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Abstract—This article introduces a new online platform for
testing binary random number generators. The growing share of
low-complex devices in IoT networks increases the demand for
basic authorization and authentication tools, the critical block
of which is a secure random number generator. Communication
devices, therefore, require designers to carry out time-consuming
tests and acquire specialist knowledge of statistical testing in
evaluation of their results. To meet the current requirements,
we have created a test platform to assess the quality of random
strings produced by the generator. The presented solution, based
on the proprietary evaluation metric, provides feedback on the
properties of the uploaded random sequences. Clear interface
provides ease of use and by machine learning in the platform’s
backend, along with the increase of processed data, the improved
quality of the interpretation delivered by the system is ensured.
The operation of the platform has been confirmed experimentally,
based on the analysis of hardware generators producing random
strings with known properties.

Index Terms—random number generator, pattern recognition,
sequence similarity, statistical test

I. INTRODUCTION

The rapid growth of wireless networks driven by the devel-
opment of the Internet of Things (IoT) has a significant impact
on the development of modern communication technologies,
as well as related fields. The continuous increase in the number
of devices that perform wireless communication escalates
the demand for basic security mechanisms to ensure reliable
authentication and authorization. In the required security sys-
tems, the core block is a random number generator (RNG), the
non-deterministic nature of which determines the provided se-
curity level [1]. The production of even low-complex wireless
network devices requires the designer to take into account the
RNG in the designed structure. Since there are many publicly
available structures, often based on ring oscillators (RO) [2],
no specialist knowledge of using nondeterministic effects and
harvesting entropy is required. However, the quality of the
generated random sequences, especially in simple solutions
such as RO, remains strongly dependent on the production
parameters of the hardware platform and operating conditions
[3]. Therefore, the specified generator design requires an iter-
ative testing and improvement process. Random string testing
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is a well-established field in which the National Institute
of Standards and Technology (NIST) plays a leading role.
This organization has issued a special publications SP 800-
22 [4] and SP 800-90B [5] which outline the requirements
and methods for testing random sequences. Alternatives are
the AIS-31 standard on Evaluation Methodology for Physical
Random Number Generators, defined by the German Federal
Office for Information Security (BSI) [6] and the TestU01 [7].
In the above cases, a set of publicly available, predefined
tests helps in determining whether the generator produces
independent and identical samples. Beyond the statistical test
packages provided by government agencies, the frequently and
willingly used DieHarder a random number test suite by R.
Brown [8] should also be mentioned. The use of the above
tests causes several inconveniences for potential designers and
testers. First and foremost, the above-mentioned test suites
require a detailed study of the technical documentation to
resolve what statistical properties a given test is examining.
Moreover, each test, apart from the binary decision, returns
a result that requires independent interpretation, e.g. p-value.
This forces the user to possess specialist knowledge in the
field of statistical tests and the sources of their disturbances.
Finally, tests are provided as precompiled code that requires a
large amount of input data and provision of own computational
hardware. Therefore, obtaining a low-data demanding yet ef-
fective procedure that evaluates random string against a single
reference and returns clear information about the sequence
quality remains an open issue.

To meet the growing demand for intelligible and approach-
able testing of RNGs, in this article we present an Online
Platform for Testing and Evaluating Random Number Gen-
erators. The architecture of the prepared system is based on
the original random sequence matching algorithm, performing
feature extraction and returning an easy-to-use generator eval-
uation metric [9]. The use of machine learning in the backend
ensures a constantly improving ready-made interpretation of
the results, delivered to the user in an accessible form by
the frontend. Performing an online test also ensures that
the hardware load is transferred to the testing server. After
uploading a sequence of random numbers from developed
generator, the user receives direct feedback on the designated
metrics and their prospective interpretation. As a result, the
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requirements of the iterative process of testing and improving
the generator, both in terms of knowledge and necessary
equipment, are significantly reduced.

The prepared online platform was pre-trained based on
random number generators with known properties. Its oper-
ation has been confirmed experimentally in the evaluation of
RO-based hardware generators implemented in FPGAs from
leading manufacturers.

The rest of the article is organized as follows. Section II
describes features of the proposed system. Section III presents
the implementation, explains the experiment methodology
and shows numerical results. Finally, Section IV gives the
concluding remarks.

II. PROPOSED SYSTEM

The core of the designed system is the original random
sequence alignment algorithm that returns a bivalent metric.
However, ensuring the targeted functionality requires the au-
tomation of data processing. For this purpose, the algorithm
was used as a feature extraction function that provides data
for machine learning embedded in the developed system.

A. Feature extraction

Motivated by the desired functionality of random sequence
testing and inspired by the narrow group of sequence align-
ment methods used in arranging molecular sequences, we have
created an innovative algorithm for comparative analysis. The
algorithm performs mutual alignment of random series by a
successive search for pairs of matching elements. An important
feature of the algorithm is the careful introduction of sequence
breaks for elements without match.

The algorithm starts with the fetch of two sequences S1 and
S2. The trailing index k successively indicates the elements
of the compare instruction, i.e., S1[k] == S2[k]. If the
condition is true, the k simply increases to the next pair of
elements. In the case of a mismatched pair in k-th position,
i.e., S1[k] ̸= S2[k], the algorithm introduces an auxiliary index
p = k + 1. Match optimization is performed by additional
check that any element of S1 matches any element of S2

in the current range defined by distancing indexes k and p.
Thus, the algorithm compares S2,1[a] to the current reference
S1,2[p], where a ∈ ⟨k, p⟩. Failure to match within the running
range results in an increase of p by one and jump to the new
reference S1,2[p]. The element found with the lowest possible
index a preceding current p corresponds to the matching
optimization, thus aborts the search and triggers the gapping
for mismatched elements from both sequences. An organized
search enhances the breaking of sequences evenly, rather than
just one of them. An exemplary operation of the algorithm
is shown in Figure 1 and detailed step-by-step description is
provided in [9].

As a result, both sequences are stretched into the interleav-
ing of gaps and matches that is subject to the target evaluation
metric. The algorithm returns a two-element metric S(a, b).
The first is a stretch ratio determined as the ratio of the length
of the gapped sequences L

′

1 and L
′

2 to their initial lengths L1

Fig. 1. An example of two random sequences with common elements (top)
adjusted by the algorithm (bottom).

and L2. However, as the alignment progresses, the sequences
dynamically expand. Consequently, in one sequence a "tail"
of length Lt may occur, where Lt is the number of elements
for which there were not enough elements to match in the
second sequence. Therefore, the stretch metric a is calculated
as follows

a =
L

′

1 + L
′

2 − Lt

L1 + L2 − Lt
(1)

The second metric, b, is the cost of stretching the sequences.
As support to distinguish between scattered and clustered gaps,
cost is determined as an exponential function

b =

∑
i

∑
j 2

Gj
i−1

L1 + L2 − Lt
(2)

where Gj
i is equal to the number of gaps in the j-th gap cluster

in the i-th sequence.

Fig. 2. The meaning groups of the S(a, b) metric in the plane of stretch and
cost.

The result interpreted on the (a, b)-plane allows to infer
about statistical properties of sequences, thus to evaluate their
source. The plane indicates four information regions (Fig. 2):

Authorized licensed use limited to: Politechnika Poznanska. Downloaded on December 22,2021 at 09:55:59 UTC from IEEE Xplore.  Restrictions apply. 



• LL – low stretch ratio and low cost indicate scattered and
short mismatches, therefore high similarity of sequences.
The classification indicates a low quality of the tested
strings.

• LH – low stretch ratio with high cost characterizes
insertion of gaps in series, i.e. cyclical convergences and
divergences of both sequences. The assignment recog-
nizes problems with maintaining the quality of sequences.

• HL – high stretch ratio with low cost indicates numerous
scattered gaps, i.e., short matches and mismatches. The
result is a premise for inference about the statistical
similarity of the sequences.

• HH – high stretch ratio and high cost are the results
of clustering gaps and sparse matches, thus negligible
similarity of both sequences. Such classification confirms
the high quality of the examined strings.

B. Machine learning

Dividing a multidimensional space into four sets of points
representing the respective interpretation groups leads to a
complex problem that is often difficult to describe mathemat-
ically in a dynamic environment. While obtaining sufficient
theoretical models can be expensive and time-consuming,
machine learning provides a heuristic tool for solving complex
problems when deterministic approaches are overly complex
or have poor performance. In the considered issue it can
be efficiently used to find the optimal demarcation function.
Machine learning falls into two categories, that are unsu-
pervised learning (UL) and supervised learning (SL) [10]–
[12]. The first approach learns from the input data that has
not been labeled. Instead of responding to known feedback,
unsupervised learning identifies commonalities in the data by
similarity metric evaluated by internal compactness of the
created clusters. The latter is used to build a data model
based on inputs assigned to the pre-classified output. Through
iterative optimization of the objective function, supervised
algorithms learn a function for classification when the result
is limited to a discrete set of values.

Given the interactive nature of the created platform, in
the proposed solution we use the so-called semi-supervised
learning (SSL) that combines both of the above categories.
The applied SSL method is based on the cluster assumption,
i.e., that the points of each class tend to form a cluster.
Following, points that are in the same group are likely to
belong to the same class. This assumption justifies the very
existence of classes, i.e., if there is a densely populated
continuum of objects it may seem unlikely that it will be
divided into different classes [10], [12]. Under this assumption,
unlabeled data helps to find the boundaries of each cluster
more accurately – running the clustering algorithm allows
obtaining pre-grouped points for a class assignment to each
cluster. The resulting set of classified data creates an input
for supervised learning that is used to develop a predictive
model for new data flowing into the system. In this application,
SSL utilizes unlabeled data to construct a classifier whose
results exceed those obtained using only a small prelabeled

data set [11]. Moreover, in the described configuration, the
classification algorithm created from pre-existing data may be
cyclically adjusted as future data become available to increase
accuracy.

C. System architecture

The system architecture overview is shown in Figure 3.
The operation of the system can be divided into two cycles.
The request-response cycle is responsible for handling user
requests. The user uploads the data into the system. Both
random sequences are stored in the database and passed to
the feature extraction algorithm. The algorithm returns the
determined bivalent metric, which is added to the sequence
record in the database and feed to the classifying function.
As a response of the system, the user receives directly the
calculated metric, its visualization on the plot in relation to the
other metrics stored in the database, and analysis in accordance
with the class assigned by the classifier.

SSL cycle implemented in the system backend is responsi-
ble for the improvement of the classifier accuracy. The update
is triggered after each 10% increment in the number of entries
in the database. Based on the stored metrics, the UL algorithm
performs re-clustering. Re-labeled database entries are used
as training data in SL, which returns updated demarcation
functions used in the classifier.

Fig. 3. Graph of the system data flow in the processing of the user’s request.

III. IMPLEMENTATION AND EXPERIMENT

The presented idea is implemented as a web application
accessible at the URL address www.orangutan.edu.pl using
any web browser. The solution is designed in a client-server
model and implemented using Python 3.7 language combined
with open-source Django framework version 3.2 [14]. Appli-
cation’s name ORANGUTAN is an acronym of the Online
platform for RAndom Number Generator UTility ANalysis.
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It is hosted employing a Linux server installed at Poznan
University of Technology and is a free web tool for analyzing
binary sequences.

A. User side
The data presentation layer, the so-called front-end, is based

on Model View Template (MVT) architecture. The Model
reflects the application logic and defines the format of the
stored data. The View describes how to interpret a certain part
of a model within a user interface. The Template defines how
the data specified by the view is presented [13].

The home page of the ORANGUTAN application is shown
in Figure 4. This page as well as all subpages are rendered
using the layout designed using Cascading Style Sheets (CSS)
with the Bootstrap 4.6 elements embedded [15]. The lay-
out’s top bar consists of the navigation bar, the logo of the
Poznan University of Technology, and the application’s logo.
Subpages can be accessed through Navbar navigation links:
Home, About, Team and Contact. The About page contains a
description of the whole project including references to the
related papers, e.g., detailing the back-end algorithms of the
system. The Team page contains brief biographies of team
members and the Contact page provides address data and a
simple Google map with the Institute pointed.

Fig. 4. The layout of the Orangutan’s home page.

Directly from the ORANGUTAN’s home page, the three
subpages related to files and metrics can be accessed:

• Upload files – a form shown in Figure 5, designed for
uploading binary files containing random sequences. Files
have to be in .bin extension and size can not exceed
200 MB. It is mandatory to attach both files. Field
with email address also has to be fulfilled. Description
fields are optional and make the uploaded files easily
recognizable. The form is secured against robots using
the packet Django-ReCaptcha 2.0.6 provided by Google.
Successful submission of the form triggers automatic
generation of the metrics followed by the view with
uploaded files and metrics details. Additionally, an e-mail
message is sent to the provided address.

• Check metrics – a simple form that provides the end-user
with the details of a metric with a given ID.

• Check files – a simple form that provides the end-user
with the details of the file with the given ID.

Fig. 5. The layout of the form for uploading sequences.

Once the file is successfully uploaded to the system, its
properties can be previewed. Using the Check file button on
the home page displays a form where the file ID needs to
be entered. If the related record is found in the database, the
file properties page is displayed. The template of this view is
shown in Figure 6. The first part of the template contains a box
with explicit file parameters. The second contains a histogram
of bytes. The third part shows all bytes of the file.

As shown in Figure 7 metric view contains detailed infor-
mation of the given metric. Cost and length ratios are marked
with a red dot in the common chart where all stored metrics
are included. Thus, users can see how their metric compares to
all previously calculated metrics. To plot the graph, the Plotly
4.14.3 library is used.

Each metric marked in the graph has a cluster attached.
Concerning the description in section II-A, the cluster of each
metric is denoted with a color described in sequence: color 1
- cluster LL; color 2 - cluster LH; color 3 - cluster HH; color
4 - cluster HL.

B. Server side

In MVT architecture a core structure is the database. It
stores data according to the logic defined by the Model.
Database performance has an impact on the speed of oper-
ations performed by Django [14]. The engine of the presented
application is the database PostgreSQL 12.7 [16]. To allow
the application to communicate with PostgreSQL it is also
necessary to use the psycopg2 2.8.6 library.

The preparation of appropriate data for machine learning
is of particular importance for the experiment methodology
because the input data strongly influences the behavior of
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Fig. 6. File details template with bytes histogram and list.

Fig. 7. Metric details template.

individual algorithms and ultimately the obtained results. Sev-
eral sets of binary data files have been prepared to achieve
the most accurate results. The first set contained binary data

with different probability distributions. Additionally, 40 files
were manually modified by inserting matchless subsequences
of known length. Each file was compared to the others,
which resulted in 1,600 values on the cost-stretch plane, i.e.,
metrics indicating the sequence similarity. The second set
contained 19 files generated using random number generators
implemented in FPGAs and computer simulations of random
number generators. The metrics were once again calculated
by comparing each file with the rest and an additional 1,521
comparisons were obtained. Acquired metrics were added for
a total of 3,191 points on the cost-stretch plane.

In order to implement the cyclic Unsupervised Machine
Learning, the data clustering problem needs to be solved first.
To find an optimal number of clusters, the KMeans algorithm
was used. It performs clusterization based on the sum of
squares of the distances of each data point in all clusters
to their respective centroids. The resulting curve is shown in
Figure 8. Inflection points for n = 2 and n = 4 were identified.
The value of n = 2 is the minimum number of clusters as
it causes a significant decrease in the Within Cluster Sum of
Squares (WCSS) value. On the other hand, n = 4 is optimal, as
further increasing the number of clusters no longer decreases
WCSS. The authors decided to use n = 4 clusters.

Fig. 8. Sum of squares within the cluster.

While looking for a proper clusterization model, the follow-
ing algorithms were compared: Affinity Propagation; Agglom-
erative Clustering; BIRCH; DBSCAN; K-Means; Mini-Batch
K-Means; Mean Shift; OPTICS; Spectral Clustering; Mixture
of Gaussians [17]. Initially, clustering algorithms used two
features, i.e., cost and stretch ratio, however, the data set was
divided mainly by the cost, as shown in Fig. 9. According
to the best knowledge of the authors, the stretch ratio is also
an important parameter that has an analytical interpretation.
Therefore, the division of data due to the stretch ratio was
forced by second clustering, with only this feature specified.
The result is shown in Fig. 10. Then the two split methods
were combined. After comparing the clusterization results, the
Birch (Fig. 9) and Agglomerative Clustering (Fig. 10) models
proved to be the most accurate and consistent with theoretical

Authorized licensed use limited to: Politechnika Poznanska. Downloaded on December 22,2021 at 09:55:59 UTC from IEEE Xplore.  Restrictions apply. 



assumptions. Taking advances of both algorithms, metrics
were clustered and labeled to make Supervised Learning
applicable. The resulted final clusterization is presented to the
user as previously shown in Fig. 7. Population of designated
metrics presented in the Figure 7 contains 3191 points. Each
cluster consists of the following number of points: LL - 845
(26.48%), LH - 30 (0.94%), HH - 716 (22.44%), HL - 1600
(50.14%).

Fig. 9. Clusterization using Birch model for n = 4 clusters.

Fig. 10. Clusterization using Agglomerative model for n = 4 clusters, only
for length ratio.

After data is labeled, the prediction algorithm was trained.
For the described problem a Logistic Regression model was
chosen.

IV. CONCLUSIONS AND FURTHER WORK

This article presents the proposed Online Platform
for Random Number Generator Utility Analysis titled as
ORANGUTAN. It is a free web tool for convenient testing
and easy evaluation of random number generators. The system
exploits the original random sequences matching algorithm
and as a result, the user receives easily interpretable evaluation
metrics including cost and length ratios. Both values are
marked on the common graph, placing the designated point
in relation to the entire population of metrics. Moreover,

the user is able to check properties of the uploaded file,
i.e., histogram of bytes and bytes itself. Implementing Semi-
Supervised Machine Learning improves interpretation of the
results and ready-made evaluation delivered to the user in
an accessible form by the frontend. The operation of the
pre-trained system has been confirmed experimentally in the
evaluation of RO-based hardware generators implemented in
FPGAs from leading manufacturers. Further work will mainly
concern further data analysis. Simultaneously, the platform
will be improved. The development plan assumes mechanisms
such as Redis or Celery to be implemented, which will allow
for optimal management of memory and tasks performed on
the computing server. In the nearest future platform will also
be extended to run and evaluate statistical tests such as NIST
SP800-22, NIST SP800-90B, DieHarder, and others.
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