005}.
The training objective is an extension of Eq. (12) by substi-
tuting different λ2’s into Eq. (12) and averaging over these
variants.

Fig. 14 shows the rate-distortion comparison of the
state-of-the-art variable rate models, including VVC, BPG,
ICCV’19 [17], TMAPI’20 [12], and ANFIC (ours). Compared
with our multi-model setting, our single-model setting per-
forms comparably well, with slightly increased rate saving due
to training variance. It also shows comparable performance to
VTM across the 5 rate points, but outperforms significantly
the other learning-based methods in single-model mode.

VI. CONCLUSION

In this paper, we propose an ANF-based image compression
system (ANFIC). It is motivated by the fact that VAE, which
forms the basis of most end-to-end learned image compression,
is a special case of ANF and can be extended by ANF to offer
greater expressiveness. ANFIC is the first work that introduces
VAE-based compression in a flow-based framework, enjoying
the benefits of both approaches. Experimental results show
that ANFIC performs comparably to or better than the state-
of-the-art learned image compression and is able to offer a
wide range of quality levels without changing the network
architecture. Furthermore, its variable rate version shows little
performance degradation. Flow-based models are relatively
new to learned image compression. We believe there remains
widely open space for further research; for example, how to
achieve mathematically lossless coding with ANFIC is yet to
be addressed.
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