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Abstract— In the paper a new form of universal polynomial 

chaos expansion, which was introduced in [1], is applied to 
numerical stochastic simulations of ultra-wideband  
electromagnetic wave propagation. It is assumed that 

stochastic parameters of a propagation scenario follow a Gauss 
distribution. The final coefficients of an expansion are 
analytical functions of a mean and a standard deviation of a 

stochastic variable (scenario parameter), which makes an 
expansion universal. The necessary initial coefficients have to 
be calculated numerically only once for a freely chosen values 

of polynomial basis parameters. Then these initial coefficients 
are used to calculate analytically the universal coefficients.  

Index Terms— UWB propagation, polynomial chaos 

expansion, stochastic simulation. 

I.  INTRODUCTION 

In the paper a stochastic simulation of an UWB 

electromagnetic (EM) wave is considered. The simulators of 

EM wave propagation base on different models of a 

propagation channel. In the paper a theoretical physical 

modeling of EM wave propagation in an indoor channel is 

taken into consideration. Among advantages of using 

physical modeling is a detailed insight of an influence of 

wave phenomena and physical parameters of a propagation 

channel on EM field distributions. When a parameter of a 

propagation channel is treated as stochastic variable we can 

include an imprecision of a modeling of a real channel in a 

simulator.    

In order to make a simulation stochastic in the paper a 

polynomial chaos expansion is used, where coefficients of an 

expansion can be used to derive the first order (a mean) and 

the second order (a variance) stochastic moments of an EM  

wave distribution. In basic theory of a polynomial chaos 

expansion coefficients of an expansion are calculated for 

given stochastic distributions of propagation scenario 

parameters. When a mean or a standard deviation of a 

stochastic variable changes the coefficients have to be 

calculated again, which may require very much effort, 

especially for the case of numerical simulations where a 

transfer function of a channel or a ray is not given in an 

analytical form. In [1] it was introduced a universal 

polynomial chaos expansion where the expansion 

coefficients were derived into an analytical functions of a 

 mean and a standard deviation of a propagation channel 

parameter. The universal expansion was verified for the case 

of a propagation scenario whose transfer function could be 

found in an analytical form. The disadvantage of the 

presented in [1] approach is that in order to find the desired 

universal expansion coefficients it is often difficult to find 

the right realization (initial mean and standard deviation) for 

that approach. The reason of such situation is that when an 

expansion of a given transfer function in the first step of the 

approach in [1] was performed a Hermite polynomial basis 

was used, which  is orthonormal in an infinite domain. 

However a transfer function of a propagation scenario often 

is defined in a limited domain, for which a transfer function 

has a physical meaning. In this paper this universal 

polynomial chaos expansion is modified in order to deal with 

the mentioned problem. The new results are verified in ultra-

wideband frequency domain through numerical simulations 

of EM wave propagation on convex obstacles. A ray 

shooting method is used in numerical examples. The 

universal expansion coefficients are given also in the time 

domain by taking advantage of a vector fitting algorithm [3]. 

The paper is organized as follows. In Section II there is 

introduced a derivation of an ultra-wideband frequency 

domain and time domain universal polynomial chaos 

expansion coefficients using three-step algorithm by 

combining Jacobi and Gauss polynomials. Section III gives 

some numerical examples that verify the new coefficients for 

the case of an EM wave propagation on convex obstacles 

modeled by a PEC 2D elliptical cylinders. The conclusion 

are presented in Section IV. 

II. A NEW UNIVERSAL POLYNOMIAL CHAOS 

COEFFICIENTS 

In this section a three step algorithm for a derivation of a 

universal form of the new polynomial chaos coefficients is 

presented. It is assumed that a transfer function of a 

propagation scenario can be obtained during numerical 
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simulations of an EM wave propagation. In the first step of 

an algorithm the transfer function is expanded using an 

orthonormal polynomial basis. This is the step where the 

only very much time consuming numerical calculations take 

place. During this step the initial expansion coefficients are 

derived which then are used to obtain the universal ones. The 

initial coefficients can be calculated for a freely chosen 

parameters of othonormal polynomial basis. In the paper a 

Jacobi polynomial basis is used. This approach overcomes 

the problem of a limited physical domain of a stochastic 

variable of a propagation scenario. The initial transfer 

function approximation can be written in the form: 
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while Pk
α,β

(ξ) is a Jacobi polynomial of kth order. It should 

be noted that Jacobi polynomials are orthonormal in a range 

of their arguments from -1 to 1, while a weighting function 

has a Beta distribution shape. The coefficients of an 

expansion in (1) are calculated by formula [2]: 
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while w(α,β,ξ) is a weighting function which describes a 

Beta distribution: 
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Index n in (1) and (3) corresponds to a number of a 

frequency sample. The arguments a and b used  (1) 

correspond to the range of variable ξ for which the universal 

expansion coefficients will be derived in subsequent parts of 

this Section. This range must be wide enough to comprise all 

possible ξ values which are of our interests 

As was written earlier the expansion coefficients in (1) 

have to be calculated only once and are tabulated. Then they 

are used to derive the new universal polynomial chaos 

expansion coefficients. It is assumed in the paper that 

stochastic parameter of a propagation scenario follows a 

Gauss distribution. Then for a given transfer function of a 

propagation scenario, according to polynomial chaos theory, 

the goal is to find an expansion [2]:    
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where µ and σ are a mean and a standard deviation of a 

random variable ξ, respectively.  

The general form of spectral coefficients for T(ωn,ξ) can be 

written as follows: 
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When the expansion in (1) and some variable 

transformations are performed (8) can be derived into the 

form: 
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where: 

 

                                        ab
g

−
=

σ2  ,                                   (10) 

 

                                  
ab

ab
h

−
−−

=
µ2  .                             (11) 

 

In the next step a Jacobi polynomial of kth order is 

transformed into a sum of Hermite polynomials of maximum 

order k [4, 5]. As a result a Jacobi polynomial of order k and 

parameters α=α0, β=β0 can be written as follows:   
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 Using expansion coefficients (12a) we can rearrange (9) 

and obtain:  
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where dk,n is a combination of (3) and (12b) as follows: 
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where k=0,1,2,...,K. 



In the third step in order to simplify (13) the following 

identity is used [6]: 
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When (15) is applied in (13) the following form of the 

universal expansion coefficients is obtained: 
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The infinite integral in (16) after some transformations can 

be partially tabulated what greatly improves its calculation 

efficiency: 
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where Q(j,k,m) do not depend on μ or σ therefore can be 

tabulated as follows. When  (j - m) = 0, 2, 4, 6 ..., we have: 
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while (18) is 0 for the rest values of (j - m). 

When the universal expansion coefficient (17) is sampled in 

the ultra-wideband frequency domain, vector fitting 

algorithm [3] can be applied in order to transform (17) into 

the time domain. The approximation is performed for each dk 

coefficient (14). As a result the new time domain universal 

polynomial expansion coefficients can be written as:   
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where d(t)k has the following form: 
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where rk,i and pk,i denote residues and poles resulting from 

vector fitting approximation. 

The new coefficients in (19) can be now easily used to 

calculate time domain function of a mean and a standard 

deviation [2]. 

 

                                     

 

                          

III. SIMULATION EXAMPLES 

In this section the results of universal expansion 

coefficients are verified by comparing  them with standard 

Monte Carlo one in calculation of a mean and a standard 

deviation of exemplary T(ωn,ξ) for frequency band 1–12 

GHz with respect to a stochastic variable ξ following 

exemplary Gauss distributions. The transfer function is found 

in the process of numerical simulations of an EM wave 

propagation. The propagation channel consists of convex 

obstacles modeled by elliptical cylinders. The propagation 

scenario is shown in Figs. 2, 3. In numerical analysis ray 

shooting method is used. The transfer functions that are 

taken into consideration correspond to bold (brown color) 

rays in Figs 2, 3. The parameter of the channel that is 

assumed to be stochastic is shown in Fig. 3. As can be seen 

the axis of the ellipses can be stochastically varying in the 

way that horizontal axes can decrease while the vertical axes 

increases in the same extent. The values of horizontal and 

vertical axes in Figs. 2, 3 are 0,5m and 0.25m, respectively. 

The stochastic variable ξ in Fig. 3 is assumed to be changing 

within the limits 0m - 0.14m.       

 

    

Fig. 1. Propagation scenario corresponding to the first numerical example. 

A bold (brown color) ray is taken into consideration. 

 



 

Fig. 2. Propagation scenario corresponding to the second numerical 

example. A Bold (brown color) ray is taken into consideration. 

 

 

Fig. 3. An ilustration of statistical variation of axis of ellipses in Figs. 1, 2. 

  In the example corresponding to Fig. 1 a mean and a 

standard deviation of variable ξ take values 0.05m and 

0.005m, respectively. The simulation results related to this 

example are shown in Figs. 4, 5. The second numerical 

example corresponds to Fig. 2. Here, a mean and a standard 

deviation are 0.09 and 0.09, respectively. The simulation 

results related to this example are shown in Figs. 6, 7. 

The solid line in Figs. 4-7 corresponds to the results 

obtained with the new universal expansion coefficients. The 

dotted line and square symbol graphs correspond to Monte 

Carlo (MC) simulation results for different number of 

samples used. The graphs of mean and standard deviation 

characteristics are named with μ and σ, respectively. For 

space saving issues only real part of the functions is shown.  

 

 

Fig. 4. Mean of a real part of a transfer function of a ray from Fig. 1  with 

respect to a frequency when ξ has a Gauss distribution with µ=0.05 m, 

σ=0.005. MC results shown with squares and circles correspond to a number 

of samples 100 and 1000, respectively.   

 
Fig. 5. Standard deviation of a real part of a transfer function of a ray from 

Fig. 1 with respect  to a frequency when ξ has a Gauss distribution with 

µ=0.05 m, σ=0.005. MC results shown with squares and circles correspond 

to a number of samples 100 and 1000, respectively. 

 

 
Fig. 6. Mean of a real part of a transfer function of a ray from Fig. 2  with 

respect to a frequency when ξ has a Gauss distribution with µ=0.09 m, 

σ=0.009. MC results shown with squares and circles correspond to a number 

of samples 100 and 1000, respectively. 



 
Fig. 7. Standard deviation of a real part of a transfer function of a ray 

from Fig. 1 with respect  to a frequency when ξ has a Gauss distribution with 

µ=0.09 m, σ=0.009. MC results shown with squares and circles correspond 

to a number of samples 100 and 1000, respectively 

 

It can be seen in Figs. 4-7 that the results obtained with 

the new universal expansion coefficients are very accurate 

and agree very well with the results of  Monte Carlo method. 

The latter were obtained in a time that is many orders longer 

from that consumed by an application of the new universal 

expansion coefficients. 

IV. CONCLUSIONS 

In the paper a new universal coefficients of polynomial 

chaos expansion were presented. They can be used for 

simulation of EM wave propagation that deals with statistical 

analysis of EM field distribution. The coefficients were 

given in a frequency as well as time domain, what enables to 

simulate UWB pulse propagation directly in a time domain. 

In time domain the coefficients are given in a simple form of 

sums of exponential function. This feature enables low time 

consuming calculations of convolutions, which can be 

performed wholly analytically when an UWB pulse is 

approximated by exponential functions. The vector fitting for 

approximation of FFT of an UWB pulse can be used.  The 

new universal coefficients for the case of numerical 

simulation of EM wave propagation were examined. The 

generality of the new expansion coefficients expresses in 

validity of the coefficients for all predefined range of 

possible values of a given scenario parameter.  

The results presented in the paper enable to obtain 

stochastic distribution of a given transfer function in a very 

short time comparing to Monte Carlo analysis. When 

numerical simulations, as ray shooting or full wave analysis, 

are performed the time necessary for Monte Carlo method  

for carrying simulations with new mean an standard 

deviation values is many orders longer. The results obtained 

using the new universal expansion coefficients are very 

accurate what is presented for the case of exemplary 

stochastic variable distributions in Figs. 4-7. 
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