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Abstract 

In the dissertation, the problems related to the design of networks-on-chip (NoCs) on field-

programmable gate arrays (FPGAs) are considered in the context of typical features of FPGAs 

manufactured by leading vendors. As a result of these considerations, the RingNet architecture 

and communication protocol are proposed with the aim to exploit the specific potential of FPGA 

devices as much as possible. Although a few FPGA-oriented NoCs have been proposed so far, 

the RingNet design is likely the most determinedly adapted to typical FPGA resources and their 

architectures. The specific features of RingNet include: communication exclusively through 

system memory (large SDRAM or block RAM), control over traffic load executed by the 

processing elements, FPGA-optimized 3-port switches organized into the tree-of-rings 

topology, distributed memory (LUTRAM) used as small buffers in the switches, and virtual 

cut-through switching.  

In the dissertation, it is demonstrated that RingNet offers guaranteed throughput, predictable 

latency, and fair network access. The synthesis results demonstrate that RingNet 

implementations are efficient in terms of maximum clock frequency and resource consumption 

for flagship FPGA devices from major manufacturers. As compared to the widely-accepted 

state-of-the-art interconnection architecture AXI4 Interconnect, RingNet implementations 

demonstrate higher maximum clock frequency and lower resource consumption. Therefore, the 

author believes that the RingNet NoC architecture and protocol may be widely adopted in 

FPGA-based SoC designs, especially in high-volume data processing applications, such as 

video processing. 
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Streszczenie 

W rozprawie poruszono zagadnienie sieci w mikroukładzie (ang. network-on-chip, NoC) w 

kontekście właściwości typowych bezpośrednio programowalnych macierzy bramek (ang. 

field-programmable gate array, FPGA) oferowanych przez czołowych producentów. 

Wynikiem rozważań jest architektura RingNet oraz odpowiedni protokół komunikacyjny, 

opracowane z myślą o możliwie największym wykorzystaniu potencjału układów FPGA. 

Dotychczas, kilka sieci NoC dedykowanych układom FPGA zostało zaproponowanych w 

literaturze, jednak to sieć RingNet jest prawdopodobnie najbardziej dopasowana do 

architektury i zasobów typowego układu FPGA. Cechami charakterystycznymi RingNet są: 

komunikacja prowadzona wyłącznie poprzez pamięć systemową (podłączoną do układu FPGA 

pamięć SDRAM lub wbudowaną pamięć blokową), kontrola nad ruchem w sieci sterowana 

przez urządzenia podłączone do sieci (ang. processing elements), zoptymalizowane pod układy 

FPGA trójbramowe przełączniki sieciowe zorganizowane w topologię drzewa pierścieni, 

pamięć rozproszona (LUTRAM) użyta do implementacji małych buforów w przełącznikach, 

oraz zastosowanie przełączania virtual cut-through. 

W rozprawie zademonstrowano takie właściwości RingNet jak: gwarantowaną 

przepustowość, dające się przewidzieć opóźnienie i sprawiedliwy dostęp do sieci. Analiza 

implementacji sieci RingNet zademonstrowała jej wysoką wydajność rozumianą jako wysoką 

częstotliwość sygnału taktującego i niskie zużycie zasobów dla flagowych układów FPGA 

głównych producentów. Implementacja została porównana z powszechnie stosowaną 

architekturą komunikacyjną AXI4, co wykazało wyższą maksymalną częstotliwość taktowania 

i mniejsze zużycie zasobów na korzyść RingNet. Z tego powodu autor wierzy, że architektura 

i protokół sieć RingNet mogą być powszechnie wykorzystane w systemach opartych o układy 

programowalne, w szczególności w aplikacjach przetwarzania dużej ilości danych, takich jak 

przetwarzanie sekwencji wizyjnych. 
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List of terms and abbreviations 

ALUT Adaptive Look Up Table  

In Intel devices, a structure that consists of a LUT associated with a two-bit 

adder. 

ALM Adaptive Logic Module  

In Intel devices, a logic block that consists of ALUTs and FFs. 

AMBA Advanced Microcontroller Bus Architecture  

On-chip interconnect specification from ARM Ltd. 

ASIC Application-Specific Integrated Circuit 

AVC Advanced Video Coding 

A digital video-compression codec, also known as H.264.  

AXI4 Advanced eXtensible Interface 4 

A version of the AMBA interface recommended for FPGAs by ARM Ltd. 

BEN Byte Enable Bits 

Bits that indicate the validity of associated data. 

BRAM Block Random-Access Memory 

In FPGA devices, a block of memory with capacity from a few kb to tens of 

Mb. 

DDR3 Double Data Rate type 3  

Type of SDRAM. 

DSP Digital Signal Processing block 

EDA Electronic Design Automation 

FF Flip-Flop  

In FPGA devices, it is configurable as D-type or latch. 

Fifo First-In-First-Out buffer 

Flit A portion of data usually transferred at one clock cycle between connected 

switches. 

FPGA Field-Programmable Gate Array 
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HEVC High Efficiency Video Coding 

A digital video-compression codec. 

IEEE Institute of Electrical and Electronics Engineers 

L2R Leaf-to-Root  

In RingNet, one of two physical channels. 

LAB Logic Array Block 

In Intel devices, a structure that consists of 10 Adaptive Logic Modules 

(ALMs). 

LC Logic Cell 

Also known as logic element (LE). It is equivalent to a LUT4 paired with an 

FF. The capacity of an FPGA is usually described in terms of LCs, even if 

LUT4s are not used in a given FPGA. 

LE Logic Element 

Also known as a logic cell (cf. LC). 

LI Leaf Interface 

In RingNet, one of two types of a network interface. 

Logic block Basic structure in an FPGA device that contains LUTs, FFs, and additional 

elements like line multiplexers, and carry logic. It is connected to other logic 

blocks and to an FPGA network of programmable signal pathways. 

LUT Look Up Table  

In FPGAs, it implements a logic function with a limited number of logic 

inputs. 

LUT4 4-input LUT. 

LUT6 6-input LUT. 

LUTRAM LUT-based RAM 

In FPGA devices, a block of LUT-based memory with a capacity from tens 

to hundreds of bytes, also known as distributed RAM.  

NoC Network-On-Chip 

PE Processing Element  

A functional module of an SoC, e.g., processor, controller, grabber. 

PFU Programmable Functional Unit 

In Lattice devices, a structure that consists of four logic blocks. 
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PG Packet Generator  

Simulation model of PE. 

PLL Phase-Locked Loop 

QDR SRAM Quad Data Rate Static RAM 

R2L Root-to-Leaf  

In RingNet, one of two physical channels. 

RAM Random-Access Memory 

Reflector In RingNet, one of the system buffers dedicated for control messages. 

RI Root Interface  

In RingNet, one of two types of a network interface. 

RLDRAM Reduced Latency Dynamic Random-Access Memory 

DRAM device featured with SRAM-like interface. 

RTL Register-Transfer Level  

Level of digital circuit description at which the flow of signals between 

hardware registers are defined. 

SDRAM Synchronous Dynamic RAM  

E.g., DDR3 SDRAM. 

SG Slot Generator 

In RingNet, a module used for the purpose of generating slots for flits and 

packets. 

Slice In Xilinx and Lattice devices, a structure that consists of LUTs and FFs. In 

Xilinx devices, it contains four logic blocks with two LUT6s and two FFs 

each. In Lattice devices it contains one logic block with two LUT4 and up to 

two FFs. 

A corresponding structure in FPGAs from Intel is called ALM. 

SLICEL In Xilinx devices, a type of slice that does not contain RAM-capable LUTs. 

SLICEM In Xilinx devices, a type of slice that contains RAM-capable LUTs. 

SoC System-On-Chip 

VC Virtual Channel 

VHDL Very High Speed Integrated Circuits Hardware Description Language 
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VLSI Very-Large-Scale Integration 
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Chapter 1. Introduction 

1.1. Scope of the dissertation 

In 1958, a first semiconductor integrated circuit (IC) was presented, composed of a single 

transistor and other passive components [Kil00]. Ever since, the density of transistors in an 

integrated circuit has been increased, which led to the development of circuits of very-large-

scale integration (VLSI) with more than 20,000 transistors in the 1970s [Mea80] and many 

more today. Those circuits integrate many processing elements (PEs) into a system-on-chip 

(SoC). PEs in SoCs require interconnections. Like many other aspects of VLSI design, the 

interconnections constitute an important research topic. At the beginning, on-chip 

interconnections successfully utilized design-specific point-to-point wiring. Nevertheless, as 

the complexity of the circuits increased, developing design-specific wiring became difficult and 

suffered from long connections with poor physical parameters, e.g., high and unpredictable 

cross-talks, and wiring delays longer than a clock cycle. The design-specific point-to-point 

approach towards on-chip interconnection design had to change.  

As early as in 1999, it was demonstrated that for multiprocessors, interconnections organized 

as a regular network can be more efficient than a collection of point-to-point dedicated wires 

[Dal99]. Starting from 2001, the idea of utilizing the network approach to the interconnection 

problem in SoCs attracted a lot of interest. Early works [Dal01], [Ben02], [Ben06] proved 

important advantages of network-on-chip (NoC) when compared with design-specific wiring. 

The most important advantages are the following: 

- Controlled physical parameters, i.e., a network is divided into links of controlled length, 

featured with low and predictable cross-talks and short wiring delays. 

- Modularity, i.e., a standard interface is defined that can be reused. The interface can be 

optimized, since the development effort can be amortized across many SoCs. 

- Effort to test, upgrade, and extend modular SoC that uses a standard interface can be 

reduced. 

- Utilization of links can be higher in networks than in point-to-point design specific 

interconnects. In an SoC, many PEs are interconnected and while part of them are temporally 

idle, others can utilize links in a network. 
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So far, most of the research on NoCs has been related to application-specific integrated 

circuits (ASICs) [Hel15] but the rapidly growing field-programmable gate array (FPGA) 

capacity also yields a growing interest in NoCs implemented in complex FPGAs. Using NoCs 

as interconnections for FPGAs is not a new idea [Łucz11], [Pap12], [She14], [Ret14], [Mai15], 

[Pap15], [Kap15], [Was17], [Kap17a], [Kap17b], [Kap17c], [Vip17], [Mai17], [Sid18], 

[Ahm18], [Red19]. Although FPGAs differ from their ASIC counterparts, most of the known 

FPGA NoCs were adopted from ASICs without considering FPGA-specific features. Therefore, 

the potential of NoCs has not been fully exploited for FPGAs. In this situation, older 

interconnecting techniques like crossbars (e.g., AXI4 Interconnect) are still in use, regardless 

of their poor scalability [Mai15]. The development of new NoC architectures, better suited to 

FPGA, is still a challenging problem. 

The growing FPGA capacity and parallel processing capabilities make FPGAs a useful 

platform for multimedia processing. Moreover, FPGAs give engineers the ability to develop 

their systems much faster than in ASICs, which is desired under strong time-to-market pressure. 

Therefore, a lot of multimedia processing is done in FPGAs. A few examples of multimedia 

processing considered suitable for FPGAs are: medical imaging filtering [Lic18], MVC 

(Multiview Video Coding) coder [Stę10b], HEVC coding [Buk17], disparity estimation for 

stereo vision [Dom15], [Tto16], features detection in videos [Cha15], channel coding for 

multimedia transmissions [Bre17], audio beamforming and audio wave field synthesis [The11]. 

Many more can be found in literature. All those applications may benefit from the manner of 

interconnecting the processing elements in a way that is well-suited to the properties of a 

specific FPGA structure seen in modern integrated circuits of this kind. 

In this dissertation, the author proposes a novel NoC architecture called RingNet that is well-

suited to the features of contemporary FPGAs and can be adopted in multimedia processing 

systems.  

1.2. Motivation 

The idea for the research described in the dissertation comes from the observed lack of a 

universal FPGA-oriented NoC suitable for multimedia applications. The observation is a result 

of the years spent developing applications for multimedia processing and FPGA 
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implementations during the work at the Chair of Multimedia Telecommunications and 

Microelectronics. 

The implementation of multimedia processing in FPGAs has a long history in the Chair of 

Multimedia Telecommunications and Microelectronics. Works aiming at the implementation 

of components for low bit rate, integrated video encoders and decoders on FPGA platform took 

place from 2004 to 2007 and were led by Prof. Marek Domański [Stę06a], [Stę06b], [Gar06], 

[Stanki07]. The results of this project were sold to the industry. An NoC for MPEG-4 AVC / 

H.264 hardware decoder was implemented at the Chair of Multimedia Telecommunications and 

Microelectronics in 2008 [Łucz08]. In 2009, an NoC-based processing platform was developed 

[Łucz09] during the work led by Dr. Adam Łuczak.  

The author joined the Chair in 2010 and took part in further development of NoC for 

multi-chip systems [Stę10b], [Łucz11], and NoC with embedded debugging [Stę10a]. In 2010, 

the author proposed a communication interface for FPGAs [Łucz10]. In her 2013 PhD 

dissertation, Marta Stępniewska, a member of the Chair of Multimedia Telecommunications 

and Microelectronics, discussed the problem of defining the connection architecture suitable 

for video codecs implemented in FPGAs.  

The author has rich personal experience in multimedia processing. In 2010-2011, the author 

took part in HEVC 3D codec implementation [Dom11a], [Dom11b]. The developed codec has 

been submitted to the “Call for Proposals on 3D Video Coding Technology” issued by the 

Motion Picture Experts Group (MPEG) of ISO/ITU in 2011 [MP11]. This proposal has been 

rated very high among other proposals and was found to be one of the best performing proposals 

in the HEVC category. The excellent results were described in IEEE Transactions on Image 

Processing [Dom13a] and in [Dom13b]. In addition to the mentioned work submitted to the call 

for proposals, the author took part in other works undertaken by MPEG [Weg12a]–[Weg12f ], 

[Stanki12a]–[Stanki12c], [Dom13a], [Dom14b], and proposed a coding improvement in 

3D-HTM test codec [Sia12], accepted by the group. The author has contributed to many papers 

focused on multimedia processing, including papers describing multiview and 3D coding tools 

[Stanko12], [Dom12a]–[Dom12c], analysis of encoded video streams [Stanko14], [Stanko15], 

video tracking algorithms [Łucz14], and free-viewpoint video acquisition [Dom14a]. The 

author is the main contributor to the watermarking algorithm [Sia13], as well as to HEVC coder 

improvement technique [Sia16]. The author was granted two patents by USPTO, the first of 
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which, published in 2014, describes an image coding method [Dom14c], and the second, 

published in 2017, describes a system and a method for tracking objects in video sequences 

[Łucz17]. The author is the main contributor to a method and a system for video signal encoding 

and decoding with motion estimation, for which EPO granted a patent in 2015 [Sia14]. 

The experience in multimedia processing and in FPGA implementations resulted in the 

development of an original wireless multi-camera system in the Chair of Multimedia 

Telecommunications and Microelectronics [Dom14a], that uses FPGAs as the main processing 

platform. Video streaming and processing for the system required a high throughput 

interconnect for FPGAs. A dedicated interconnect has been implemented for the project. The 

author was one of the main engineers implementing the interconnect. The multi-camera system 

has been used for capturing multiview sequences. Despite the success of the project and the 

utilized dedicated interconnect, the project showed a lack of a universal FPGA-oriented NoC 

suitable for multimedia applications. 

Based on extensive experience in multimedia processing and previous experience in FPGA 

NoC implementations [Stę10a], [Stę10b], [Łucz11] the author, under the supervision of Dr. 

Adam Łuczak, started the development toward a universal FPGA-oriented NoC suitable for 

multimedia applications. The dissertation summarizes the achievements of the work. The 

achievements have been previously presented by the author, Dr. Adam Łuczak, and Professor 

Marek Domański in the paper “RingNet: A Memory-Oriented Network-On-Chip Designed for 

FPGA,” published in the Institute of Electrical and Electronics Engineers (IEEE) Transactions 

on Very Large Scale Integrated (VLSI) Systems in 2019 [Sia19]. 

1.3. Goals and theses of the dissertation 

The main goal of the dissertation is to propose a universal NoC architecture suitable for 

various FPGAs. 

With the aim of proposing such an NoC architecture, other goals need to be achieved 

beforehand. First, the features of FPGAs need to be investigated. Especially, the common 

features of available FPGAs, useful for NoC implementation, need to be identified. A universal 

FPGA-oriented NoC should perform similarly for all considered FPGA architectures. The 

performance of an FPGA-based design can be defined by the number of utilized FPGA 

resources and the maximum frequency it can be clocked at. The frequency performance can be 
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examined in the context of the maximum clocking frequency for hardware modules available 

in FPGAs, e.g., digital signal processing (DSP) blocks and random-access memory (RAM) 

blocks. Exploiting the identified FPGA common features should help keep the performance of 

an NoC at a similar, highest possible level for various FPGA architectures. Second, the 

requirements for NoC need to be explored and interconnections already proposed and known 

from the literature need to be investigated. A useful NoC should provide features like controlled 

throughput, network access fairness, etc. Various techniques aimed at providing those features 

are proposed in the literature and they should be considered in the context of FPGA.  

Theses of the dissertation are as follows: 

T1) It is possible to develop a network-on-chip architecture and protocol featured with 

controlled throughput, network access fairness, and a maximum clock frequency 

higher than 90% of the maximum clock frequency of FPGA hardware resources, 

across FPGAs of leading vendors. 

T2) It is possible to develop a network-on-chip architecture and protocol with 

controlled throughput and network access fairness for FPGAs which would use less 

resources and would be featured with a higher maximum clock frequency than the 

state-of-the-art crossbar (AXI4 Interconnect). 

1.4. Overview of the dissertation 

In this dissertation, the author proposes a novel NoC architecture called RingNet and its 

protocol that are well-suited to the features of contemporary FPGAs. Among other NoC 

architectures proposed for FPGAs, RingNet stands out with communication through a central 

memory and traffic load controlled by the recipient. The dissertation starts with a discussion on 

the common features of FPGAs that are important for NoC architectures (Chapter 2). In Chapter 

3, general requirements for NoCs are discussed. Next, in Chapter 4, the author summarizes the 

state-of-the-art in NoC designs for FPGA and points out NoC design constraints that match the 

FPGA features considered in Chapter 3. In Chapter 5, a novel RingNet architecture of NoC is 

proposed with its protocol described in Chapter 6. Through Chapters 7 – 9, experimental results 

are presented, RingNet synthesis for different FPGAs are compared, and RingNet 

implementation is compared with the widely-used crossbar interconnection called AXI4 
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Interconnect. In Chapter 10, the author summarizes the dissertation and discuss applications of 

RingNet. 
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Chapter 2. Study of FPGA devices from the point of view of 

intra-device communication 

In this section, an architecture of a modern FPGA device is presented. A simplified scheme 

of a typical FPGA layout is depicted in Fig. II.1. 

 The primary resource of an FPGA device is an array of logic blocks surrounded by or 

interleaved with input and output (I/O) blocks [Luu16]. The logic blocks may be interleaved 

with additional types of resources, e.g., digital signal processing (DSP) blocks, blocks of 

random-access memory (BRAM), phase-locked loop (PLL) blocks, hardware processors, 

hardware memory controllers, etc. The backbone of every FPGA architecture is a predefined 

network of programmable signal pathways, which interconnects all the blocks [Mar16]. Clock 

distribution tree, not depicted in Fig. II.1, delivers low-skew, high fanout clock signals to all 

synchronous elements in the FPGA fabric. 

I/O blocks

I/O blocks

Hardware 
processor

Block RAM

DSP blocks

Block RAM

DSP blocks
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Fig. II.1.  Simplified scheme of a typical FPGA layout. 
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As depicted in Fig. II.2, the logic block contains look-up tables (LUTs) and flip-flops (FFs). 

LUT implements a logic function defined by a user, whereas FF is used to store the logic 

function result. LUT has a limited number of logic inputs, four or six being a common value 

for a modern FPGA architecture. In order to increase the functionality of their logic blocks, 

vendors usually enrich them with additional hardware, e.g., input lines that bypass LUT, or 

output lines that bypass FFs, input and output lines that connect neighboring logic blocks, carry 

logic useful for implementing arithmetic functions, and programmable multiplexers for signal 

switching. The multiplexer is used to combine outputs from many LUTs, which is used when a 

logic function with more inputs that are supported by a single LUT is implemented. In some 

architectures, a single LUT can implement a function with multi-bit result, therefore LUT may 

have more than one output line. 

Different FPGA architectures use logic blocks with different numbers of LUTs and FFs and 

may be called differently, e.g., a logic block in FPGAs manufactured by Microsemi has a single 

LUT and single FF and is called a logic element [Mic18a], [Mic18b], a logic block in FPGA 

manufactured by Lattice is equipped with two LUTs and two FFs and is called a slice [Lat13]–
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Fig. II.2.  Simplified scheme of connections in a logic block. 
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[Lat16], whereas Intel uses logic blocks called Adaptive Logic Modules (ALMs), which contain 

two LUTs and four FFs [Alt11]–[Alt16], [Int16], [Int17]. Nevertheless, a general description 

of those structures matches the logic block description, i.e., it is a structure that contains LUTs, 

FFs, and additional resources, and is connected to a predefined network of programmable signal 

pathways. 

In modern FPGAs, LUT not only can be used to implement a logic function but also may be 

utilized as a memory block. Memory-capable LUT has limited hardware added for supporting 

on-the-fly LUT reprogramming. LUT-based random-access memory (LUTRAM), is often 

called distributed RAM, stemming from the fact that LUTs are evenly distributed across FPGA.  

The configuration for FPGA blocks that reflects user design is kept in an external or internal 

memory, depending on FPGA architecture. The configuration is applied to the FPGA blocks 

during power-up, or during run-time partial reconfiguration [Sed06], [Cle16], [Ahm18]. The 

configuration for FPGA blocks is produced by algorithms that can implement the user digital 

design in FPGA architecture resources [Luu16]. The digital design, which is the input to the 

implementing algorithm, is prepared in textual format using the hardware description language 

(HDL). Verilog [Pal03] and Very High Speed Integrated Circuits Hardware Description 

Language (VHDL) [Nay97] are just two popular examples of HDLs. Important steps of the 

implementing algorithm include the logic synthesis by the decomposition of user-defined 

functions into atoms, which are applicable to FPGA resources (LUTs, logic blocks, DSP blocks, 

etc.) [Łub95], [Hry07], [Wyr13], placement of the atoms in resources of FPGA, and routing of 

the placed atoms using a predefined network of programmable signal pathways. The 

implementing algorithm is one of many Electronic Design Automation (EDA) tools that can 

process a design described using HDL. Other EDA tools are available for designers, e.g., a 

simulation tool that provides functional verification at an early stage of digital design 

development, and an optimization tool that can balance different aspects of the design, such as 

utilization of resources, maximum clock frequency, or energy consumption. 

2.1. Restriction on considered FPGAs 

In the dissertation, the basic common features of modern FPGAs are studied in the context 

of products offered by three of the leading FPGA vendors: Xilinx Inc., FPGA department of 
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Intel (formerly Altera), and Lattice Semiconductor Corp. Detailed descriptions of logic block 

architectures used by the vendors are presented in Appendices I – III. 

The author limits his considerations to devices large enough to contain an SoC. The size of 

an FPGA is measured in logic cells (LCs) that are equivalent to a 4-input LUT (LUT4) paired 

with a flip-flop (FF). A memory controller, a common module of SoC, requires several 

thousands of LCs (e.g., Double Data Rate type 3 (DDR3) synchronous dynamic RAM 

(SDRAM) memory controller for Artix7 requires more than 6500 LCs). The whole SoC is 

expected to be substantially larger, therefore the author limits the considerations to a series of 

FPGAs with devices of more than 50,000 LCs. 

2.2. Common features of considered FPGAs 

In this section, common features of FPGA architectures are presented that should be 

considered in the development of NoCs for FPGA. The goal of this section is to demonstrate 

that key aspects of considered FPGAs are similar, which might render the possibility of a 

universal NoC architecture development. 

The FPGA considerations are based on data sheets from the vendors [Alt11]–[Alt16], 

[Int16], [Int17], [Xil16a]–[Xil17], [Lat13]–[Lat16], and summed up in Table II.1. The above-

mentioned three manufacturers offer products similar in various aspects, all based on LUTs and 

FFs, and with the capacity of up to millions of LCs. One can also see that memory controllers 

for high-capacity synchronous dynamic RAM (SDRAM) are supported as software IPs or 

hardware pre-engineered blocks. Each FPGA contains memory blocks (BRAMs with capacity 

from 9 kb to 45 Mb) distributed across its array. Each of the considered devices also includes 

distributed RAM.  
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TABLE II.1  

COMPARISON OF FPGAS 
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Stratix 10 '13 14 
yes 

378k — 5.5M 

6-input LUT +  

2 FF [Alt11] 

hard DDR4-2666 
20kb and 45Mb 

20×LUT as  

20b×32-word deep or 

10b×64-word deep RAM 

(32 bits per LUT) 

25 

Arria 10 '13 20 160k — 1.15M 

20kb  

27 — 50 

Cyclone 10 '17 20 
no 

85k — 220k hard DDR3-1866 21 

Stratix V '10 28 236k — 952k soft DDR3-1600 50 

Arria V '11 28 
yes 

75k — 504k hard DDR3-1066 20kb and 10kb 25 — 50 

Cyclone V '11 28 25k — 301k hard DDR3-800 10kb 24 — 35 

X
il

in
x

 

Zynq UltraScale+ '15 

16 

yes 83k — 914k 

6-input LUT +  

2 FF 

soft DDR4-2666 
36kb or 2×18kb 

and 288kb 

4×LUT as  

3b×64-word deep or  

6b×32-word deep RAM  

(48 bits per LUT) 

30 — 50 Virtex UltraScale+ '15 

no 

690k — 2.9M 

Kintex UltraScale+ '15 205k — 915k 

Virtex UltraScale '14 
20 

783k — 5.5M 
soft DDR4-2400 

36kb or 2×18kb  

14 — 22 

Kintex UltraScale '14 318k — 1.5M 14 — 47 

Virtex7 '10 

28 

326k — 2M 
soft DDR3-1866 

28 — 43 
Kintex7 '10 yes (in 

Zynq) 

66k — 478k 

Artix7 '10 13k — 215k soft DDR3-1066 

Spartan7 '16 
no 

6k — 102k soft DDR3-800 

Spartan6 '09 45 4k — 147k hard DDR3-800 18kb or 2×9kb  24 — 50 

L
at

ti
ce

 ECP5 '14 40 

no 

12k — 84k 

4 input LUT + 

1 or 0 FF 

soft DDR3-800 
18kb 

6×LUT as 4b×16-word 

deep RAM  

(10.7 bits per LUT) 

50 

LatticeECP3 '09 65 17k — 149k 
11 — 15 

LatticeECP2 '06 90 6k — 95k soft DDR2-533 
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In the following sections, the presented FPGA features are discussed from the point of view 

of NoC development. 

2.2.1. Common features of distributed RAM 

In the considered FPGAs, from 11% to 50% of LUTs can be used as RAM. The smallest 

available LUT-based memory (LUTRAM) configurations have the depth of 16 or 32 words, 

depending on the producer. Different numbers of LUTRAM bits are available per utilized LUT; 

on average, 32 bits per an LUT for Intel devices, 48 for Xilinx and 10.7 for devices from Lattice. 

As pointed out by a source related to Xilinx [Mai15], RAM-capable LUTs are well spread over 

an FPGA and their potential should be considered in NoC and SoC designs for Xilinx FPGAs. 

All the considered FPGAs include LUTRAM, so this conclusion should be extended to all of 

them. 

2.2.2. Synchronous dynamic RAM support 

Some of the considered FPGAs are equipped with hardware pre-engineered blocks of 

memory controllers of various memory types. For other FPGAs vendors provide memory 

controllers as software IP blocks. The most-supported memory type is synchronous dynamic 

random-access memory (SDRAM) in various versions (e.g., DDR, DDR2, DDR3, DDR3L, 

DDR4). The higher the version, the higher the maximum frequency of data transmission. The 

highest supported versions of SDRAM for each considered FPGA are listed in Table II.1. 

Nevertheless, not only SDRAM memory devices are supported. Examples of other supported 

types are reduced latency dynamic random-access memory (RLDRAM), and quad data rate 

static random-access memory (QDR SRAM).  

External memory devices (SDRAM or other types) provide high-capacity storage for FPGA-

based SoCs. 1Gb is a typical capacity of an SDRAM device, whereas the capacity of the internal 

memory of considered FPGAs (BRAM and LUTRAM) is one to three orders of magnitude 

lower.  

2.2.3. Limitations on logic implementation in FPGA  

FPGAs, unlike ASICs, have a predefined network of programmable signal pathways 

connecting LUTs [Mar16]. Each LUT in FPGA implements a logic function with a limited 

number of logic inputs. For Intel and Xilinx products, functions of up to 6 inputs can be 
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implemented in a single LUT. For Lattice products, the number of inputs is limited to 4. As the 

number of inputs for the required logic exceeds the number of single LUT inputs, it needs to be 

realized as multiple layers of LUTs connected with pathways. Additional layers of LUTs reduce 

the maximum clock frequency. In order to obtain the required design frequency, special care 

needs to be taken not to exceed the critical number of layers. It is not the case for ASIC designs, 

where the maximum clock frequency can be balanced with flexible lengths of pathways. 

It can be concluded that the considered FPGAs differ from their ASICs counterparts. The 

key advantages of the considered FPGAs are highly available distributed RAM and support for 

high-capacity SDRAM, whereas the discussed frequency limitation is the main FPGA 

constraint. The identified advantages and constraints, which are common to all considered 

FPGAs, should be taken into account in the development of NoCs for FPGA. 
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Chapter 3. Requirements for network-on-chip and related 

previous works 

The concept of NoC has been described in many books and articles, mostly in the context of 

ASICs [Ben06], [Che12], [Cot12], [Tat14], [Man14], [Dim15]. An NoC consists of switches1 

connected with links. Links physically interconnect switches, whereas the logic behind the 

communication is implemented in switches according to the adopted switching technique and 

designed communication protocol. Processing elements (PEs) are connected to NoC using 

network interfaces, which are the logic that adapts the PE communication protocol to the one 

used in NoC. Links and switches that are involved in the connection between two network 

interfaces create a path.  

Switches can realize two switching techniques: connection-oriented (packet-switching) and 

connection-less (circuit-switching). In the connection-oriented approach, the whole path 

between the source and destination network interfaces is reserved before data is inserted into 

the network. On the other hand, in the case of the connection-less approach, consecutive 

segments of the path (buffers in consecutive switches and links between the switches) are 

reserved only for the time of data transmission on those segments (see also [LiuS13]). In the 

dissertation, only packet-switched networks are considered, which are characterized by high 

link utilization and are widely used for FPGA [Mai15], [Ret14]. In packet-switched NoC, a 

single message is divided into packets, and sent across the network. The packets are further 

divided into flow control units called flits. A flit is a portion of data usually transferred at one 

clock cycle between connected switches [Ber04]. 

NoC performance is characterized by some common metrics, i.e., throughput, latency, 

resource utilization. Throughput quantifies the rate at which data is transmitted through NoC. 

Latency has two components: first, the time it takes for a packet to pass through a number of 

synchronous elements (FFs and buffers in network elements), and second, the time the 

communication logic requires for taking switching decisions. Resources utilized for NoC may 

be of different kinds, e.g., silicon area in the case of ASIC, and the number of FFs and LUTs in 

the case of FPGAs. Electric power is another important resource for the applications in which 

                                                 
1 The terms switch and router are often used as synonyms in context of NoC [Cot12]. 
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the power source is constrained [Zyd11], as for mobile applications, or in which overheating 

may be a major concern. 

A number of requirements for NoCs have already been identified [Pap15], [Mur07], 

[LiuS14], [Tat14]. The obvious requirements are:  

a) Utilization of resources (power, silicon area, LUTs and FFs) should be minimized. 

b) High data throughput should be offered. 

c) Latency should be limited. 

There are some other important requirements that are addressed in few references only:  

d) Fairness of network access should be guaranteed, i.e., all network interfaces should 

experience throughput proportional to their relative request rates (throughput fairness) and the 

same latency (latency fairness) [Dal03], [LiuS14]. 

e) Network should be reliable, i.e., it should be deadlock-free, whereas the requirements of 

the minimum throughput and the maximum latency should be met [Mur07]. Another kind of 

reliability is fault tolerance required by some applications [Ben06], [Weh16], [Kan18], but fault 

tolerance is not considered in this dissertation. 

3.1. Network reliability related aspects 

Network reliability can be affected by congestions [Ber04]. Congestions lead to throughput 

and latency fluctuations, thus the average throughput is below the theoretical maximum value, 

and the average latency is increased, especially under high network load conditions. 

According to [Hel15], [Pap15], [Tod14], [Zhu17], and [Abb14], the main aspects 

influencing throughput, latency and probability of congestions are the following: switching 

technique, topology (together with the routing algorithm), and the size of buffers. For each of 

those aspects, a number of techniques have been developed to meet the requirements for NoCs: 

a) The packet switching technique. Three frequently used techniques are the 

store-and-forward, the wormhole and the virtual cut-through [Ber04]. Switching according to 

the store-and-forward technique requires collecting all flits of a packet before forwarding it to 
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the next switch or the network interface [Ker79]. This technique requires substantial buffer 

space and introduces extra packet delay at every switch. In the virtual cut-through switching 

scheme, packet forwarding can be started before the entire packet is buffered, therefore it 

reduces the delay, as compared to the store-and-forward scheme. Nevertheless, the virtual cut-

through switching requires the same buffering space as the store-and-forward scheme, because 

the complete packet needs to be buffered in a switch until the next switch is ready to accept the 

packet. The advantage of the wormhole switching technique, as compared to the 

store-and-forward and virtual cut-through, is that it requires smaller buffers. In the virtual 

cut-through scheme and in the wormhole scheme, packet forwarding can be started before the 

entire packet is buffered but in contrast to the virtual cut-through, the wormhole switching 

scheme does not require buffering the whole packet in a switch if the next switch is not ready 

for the packet. The disadvantage of the wormhole scheme is that one packet may occupy several 

switches, block transmission through all of them, and lead to congestions. In general, the 

wormhole is congestion-sensitive and may result in low network utilization, but can provide 

low latency, and requires smaller buffers than the virtual cut-through. The latter requires larger 

buffers but provides low latency without limiting network utilization due to congestions.  

b) The topology and the routing algorithm define paths in the network and influence the 

loads of individual links and switches. Uneven loads result in bottlenecks in the network that 

may cause congestions and unfair network access, leading to throughput and latency 

fluctuations [Dal03], [Ret14]. Topologies and routing algorithms that prevent congestions have 

already been investigated in the literature. In [Ret14], the congestions are limited by spreading 

traffic across NoC evenly by using adaptive routing. Another approach is to use multiple 

physical link or multiple physical network topologies [Mur07], [Yoo13]. Redundant physical 

links increase throughput, reduce bottlenecks and prevent congestions. 

c) The size of buffers has been shown to have a major impact on throughput, latency and 

occurrence of congestions [Tod14]. The importance of this aspect is discussed in Section 3.2 

together with techniques for adjusting the size of buffers known from the literature. 

3.2. Buffer size adjusting techniques 

The size of buffers used in a network affects its performance and cost. Determining the 

optimal buffer size is not trivial in the case of a priori unknown traffic load generated by 
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processing elements (PEs) and unknown ability of PEs to accept packets from the network 

buffers. In the references, several mechanisms were proposed to determine the buffer size. The 

simplest method is to set the size of buffers to hold as many packets as can be generated. In the 

case of a priori unknown traffic load, this worst-case approach results in unnecessarily large 

buffers [Son03]. 

More advanced methods of determining the buffer size exploit the statistics of the traffic 

load. Those statistics need to be explicitly provided [Abd16b], or a dedicated traffic load 

monitoring technique needs to be used [Tod14], [Zhu17], [Kam18], [AlF12]. 

In [Tod14], the buffer size is adjusted iteratively in consecutive SoC implementations. The 

monitoring module collects traffic statistics that are used to adjust the buffer size accordingly, 

and the estimated size is used in the next implementation. Multiple SoC implementations are 

time-consuming, therefore, in [Zhu17] simplified PEs are emulated and traffic statistics are 

collected faster. In [Kam18] an NoC simulator is proposed to estimate traffic statistics prior to 

NoC implementation. The above-mentioned mechanisms [Tod14], [Zhu17], [Kam18] need 

training data and are sensitive to any change in the traffic pattern.  

In [AlF12], the total size of memory in a switch is constant, but based on the measured traffic 

load at each switch output, the memory is assigned between output buffers adaptively, during 

runtime. Nevertheless, even in [AlF12], it is pointed out that this mechanism is not dedicated 

for FPGA due to its complexity. 

Commonly, networks distinguish the types of transmitted data and assign separate buffers to 

these different types. This technique is called virtual channels (VCs) [Yoo13], [Pos13], 

[Pap12], [Abb14]. In NoCs using VCs, it is common to guarantee throughput and latency just 

for critical types of data, like control messages. Therefore, the aforementioned buffer size 

determining techniques are only applied to buffers used by the critical data types. Buffers used 

by non-critical data can be optimized to reduce the memory cost.  

In the NoC proposed in this dissertation, the buffer size does not depend on the traffic load. 

It is the opposite, and the traffic load is controlled to utilize the fixed-size network buffers 

without causing congestions. Details are provided in Chapter 5.  
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Chapter 4. State-of-the-art interconnections for FPGA 

A number of NoCs, crossbars and bus architectures are proposed for ASICs in the references, 

and some of them are adopted for FPGAs. For the sake of brevity, the author focuses only on 

FPGA-oriented crossbars and NoCs. 

4.1. AXI4 Interconnect 

The Advanced eXtensible Interface 4 (AXI4) [Xil15] is a version of the Advanced 

Microcontroller Bus Architecture (AMBA) interface and protocol recommended by ARM Ltd 

for FPGAs. Originally, AXI4 was used to communicate with ARM cores embedded in many 

devices (see Table II.1). AXI4 modules, especially a crossbar called AXI4 Interconnect, are 

available as Intellectual Property (IP) cores in the Xilinx Vivado Design Suite and Intel Quartus. 

Many other IP cores with the AXI4 interface are available. Therefore, an FPGA-based SoC 

using AXI4 Interconnect and AXI4-compatible processing elements (PEs) can be developed 

rapidly. For this reason, AXI4 is widely used in FPGAs [Mai15], [Pap15].  

AXI4 is a memory-mapped interface. The interface uses separate write and read channels 

and supports simultaneous, bidirectional transfers. Processing elements (PEs) with AXI4 

interface are connected using AXI4 Interconnect, which is available as a standalone IP in the 

Xilinx IP Catalog. Many aspects of the AXI4 interface and AXI4 Interconnect IP can be 

adjusted to the requirements of a digital design. The interface supports packets of different 

sizes, up to 256 flits. The width of a flit can be configured in the range of 32 to 1024 bits, and 

additional bits of byte-enable (BEN) are transmitted, indicating which data bytes from a flit are 

valid. AXI4 Interconnect allows using address width up to 64-bits. The number of ports of the 

AXI4 Interconnect crossbar is configurable. Each port of AXI4 Interconnect can use LUTRAM 

or BRAM-based buffers. Optional pipeline flip-flops can be inserted at any interface to break a 

critical timing path at the cost of increased latency. 

Despite its popularity, AXI4 Interconnect has drawbacks, e.g., in [Mai15] long connections 

were pointed out as the main drawback, and the application of NoC instead of AXI4 

Interconnect was suggested for Xilinx FPGAs. 
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4.2. NoCs designed for FPGA 

Two types of NoCs for FPGA have already been proposed in the literature: soft, with 

infrastructure implemented using general FPGA resources, and hard, using hardware switches 

embedded into the FPGA fabric as an additional resource [Abd14], [Abd16a], [Abd16c], 

[LiuT16], [Hud16], [Abd17]. Hard NoCs may limit the flexibility of FPGA and have not been 

implemented in chips that are available, and therefore only soft NoCs will be considered in this 

paper.  

A few soft NoC architectures were proposed recently for FPGAs: Hoplite [Kap15], [Was17], 

[Vip17], [Kap17a], [Kap17b], [Kap17c], [Sid18], RAR-NoC [Ret14], CONNECT [Pap12], 

[Pap15], [Ahm18], [She14], [Mai15], LinkBlaze [Mai17], and OpenNoC [Red19].  

 The above-mentioned works use different approaches to the requirements for NoC 

(cf. Chapter 3) which is discussed in Sections 4.2.1 – 4.2.5. 

4.2.1. Cost reduction 

All the works consider the need to limit the usage of FPGA resources. Most of them dismiss 

adaptive routing techniques, and exploit static routing, willing for a smaller control logic 

[She14], [Pap15], [Kap15], [Mai15], [Red19]. Only in RAR-NoC [Ret14] is the usage of 

adaptive routing considered instead of static, and the increased throughput is reported at the 

cost of the switch size increase by 11%.  

Buffers can consume a significant part of the network resources, therefore the authors of 

Hoplite [Kap15] and OpenNoC [Red19] propose an extreme approach and implement a toroid 

NoCs without buffers. Recently, Hoplite-based NoCs were proposed with the aim of lowering 

Hoplite average latency by improved routing [Was17], [Vip17], changing the topology from 

toroid to butterfly fat tree [Kap17c], or adding packet priorities [Sid18]. The small size of 

OpenNoC and Hoplite NoC is paid for by no guaranties for packet latency and lack of reliability. 

Using no buffer may not be justified for FPGAs that provide easily available distributed RAM 

(LUTRAM). 
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4.2.2. Distributed RAM utilization 

In [Ret14] and [She14], it is proposed that the buffer size be limited by implementing 

wormhole switching that requires smaller buffers than virtual cut-through. Xilinx-related 

authors pointed out [Mai15] that LUTRAMs in Xilinx FPGAs have some generally defined 

minimum depths, so most of the LUTRAM capacity may be wasted by wormhole switching 

with shallow buffers. Virtual cut-through is proved [Mai15] to be an appropriate switching 

technique for a system with moderate size packets, i.e., shorter than the depth of LUTRAM-

based buffers.  

In the paper describing the CONNECT switch [Pap12], the LUTRAM potential is 

underlined, and the buffers are implemented strictly using LUTRAM. The configurability of 

the depth and width of the CONNECT switch is an advantage of the implementation, but it is 

also pointed out that even fixed but appropriate buffer depth can improve the predictability of 

resource utilization. 

Based on [Mai15] and [Pap12], one can conclude that using buffers with depth equal to the 

depth of LUTRAM, using packets of length shorter than the buffer depth and employing virtual 

cut-through switching can result in resource-efficient NoC. Therefore, the author implements 

those ideas in RingNet NoC. 

4.2.3. Inter-FPGA compatibility 

The maximum operating frequency and the average throughput and latency are reported for 

all the above-mentioned networks in their source papers. The respective reports are provided 

for individual FPGA device types [Kap15], [Ret14], [Mai15], [She14], or for entire FPGA 

device lines [Pap15]. The lack of reports for FPGAs from different vendors may be an obstacle 

in determining the usability of NoCs. 

Another NoC designed especially for FPGA is LinkBlaze [Mai17] that is dedicated for 

UltraScale+ devices from Xilinx. In particular, the switching logic was optimized for 6-input 

LUTs, and the switches were placed manually in the array with the aim of connecting them 

with global pathways. This device-aware network design results in a high-frequency NoC with 

its throughput higher than obtained for Hoplite and CONNECT when implemented on 
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UltraScale+ FPGA. LinkBlaze is an example of NoC optimized for one line of FPGAs, whereas 

the author of this dissertation looks for more universal NoC. 

4.2.4. NoC reliability 

A few of the presented NoC proposals focus on the requirement of NoC reliability. 

RAR-NoC [Ret14] uses a traffic monitor to control the routing algorithm implemented with the 

aim of reducing congestions. In [Pap15] and [Mai15], switches that support VCs are 

implemented. Still, even though fairness is an essential reliability parameter, it is out of the 

scope of most propositions. Only in [Pap15] did the authors point out the importance of fairness, 

but gave no numerical results for their NoC. In the dissertation, the author will provide a fairness 

analysis for RingNet, together with resource utilization and maximum operating frequency for 

various FPGAs to prove its usability. 

4.2.5. SDRAM support exploitation 

Out of the above-mentioned NoCs, only the authors of LinkBlaze [Mai17] consider FPGAs’ 

support for synchronous dynamic random-access memory (SDRAM). SDRAM is a crucial 

component of many SoC projects [Abd16a] and utilizes a substantial part of NoC throughput. 

In [Ber04] an example of an SoC for an Advanced Video Coding (AVC) decoder is presented. 

In the system, the total communication traffic to and from SDRAM is much higher than the one 

required for communication between other processing elements (PEs). This type of 

memory-oriented SoCs are the target application for RingNet described in Chapter 5. 
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Chapter 5. RingNet architecture 

Most NoC proposals focus on switch architecture only. In this dissertation, the author 

proposes a complete NoC architecture and a protocol for a memory-oriented SoC which is call 

RingNet. As stated earlier, the memory-oriented SoC is a specific type, where most of a traffic 

starts or ends in memory and minor traffic is send between processing elements. For such SoCs, 

RingNet excels in performance. In the development of RingNet, the conclusions from Chapters 

2 – 4 are taken into account. The three basic ideas of the proposal are presented in Section 5.1. 

The secondary ideas are presented in Section 5.2. 

5.1. Primary ideas of the proposal 

5.1.1. Indirect communication 

As described in Chapter 3, determining the buffer size is often complex due to the a priori 

unknown traffic load. In RingNet, the traffic load is controlled by a destination processing 

element (PE), which guarantees that packets injected into the network can be accepted by the 

destination PE without congestions. This way, fixed-size network buffers can be utilized. 

With the aim of providing the traffic control mechanism, the author disallows direct 

communication between PEs. In RingNet, all traffic goes through one of the system buffers: 

System Memory (e.g., external SDRAM with a memory controller implemented in FPGA) or 

the Reflector. The System Memory is used as a data buffer, whereas the Reflector is a dedicated 

network buffer for control messages. The Reflector is introduced because it serves functions 

that are not supported by an ordinary memory controller. Among its functions, the Reflector 

informs a PE about data waiting to be read from the System Memory. For two PEs to 

communicate, the first PE writes data to the System Memory and writes information about the 

waiting data to the Reflector. Next, the Reflector informs the second PE about the data waiting 

to be read. Finally, the second PE reads the data from the System Memory to complete the 

communication. What is important, in RingNet, a PE requests data from system buffers when 

it is ready to accept it. Still, sending data to the system buffers is not a matter of any restriction 

and a sending PE can work at its own pace. The Reflector and the memory controller are the 

only devices in RingNet that need to be prepared for traffic with a priori unknown pattern. 

Details are given in Section 6.3.4. 
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RingNet has two distinctive properties among other NoCs proposed for FPGA. These are 

traffic load controlled by a destination processing element, and communication through system 

buffers. 

5.1.2. Virtual cut-through switching 

In Section 3.1, packet switching techniques are briefly presented. Next, in Section 4.2, it is 

summarized which of the techniques are used in known NoCs designed for FPGAs. For their 

property of low latency, the wormhole and the virtual cut-through switching are the two 

techniques adopted in FPGAs. The virtual cut-through requires substantial buffer space where 

the complete packet can wait until the next switch is ready to accept the packet. This buffer is 

not required in wormhole scheme; therefore, wormhole is chosen in some NoCs, which focus 

on limiting the FPGA resources usage [Ret14], [She14]. On the other hand, the wormhole 

scheme is congestion-sensitive and may result in low network utilization (cf. Section 3.1), 

which is not the case for the virtual cut-through technique. Therefore, the virtual cut-through 

technique should be used in order to obtain better NoC performance if the cost of required 

buffers is acceptable. In Section 2.2.1 it is discussed that distributed RAM (LUTRAM) is easily 

available in FPGA architectures. Therefore, the author proposes the virtual cut-through 

switching for RingNet aiming at efficient utilization of LUTRAM and for its congestion-

insensitivity. 

From Table II.1, one can see that 32-word deep is the shallowest LUTRAM that is supported 

by all the considered FPGAs, hence using the 32-flit deep buffers can result in resource-efficient 

NoC. For the virtual cut-through scheme, the packets should be small enough to fit into the 

buffer, therefore, packets in RingNet should be shorter than 32 flits.  

5.1.3. Constraint of a switch size 

For FPGA-based designs, the usage of logic functions with a low number of inputs can give 

a high clock frequency implementation (cf. Section 2.2.3). In [Pap15], the maximum clock 

frequency for a NoC implemented in FPGA is presented as a function of the number of ports 

that the network switches have. Reported frequencies are in the range 236 MHz – 241 MHz for 

3-port switches, drops to 203 MHz for switches with 4 ports, degrades further to the 169 MHz 

– 181 MHz range if 5 ports are used, and finally drops to 121 MHz for 9-port switch. It shows 

that a low number of ports results in a NoC with high maximum clock frequency. In fact, a 
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3-port switch is the smallest switch usable in a network (see also [Mai17], and [Abd16a]). In 

order to maximize the clock frequency of the network, the author uses 3-port switches, called 

the Leaf Interface (LI) and Root Interface (RI). 

5.2. Secondary ideas of the proposal 

5.2.1. RingNet topology 

A tree-of-rings topology is used (see Fig. V.1) with the System Memory and the Reflector 

connected to the ring at the root of the network tree, whereas PEs are connected to the rings at 

higher levels of the tree.  

 

The ring topology is recommended for FPGAs by several authors [Abd16a], [Pap12], and it 

is one of just few topologies that can be constructed using 3-port switches. Moreover, the ring 

topology allows the network to spread over the whole FPGA area.  

On the other hand, in NoCs with ring topology, latency increases proportionally to the 

number of PEs, and for a high number of PEs, this latency may be unacceptably high. Such 

latency can be reduced with the use of a mixed topology of smaller rings connected to a tree. 

Both the tree and ring topologies are easy to scale in FPGAs without reducing the maximum 

clock frequency [Pap12]. For the tree-of-rings topology there is one path between the root and 

a leaf device, so static routing may be efficiently used, which simplifies the RingNet logic. 
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Fig. V.1.  RingNet topology. 
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5.2.2. RingNet throughput control and multiple physical technique 

The choice of topology affects the parameters of RingNet, especially it limits network 

maximum throughput. The maximum throughput of a ring is a function of the flit width and the 

clock frequency. The width of a flit in RingNet is constant, so the maximum ring throughput is 

determined by the maximum clock frequency for a given FPGA. To overcome this limitation, 

the multiple physical network technique is used. A single ring at any level of the tree can be 

replaced with multiple rings connected in parallel. The traffic is spread evenly between the 

parallel rings, and the maximum throughput is multiplied. The traffic in RingNet aggregates in 

a root ring and this level can also be multiplied to meet the throughput of the attached SDRAM 

memory. This approach to the problem of traffic aggregation in a root of a networks with tree 

topology is known from literature as fat-tree topology [Lei85], or variations of the topology, 

e.g., Fat H-tree [Mat09] or Z-fat tree [Add17]. 

The usage of the multiple physical network technique makes the throughput of RingNet 

controllable. In this situation, the System Memory throughput becomes an obvious limitation 

of the approach presented by the author. Nevertheless, the System Memory load can be reduced 

by connecting additional memory buffers at any ring. In Fig. V.2 an example of RingNet 

network is depicted with local buffer attached to the ring placed on the left. The local buffer 

(instead of the System Memory) can be used for the data exchange between PEs connected to 

a common ring. Nevertheless, PEs use the System Memory to exchange data with PEs 

connected to other rings of a network. Information about data waiting in the local buffer still 

needs to go through the Reflector as stated in Section 5.1.1. Each local buffer is connected to a 

ring through its own RI and can utilize the block RAMs available in all considered FPGAs. 
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Reducing the System Memory load by using the local buffers requires a careful network 

configuration. In this scenario, the PEs that exchange data between each other need to be 

connected to a common ring with the local buffer attached. 

5.2.3. Flit size 

Flits in RingNet have 8 data bytes with additional 8 bits of byte-enable (BEN). Like in AXI4, 

BEN bits indicate which data bytes from a flit are valid. One of the goals of RingNet 

development is to provide maximum throughput equal to or higher than the throughput of 

SDRAMs supported by FPGAs. While using flits with 8 bytes of data, the maximum throughput 

of RingNet is compared with the throughput of the supported SDRAMs:  

- The slowest SDRAM from Table II.1 is DDR2-533, which provides throughput of 4.3 Gbps 

for an 8-bit interface, whereas a single RingNet ring running at a moderate frequency of 75 

MHz already exhibits the throughput of 7 Gbps. 

- The most demanding DDR4-2666, supported in Xilinx UltraScale+ series and Intel 10 

series, offers 192 Gbps for a 72-bit interface. For comparison, four parallel RingNet rings can 

transfer 196 Gbps when running at the clock frequency of 525 MHz that is easily achievable 

for the FPGAs. 
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Fig. V.2.  The RingNet network using the local buffer concept. 
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5.2.4. Flow control 

Considering the requirements for fair network access (Chapter 3), the author proposes a flow 

control mechanism for RingNet with the access controlled locally, at the level of each ring 

(cf. Chapter 6). 
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Chapter 6. Components and protocol of the RingNet network 

This chapter provides an overview of the implementation of RingNet network components 

and protocol. The presented implementation is in compliance with the ideas presented in 

Chapter 5. The purpose of this implementation is to provide a functional design that can be 

processed using Electronic Design Automation (EDA) tools; especially simulation tools can be 

used to evaluate the performance of the RingNet architecture, whereas packing tools can be 

used to evaluate its resource utilization and the maximum clock frequency. For this reason, the 

author describes RingNet modules using Verilog hardware description language (HDL), which 

is one of the most popular HDLs, and is accepted by EDA tools. The results obtained using 

EDA tools are discussed in Chapters 7 – 9.  

In Sections 6.1 – 6.3, details of the RingNet modules prepared using HDL are presented. The 

implementation presented in this chapter is just one realization of the ideas from Chapter 5. 

Other implementations are possible. Nevertheless, the author explored various configurations 

with different parameters in the search for optimal implementation. The author believes that the 

presented implementation at least does not limit the RingNet functionality presented in Chapter 

5, and is therefore useful for evaluating the RingNet ideas. 

6.1. Network physical channels 

In this NoC, there are two physical channels. The first one transports packets form a 

processing element (PE) to a system buffer (System Memory or Reflector). The second one 

transports packets from a system buffer to a PE. PEs are connected at the leaves of the network 

tree, whereas the system buffers are connected at the root of the tree, therefore, the first channel 

is called Leaf-to-Root (L2R) and the second one is called Root-to-Leaf (R2L). 

The main modules of RingNet are two types of network interfaces: Leaf Interface (LI) and 

Root Interface (RI). The LI is used to connect a PE to a network. The RI is used to connect a 

system buffer. As depicted in Fig. V.1, a combination of RI and LI is used to connect rings at 

different levels of a network tree. Both RI and LI are 3-port switches and they insert packets to 

a ring using a 2×1 multiplexer and accept packets from a ring using 1×2 demultiplexers (see 

Fig. VI.1). 
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 Each ring in RingNet has one L2R channel and one R2L channel (see Fig. VI.1). A flow 

control mechanism for the L2R channel uses an additional L2R control channel (L2R CTRL). 

  

6.2. Ring adapter 

As already stated in Section 5.2.2, a single ring can be replaced with multiple rings connected 

in parallel in order to increase the overall network throughput, e.g., at certain critical levels of 

the tree. Usually, due to the traffic aggregation in the root of the RingNet tree, more multiplied 

rings will be used at levels closer to the network root. These multiplied rings in RingNet can be 

connected to other levels of the tree using a dedicated adapter. Fig. VI.2 depicts an adapter for 

the L2R channel. The adapter is placed between LIs and RIs of the rings when at least one ring 

is multiplied. 
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Fig. VI.2.  Ring adapter for L2R channel. 
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An individual adapter is used for L2R and R2L channels. It is built of 2×1 multiplexers and 

1×2 demultiplexers and LUTRAM-based 32-flit deep buffers. 

6.3. RingNet protocol 

For RingNet, a protocol is developed that provides communication between PEs, limits 

congestions, provides fair network access and supports packet priorities. The protocol covers 4 

layers of the OSI model, from the data link layer to the session layer, described in Sections 6.3.1 

– 6.3.4, respectively. Higher OSI layers are out of scope of the RingNet protocol. 

6.3.1. Data link layer 

The data link layer specifies the structure of flits and packets, and defines the ring access 

protocol. 

As recommended in Section 5.1.2, packets should be shorter than the depth of the buffers. 

For the FPGAs from Table II.1, the most shallow LUTRAM is 32-word deep. Therefore, 32 

and 64-flit deep buffers are used in RingNet. Packets with two possible lengths of 2 and 9 flits 

are chosen. The purpose for the two lengths is described in Section 6.3.3. The first flit of a 

packet is the header that encapsulates control information for each protocol layer (especially 

the routing information). The following 1 or 8 flits transport data. In RingNet flits, 64 bits are 

transmitted with additional 8 bits of byte-enable (BEN). 

A constant pattern of time slots for header flits and data flits is passing through each Leaf 

Interface (LI) and Root Interface (RI) connected into a ring. The time slots constantly circulate 

around a ring. Slots are produced by the Slot Generator (SG). The access to the L2R channel 

slots is controlled by the L2R Manager. 

6.3.1.1. Slot Generator 

Fig. VI.3 depicts a pattern of time slots for header flits and data flits circulating through 

interfaces around a ring. Those flit slots are organized into long and short slots for long and 

short packets, respectively. Slots are produced by the Slot Generators (SGs) depicted in 

Fig.VI.1. The Leaf Interface (LI) and the Root Interface (RI) can populate these slots with 

packets. 
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The header flit encapsulates control information for each protocol layer. In Fig. VI.4 fields 

of the header flit are presented.  

 

For the data layer, the header flit indicates the following information: 

- if the slot is populated with a valid packet (Packet Valid field),  

- if the packet is a short or a long one (Packet Length field),   

- priority of the packet (Packet Priority field, see Section 6.3.1.2 for details), 

- if the packet was rejected by the Root Interface (RI) due to insufficient buffer space 

available in the interface (Packet Rejected field, see Section 6.3.1.3 for details). 
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Fig. VI.3.  Time slots at R2L, L2R and L2R control channels, passing through an interface. 
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The network layer part of the header flit specifies the addresses used at the Leaf-to-Root 

channel (37 bits of Memory Address field) and the Root-to-Leaf channel (five fields for Leaf 

Interface ID, one for each level of a RingNet tree). More details on addressing used in the 

RingNet network are given in Section 6.3.2. 

The transport layer part of the header instructs a system buffer what should happen to the 

data transported in the data flits (Memory Operation field, more details are given in Section 

6.3.3). The Segment ID field indicates the order in which packets were generated. 

The session layer part of the header flit marks a single stream of data divided between many 

packets (the Session ID field). 

Fig. VI.5 depicts a block diagram of the Slot Generator module.  

 

Right after a ring is powered, no slots for packets are present in the ring. During the 

initialization phase, the Slot Generator inserts empty slots according to the pattern depicted in 

Fig. VI.3. The Slot Generator ends the initialization phase when it detects that the header of the 

first generated slot appears at its input. At the end of the initialization phase, the output of the 

module is switched to the output of the internal fifo. The generated slots start to circulate around 

the ring, also through the internal fifos of the Slot Generator.  

SLOT GENERATOR

72 bit

12 bit

L2
R

 /
 R

2
L

L2
R

 
C

O
N

TR
O

L

L2
R

 
C

O
N

TR
O

L

d
ep

th
 

lim
it FLITS OF 

EMPTY SLOTS

12 bit

L2
R

 /
 R

2
L

Initialization phase

HEADER

DETECTOR

16-WORD DEEP FIFO

(1÷11 WORDS USED)

72 bit

16-WORD DEEP FIFO

(1÷11 WORDS USED)
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The length of the ring is expressed in the number of registers that a flit needs to pass when 

it circulates around the ring. It is required for a RingNet ring to have a length of so many 

registers that an even number of packets fits into these registers. This restriction guarantees a 

constant flow of short and long slots. Therefore, the length of a ring is an integer multiple of 

the length of a long and a short slot, i.e., an integer multiple of 11 registers (9 flits are used for 

the long packet and 2 flits are used for the short one). The internal fifo in a Slot Generator is 

used to adjust the length of a ring to the required value. The Slot Generator uses 1 – 11 words 

of the internal fifo. The process of adjusting the length of a ring is automatic and eases the 

configuration of the ring and network. The internal fifo is meant to utilize LUTRAM, therefore 

its depth equals 16 flits, which is the most shallow depth supported in LUTRAM (cf. Table 

II.1).  

6.3.1.2. L2R Manager 

The access to the Leaf-to-Root (L2R) channel is controlled by the L2R Manager. In order to 

access packet slots in the L2R channel, LI sends a request to the L2R Manager and obtains 

permission. The requests and permissions are sent using the L2R control channel. Permission 

is sent synchronously to the header flit of a granted packet slot. Requests are sent in the 

remaining time slots (cf. Fig. VI.3). In Fig. VI.6 fields of the permission and request flits are 

presented. 

 

The permission and request flits have similar formats. One bit is used to indicate the 

permission or request validity (Permission Valid and Request Valid fields). One bit indicates if 
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Fig. VI.6.  Permission and request format. 
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the granted and requested slot is a long or a short one (Packet Length field). RingNet supports 

4 packet priorities, ordered from the highest priority 3 to the lowest priority 0. Each packet and 

the associated request and permission has an assigned priority (Packet Priority field). The Leaf 

Interface ID field identifies the source of the request or the destination of a permission in the 

ring. The value of the Request ID field is copied from the request flit by the L2R Manager to 

the corresponding permission. It helps the Leaf Interface to identify which buffered packet the 

permission relates to, especially when it sends many overlapping requests for many slots.  

A block diagram of the L2R Manager is depicted in Fig. VI.7. The L2R Manager keeps the 

requests in LUTRAM-based buffers. Individual buffers are used for requests of different 

priorities. If the L2R Manager detects a free packet slot, it generates a permission according to 

the buffered requests. The permissions are granted based on the priority of buffered requests 

and their order of arrival. Considering the order of arrival in arbitration logic is called age-based 

arbitration and can tighten the distribution of packet latency [Dal03].  

 

The packets from the L2R channel leave a ring through Root Interface (RI). According to 

the virtual cut-through switching, the packets from the L2R channel leave a ring through RI 

only if the RI has buffer space available for a whole packet. Otherwise, the packet is rejected 
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Fig. VI.7.  L2R Manager. 
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by the RI and starts to cycle around the ring until enough space is available in the RI. A 

circulating packet is recognized by the L2R Manager, and no new permission is granted until 

all packets that circulate on L2R leave the ring. This way, all packets should finally leave the 

ring with limited differences in latency.  

The presented request and permission strategy is sufficient to guarantee fair access to the 

L2R channel for all PEs in terms of the average latency and granted throughput (see simulation 

results in Chapter 7).  

The flow control mechanism used for the L2R channel also guarantees fair access to the 

Root-to-Leaf (R2L) channel. Therefore, no flow control for the R2L channel is needed, and no 

additional resources are used. Details will be given in Section 6.3.3.  

6.3.1.3. Network interfaces 

Both the Root Interface (RI) and Leaf Interface (LI) are 3-port switches and they insert 

packets in a ring using a 2×1 multiplexer and take packets from a ring using 1×2 demultiplexers 

(see Fig. VI.8 and Fig. VI.9). 
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The LI is divided into two parts: the Leaf-to-Root (L2R) Injector part and the Root-to-Leaf 

(R2L) Extractor part. The L2R Injector buffers packets, sends requests, and inserts buffered 

packets onto the L2R ring after acquiring permission. Sending a request and obtaining 

permission requires some additional time, so a constant flow of packets from one LI may be 

impossible. To overcome this problem, multiple packets can be buffered in LI and multiple 

requests can be sent without receiving permission. This overlap lets a single LI exploit the 
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maximum throughput of a ring. The packet buffer used in LIs and depicted in Fig. VI.9, utilizes 

LUTRAM with the depth of 64 words. It provides enough capacity for 6 short packets and 5 

long packets. The request buffer utilizes 16-words deep LUTRAM. The requests are stored in 

the request buffer. Each of the requests corresponds to one packet stored in the packet buffer. 

When a permission reaches LI, it carries a Request ID number that identifies the corresponding 

request from the request buffer and the buffered packet.  

The R2L Extractor part of LI extracts a packet from the R2L channel or bypasses the packet 

to the next LI on a ring. The respective decision is taken according to the addressing information 

encapsulated in the packet header (see Section 6.3.2). In contrast to the L2R Injector part of LI, 

the L2R Extractor part has no buffer for packets. The extracted packet will be accepted by the 

attached processing element (PE) or the attached Root Interface, depending on which one is 

connected to the LI. If a PE is connected to the LI, it should accept the packet as a result of the 

primary idea of RingNet expressed in Section 5.1.1 (a processing element controls the traffic 

load at an R2L channel, therefore, the packet has been requested by the PE and it should accept 

the requested packet). If, instead of a PE, an RI of higher network level is connected to the LI, 

this RI provides a small buffer used for synchronizing the extracted packet to slots on the higher 

ring level. 

A block diagram of the RI is depicted in Fig. VI.9. 
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The R2L Injector part of the RI accepts packets from the attached device (LI or system 

buffer) and stores them in the internal synchronization buffer. The synchronization buffer is 

used for synchronizing the incoming packet with slots at the R2L channel. 

The L2R extractor part of the RI identifies the packet that should be extracted from the L2R 

channel, and checks if the attached LI or system buffer has buffer space available for the packet. 

If the buffer space is available, then the packet is extracted. Otherwise, the RI marks the packet 

as rejected (sets the Packet Rejected bit in the packet header) and bypasses it to the L2R channel. 

The packet marked with the Packet Rejected bit is recognized by the L2R Manager, and an 
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appropriate mechanism, described in Section 6.3.1.3, is initialized with the aim of extracting 

the rejected packet. 

6.3.2. Network link layer 

The network layer protocol defines RingNet addressing. Different addressing is used for the 

Leaf-to-Root (L2R) and the Root-to-Leaf (R2L) channels. For the L2R channel, 37-bit memory 

addressing is used, therefore up to 128 GB can be addressed in the network. Both the Reflector 

and System Memory have assigned memory address spaces recognized by Root Interfaces 

(RIs). The L2R extractor part of the RI reads the memory address from the header of a packet 

transported on the L2R channel. If this address is in the range assigned to the RI, then it is 

extracted and sent down the network tree, to the attached LI or to the attached system buffer.  

For the R2L channel, the network address is used that contains five (each 4-bit wide) Leaf 

Interface ID numbers. Each number identifies the Leaf Interface (LI) that should accept the 

packet on its way up the network tree, at a certain RingNet tree level. When the value of the 

Leaf Interface ID carried in the header of the packet (see Fig. VI.4) matches the ID of the 

encountered LI, then the LI extracts the packet from the R2L ring and transfers it up the network 

tree to the attached processing element or attached Root Interface of the higher-level ring.  

At each transition between rings of different levels, the network address carried in a packet 

header is updated. On the way down the network tree, via the L2R channel, the network address 

is extended by the ID of each LI through which the packet enters each ring. This way, at the 

root ring, the packet header comprises a full list of encountered LIs, i.e., a complete network 

address of a processing element. This address is used to route the corresponding response packet 

on its way up the network tree, via the R2L channel. At each network level the network address 

identifies the LI that should accept the packet. After the packet acceptance, the used part of the 

network address is cut off. 

 The network addressing used at the R2L channel limits the number of network tree levels 

to 5 and the number of network interfaces connected to a single ring to 15. The applied 

addressing scheme limits the number of PEs that can be connected to the RingNet network to 

759,375. 
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6.3.3. Transport layer 

The transport layer defines logical channels and describes the communication between PE 

and system buffers. 

In RingNet, packets are transported to and from memory-mapped system buffers, therefore 

the RingNet protocol supports basic memory operations. The memory read or write operation 

is encoded in a packet header, thus creating a read or write packet. If a packet is sent from PE 

via the L2R channel to a system buffer, a response packet has to be sent back to the PE by the 

system buffer through the R2L channel. For the read operation, the response packet contains 

the data read from the memory, whereas for the write operation the response packet is a write 

operation acknowledgement.  

6.3.3.1. Definition of logical channels 

Logical channels are defined for RingNet. In each logical channel, a certain memory 

operation and packets of a certain length are used. Most transfers are realized by two logical 

channels:  

a) Logical write channel. PE sends a long write packet through the L2R physical channel, 

with data to be stored to the memory. A short response packet is sent back by a system buffer 

through R2L as a write acknowledgement.  

b) Logical read channel. PE sends a short read packet through the L2R physical channel, and 

a long packet with data read from the memory is sent back from a system buffer through the 

R2L physical channel.  

c) Logical control channel. This channel is used by the session layer to send control data. In 

the logical control channel, short packets with the highest priority are sent between PEs and the 

Reflector, through the L2R physical channel and through the R2L physical channel.  

What is very important is that for read and write logical channels, a single response packet 

is sent via R2L in response to the L2R packet. Therefore, the same number of packets are 

transferred through L2R and R2L channels. This way, fair access to the L2R channel guarantees 

a fair access to the R2L channel as well, despite the fact that for R2L no requests-permissions 
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mechanism is used explicitly. The proposed flow control prevents congestions in both physical 

channels, still utilizing resources in the L2R channel only. 

6.3.3.2. Maximum throughput of the logical write and read channels  

Theoretical maximum throughput TRW_MAX of the logical read and write channels, expressed 

in bits per clock tick (bpt) can be calculated according to the given formula: 

𝑇𝑅𝑊_𝑀𝐴𝑋  =  𝑅 ∙  64 ∙
8

11
 [bpt],                                          (1) 

where 64 is the number of data bits in a flit, the 8/11 factor is the share of flits carrying write 

data on the L2R physical channel, and the share of flits carrying read data at the R2L physical 

channel, and R is the number of parallel rings used at the root ring. 

6.3.4. Session layer 

The transport layer describes the communication between PEs and system buffers, but not 

between individual PEs. The communication between PEs is finally possible at the session 

layer. An example of communication between two PEs using the System Memory and the 

Reflector is depicted in Fig. VI.10. The example illustrates two transactions of sending data 

from PE1 to PE2. 
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PE1 starts the transaction by sending data to the System Memory (through logical write 

channel). Then, PE1 informs PE2 that data in the System Memory is ready to be processed by 

sending an event message to the Reflector (through the logical control channel). An event is a 

short packet with an address in a range reserved for the Reflector. The source PE (PE1 in the 

example) can start many transactions without considering the state of the destination PE. In the 

example, PE1 starts second transaction with PE2 without waiting for the first transaction to 

finish. Events are buffered in the Reflector and sent to the destination PE one at a time. After 

receiving the first event, PE2 reads the corresponding data from System Memory (through 

logical read channel) and starts processing of the data. During the processing, the Reflector 

buffers new event addressed to PE2. After processing the data related to the first event, PE2 

sends an event confirmation to the Reflector which ends the first transaction. Receiving the 

event confirmation from PE2 indicates it is ready for a new processing, therefore the Reflector 

sends the second buffered event. As a result, PE2 starts processing the second portion of data. 

Finally, the second transaction ends after the second event confirmation reaches the Reflector. 

The example demonstrates two advantages of the proposed indirect PE communication. 

First, congestions arising due to PE overload are prevented, because the destination PE (PE2 in 

the example) receives events only when it is in an idle state, whereas during the processing state 

 

 

Fig. VI.10.  Sequence diagram for two transactions between PEs. 
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the destination PE controls its load. Second, the source PE (PE1 in the example) does not need 

to monitor the state of the destination PE before starting a new transaction. 

The Reflector queues events for PEs, thanks to which a PE experiences a controlled load. 

Nevertheless, the Reflector itself needs to be prepared for the traffic of events with a priori 

unknown load. As already discussed in Section 3.1.1, setting the size of buffers when the traffic 

load is unknown is not trivial. Details about a possible implementation of the Reflector are 

provided in Appendix IV. Briefly, in the proposed implementation, the Reflector stores events 

in a general buffer shared between all the connected PEs. The usage of a shared buffer can be 

beneficial in a case where individual PEs experience uneven or time-varying load, which is a 

probable scenario in an SoC. The first benefit of the shared buffer approach is that the space of 

the shared buffer can be smaller than the aggregated space of individual buffers. The peak in 

time-varying load experienced by an individual PE determines its buffer space requirement. 

Due to a possible time shift of load peaks experienced by PEs, the required space of a shared 

buffer may be lower than the aggregated space of individual buffers. The second benefit is 

speeding up a development of an SoC as a result of the fact that adjusting the size of the shared 

buffer should be easier than adjusting the sizes of many individual PE buffers. For the given 

reasons, the proposed shared buffer approach, detailed in Appendix IV, can result in effective 

memory utilization. Relatively big buffers required for the purpose of event queuing in the 

Reflector can exploit block RAM available in all considered FPGAs. Preferably, there is one 

Reflector in a RingNet network, therefore the resources utilized for its buffers have a limited 

impact on the overall cost of the network.  

The Reflector provides additional system functions, like informing a dedicated PE about PEs 

connected to a network, registering new PEs, informing about events buffered in the Reflector, 

alarming about the fullness of event buffers, resetting a PE, etc.  

The presented session layer is the highest mandatory layer of protocol defined for RingNet. 

The protocol specified for four layers (data link layer to session layer) is sufficient to provide 

communication between PEs, featured with flow control for fair access and a priorities 

mechanism. 
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6.4. Summary 

In this chapter, the author presents the implementation of ideas from Chapter 5. Other 

implementations are also possible, especially different values of many parameters can be 

chosen. The flit size is chosen to be 64 bits in order to provide the maximum throughput equal 

to or higher than the throughput of SDRAMs supported by FPGAs (see Section 5.2.3). 

Nevertheless, some applications may have lower throughput requirements and a lot of resources 

can be preserved when a narrower flit is used. On the other hand, using a narrower flit makes 

the header flit also narrower. A modified RingNet architecture with, e.g., a 32-bit wide flit is 

possible but the memory and network addresses needs to be cut. Although the implementation 

with a narrower flit is possible, the 64-bit wide flit and the support for high throughput 

applications, which utilize the maximum throughput of SDRAM devices is the essence of 

RingNet. 

The sizes of packets utilized in the proposed implementation are other parameters that can 

be chosen differently. The limit on the packet size is discussed in Section 5.1.2 and the 32 flits 

are concluded to be the maximum size of a packet that provides efficient utilization of 

LUTRAM for FPGA NoC. In the implementation, packets of two sizes are used, i.e., 2 and 9-

flits long with 1 and 8 data flits, accordingly. The use of just 2 packet sizes, compared to 

variable-length packets, generates a simpler and faster logic. The purpose for two packet lengths 

is discussed in Section 6.3.3. The long packets are used for data transmission and the short 

packets are used for control. The long and short packets are also used for time separation of 

read and write logical channels (see Section 6.3.3.1). Nevertheless, other packet lengths, shorter 

than 32 flits, can be chosen without loss to RingNet functionality. On the other hand, the author 

explored various configurations with different parameters in search of the optimal 

implementation, therefore any change in packet lengths may degrade the RingNet performance. 

Moreover, the objective of the implementation is to provide a functional design that can be 

simulated and synthesized in order to evaluate ideas presented in Chapter 4. The optimization 

of RingNet implementation is not essential, nevertheless, as discussed in Chapters 7 – 9, the 

proposed RingNet implementation is characterized as a high-performance NoC and high-

performance FPGA-oriented digital design.  
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Chapter 7. Simulation results for RingNet 

The proposed RingNet is simulated with the aim of assessing its throughput and latency. 

Moreover, the following reliability aspects are tested: inter-channel dependencies, network 

access fairness, and the priority mechanism. 

7.1. Methodology 

In the references, e.g., in [Dal03], [Ben06], [Che12], [Pap15], [Was17] it is shown that the 

performance of an NoC depends on the applied traffic pattern, i.e., the way that the destinations 

of simulated packets are chosen. This distribution is described by traffic matrix M, where each 

matrix element Ms,d gives a fraction of traffic sent from PE s to PE d. Different traffic patterns 

are often simulated, e.g., a random pattern, where all entries of M are equal, or a permutation 

pattern, where entries of M are described by a non-constant function of s and d (more on that in 

[Dal03]). On the other hand, the fundamental feature of RingNet is that the System Memory is 

the destination of all data, therefore, the only traffic pattern simulated in this chapter is the one 

in which processing elements (PEs) generate packets addressed to the System Memory. This 

scenario describes a special case of the permutation traffic pattern. The pattern used for RingNet 

simulations is described by matrix R (2). 

𝑅 = 

[
 
 
 
 
0           1/(2𝑁)
1/(2𝑁) 0           

⋯
1/(2𝑁) 1/(2𝑁)
0           0            

⋮ ⋱ ⋮
1/(2𝑁) 0           
1/(2𝑁) 0           

⋯
0            0            
0            0            ]

 
 
 
 

,                          (2) 

where entries in the first column and the first row give a fraction of the traffic sent to and from 

the System Memory, respectively. N is the number of interconnected PEs, and the size of R 

equals (N+1) × (N+1). Equal distribution of load to and from the System Memory is a 

consequence of the RingNet protocol, i.e., in response to a packet sent from a PE to the System 

Memory (the Leaf-to-Root (L2R) channel packet), a single response packet is sent from the 

System Memory to the PE (packet sent via Root-to-Leaf (R2L) channel, see Section 6.3.3).   
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PEs are simulated with the use of packet generators (PGs). Each PG independently generates 

packets for the logical read and write channels with the configurable average delay 

𝐷𝑎𝑣𝑒𝑟between two consecutive packets: 

𝐷𝑎𝑣𝑒𝑟 =
𝑁∙64∙8

𝑇𝑅𝑊_𝑀𝐴𝑋∙𝐿∙11
,                                                    (3) 

where TRW_MAX is the theoretical throughput of each logical channel (see Eq. (1) in Section 

6.3.3), L is the requested aggregated load generated by all PGs expressed as a percentage of the 

throughput TRW_MAX. Eq. (3) is explained because 64 is the number of data bits in a flit, the 8/11 

factor is the share of flits carrying write data on the L2R physical channel and the share of flits 

carrying read data at the R2L physical channel. The actual delay D is defined as the time interval 

that a PG waits before it sends another packet. D is an output of a random number generator 

with discrete uniform distribution 𝒰{0.8𝐷𝑎𝑣𝑒𝑟 , 1.2𝐷𝑎𝑣𝑒𝑟} used for making the traffic more 

realistic.  

The simulations use a model of the System Memory that supports unlimited throughput and 

introduces negligible latency, thanks to which the System Memory does not affect network 

performance results. Therefore, the presented latencies are the minimum latencies for the 

RingNet architecture. With the aim of estimating the latency in the actual SoC, the presented 

latencies should be increased by the latency featuring the memory device used as the System 

Memory. 

In the experiments, RingNet with two levels of rings is simulated as depicted in Fig. 6. The 

size of the network is controlled using the following parameters: 

- R: Multiplication degree of the root level, i.e., the number of parallel rings used at the root 

level (level 0). 

- F: The number of 1st level rings. 

- G: The number of PGs connected to a single 1st level ring. 
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In Section 4.2.5, memory-oriented SoCs are pointed out as the target application for the 

RingNet network. As SDRAM is widely supported by modern FPGAs (cf. Section 2.2.2), 

RingNet architecture is designed with the aim of fully exploiting its potential, i.e., it offers 

throughput which matches or exceeds the throughput of all kinds of SDRAMs supported by 

modern FPGAs. The throughput of RingNet is controlled by the ring multiplication mechanism 

discussed in Section 5.2.2. As discussed in Section 5.2.3, the throughput of the RingNet network 

matches the throughput of the most demanding SDRAM type for 4 parallel rings used at the 

root level of the RingNet network. Therefore, the range of the multiplication degree of the root 

level (R) used in simulation tests is restricted to the practical interval 1 – 4.  

In the RingNet configuration depicted in Fig. VII.1, number N of interconnected PGs equals 

𝐹 ∙ 𝐺. The size of the RingNet network simulated in this chapter is limited by the capacity of 

considered FPGAs. A few largest FPGA devices are over one million logic cells (LCs) in size 

(cf. Table II.1), on the other hand, one thousand LCs per PE is the approximated cost of the 

RingNet network for those FPGA architectures (cf. synthesis results for RingNet modules 

presented in Section 8.3). As NoC is just a part of SoC, it can utilize only a part of the available 

resources. NoC can utilize as little as 6.6% of resources utilized by SoC [Dal01]. For this ratio, 

SoC comprising 75 PEs interconnected with the RingNet network will utilize 1.1 million LCs. 

Therefore, the author decided to simulate networks of up to 75 PEs, as it can cover the needs of 

many FPGA-based SoCs. As more comprehensive statistics for actual SoCs implemented in 

FPGAs are not easily available to the author, the above considerations demonstrate just a clever 

estimate of the limits of FPGA-based SoC. Nevertheless, for SoCs with more than 75 PEs, 
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Fig. VII.1.  Simulated RingNet topology. 
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RingNet network performance can be estimated by extrapolating the results presented for 

smaller networks, which is demonstrated in Section 7.2. 

The results from each simulation are collected for the steady-state of a network according to 

the methodology discussed in [Dal03]. For this purpose, three phases of each simulation are 

distinguished: warm-up, measurement, and drain. For all phases, PGs try to insert packets into 

the network according to the abovementioned traffic pattern. First, the warm-up phase is 

conducted that allows the network to reach a steady-state. The steady-state is reached when the 

average buffer occupancy reaches its steady-state, i.e., the average buffer occupancy stops 

changing. During the warm-up phase, statistics are not collected. Next, the measurement phase 

starts. All the packets emitted by PGs during this phase are observed and information on their 

latency is collected, i.e., clock cycles that elapse between the emission of a packet header flit 

from a PG, and the acceptance of the last flit of the corresponding response packet (sent by the 

System Memory) by the PG. Packets received by each PG during the measurement phase are 

counted for the purpose of throughput computation. In the drain phase, new packets are emitted 

by PGs but their statistics are not included in the simulation results. The purpose of the drain 

phase is to keep the steady-state of the network until all the response packets that correspond 

to the packets that were emitted during the measurement phase reach their destinations.  

In this thesis, latency is measured in terms of clock cycles. In many cases it is more 

convenient to express latency in seconds. Nevertheless, using clock cycles makes latency 

independent from the frequency of a clock signal which can be different for various FPGAs. It 

is still possible to translate clock cycles into seconds if it is needed by dividing the former by 

the clock frequency. The maximum clock frequency for RingNet synthesized for various 

FPGAs is reported in Chapter 8.  

The Verilator compiler [Sny17] is used to convert Verilog code into C++ code that is further 

compiled by the GCC compiler and executed to perform functional simulations. The presented 

results summarize the simulations of over 3000 different configurations of network size and 

load. 

7.2. Performance test 

Achievable throughput and latency are basic performance parameters reported for NoCs. In 

this test, the achievable throughput of RingNet is checked together with the average latency that 
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can be expected under different conditions. Value of the theoretical maximum throughput for 

read and write logical channels can be calculated according to (1). Achievable throughput may 

be lower than the theoretical maximum throughput due to various factors, e.g., flow control or 

switching logic may require few clock cycles to elaborate control response, what may leave 

controlled channel idle for some time effectively lowering network throughput. Purpose of this 

test is to demonstrate that the achievable throughput of RingNet NoC matches the theoretical 

maximum throughput, and therefore it can be estimated during network configuration.   

In the experiment, RingNet with two levels of rings is simulated. All packets are sent 

between PGs and the System Memory. Only packets with the lowest priority (priority 0) are 

generated.  

The parameters of the test are: 

- R: Multiplication degree of the root level, i.e., number of parallel rings used at the root 

level, is restricted to the interval 1 – 4.  

- F: The number of 1st level rings is from the interval 1 – 5. 

- G: The number of PGs connected to a single 1st level ring is set in the range of 1 – 15. Up 

to 75 PEs are connected for F=5 and G=15. 

- Logical channel load. The aggregated load generated by all PGs is set in the range of 0% – 

100% of the theoretical throughput TRW_MAX (1). The logical channel load is separately set for 

the read and write channels. 

In Table VII.1, the average latency for the read channel is presented for a high load (92% to 

97%) and various network sizes (R=1, F=1–5 × G=1–15). One can see that latency increases 

with the increased number of connected 1st level rings and PGs.  
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For the write channel, the measured latencies are, on average, 7 clock cycles longer than 

those reported in Table VII.1. The results for the write channel and for the increased number of 

parallel rings used at the root level (R=2–4) are provided in Appendix V. It is tested that 

increasing the root ring multiplication degree by one increases the average latency reported in 

Table VII.1 by only 6 clock cycles (see Appendix V for details). 

In Fig. VII.2, the latencies from Table VII.1 are presented as a function of the number of 

connected PGs. In Fig. VII.2a, the fitted latency function flattens for growing number of PG, 

i.e., for large networks, the latency increases slowly with the growth of the network. In Fig. 

VII.2b, the same data points from Table VII.1 are depicted, this time grouped in latency curves, 

one for each tested number of 1st level rings (F). For fewer than ten connected PGs, the curves 

overlap, i.e., similar latencies are observed for similar numbers of connected PGs, regardless of 

the number of 1st level rings used. As the number of connected PGs increases, the latency 

curves separate. The increased number of 1st level rings results in a lower slope of the latency 

curve. It can be concluded that for a given number of PGs, lower latency can be expected if 

more RingNet rings are used to interconnect them. This conclusion is in line with the idea 

presented in Section 5.2.1. In Section 5.2.1, the tree-of-rings topology is introduced, aiming at 

the reduction of the high latency present in the pure ring topology.  

The results presented in Fig. VII.2b apply to the read logical channel for a high network load 

and a single ring used at root level of the tested network. It is tested that for the write logical 

channel, other network loads, and greater number of parallel rings the relation between the 

number of 1st lever rings and latency is similar to the presented case.  

TABLE VII.1  

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT, AND 

WRITE AND READ CHANNEL LOADS IN RANGE 92% – 97%  

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 95 118 120 122 147 194 

2 113 134 142 145 182 225 

3 129 148 155 161 185 241 

4 130 151 157 163 189 245 

5 140 163 169 175 201 258 
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The number of RingNet rings used affects latency and resource utilization. On the one hand, 

increasing the number of used rings is expected to reduce the average latency. On the other 

hand, more rings connecting the same number of PE utilize more resources (cf. synthesis results 

in Section 8.3.2). Therefore, a decision on the number of used rings should depend on the 

acceptable latency level and the resource budget.   

 

NoCs are often characterized by providing load-latency curves that represent packet latency 

as a function of network load [Son03], [Ber04], [Yoo13], [Pos13], [LiuS14], [Hel15], [Pap15], 

[Kap15], [Kum16]. 

 

a) Latency as a function of the number of PG. 

 

b) Latency curves, one for each tested number of 1st level rings (F). 

Fig. VII.2.  Average latency (expressed in clock cycles) for read channel for various network sizes.  

70

120

170

220

270

0 20 40 60 80 100

La
te

n
c

y 

(c
lo

c
k 

c
yc

le
s)

Number of connected PGs

Measured average latencies

Fitted power function

70

120

170

220

270

0 20 40 60 80 100

La
te

n
c

y 

(c
lo

c
k 

c
yc

le
s)

Number of connected PGs

F = 1 F = 2

F = 3 F = 4

F = 5



 

65 

 

Fig. VII.3 depicts load-latency curves for the logical channels of the RingNet network with 

five 1st level rings and 15 PGs connected at each ring (F=5 × G=15, 75 PEs connected) and 4 

parallel rings used at the network root (R=4). The results for other network configurations are 

provided in the supplementary material as Appendix VI. 

 

 

The average latency for both logical channels increases with the channel load. For a 100% 

channel load, all network buffers are full, and the average latency increases drastically, which 

seems to be obvious. On the other hand, an increase of the channel load from 27% to 97% 

results in the average latency increase by only 10%.  

The inter-channel dependency is checked in this simulation and depicted in a form of error 

bars in Fig. VII.3. Those error bars represent the range of the average latency of the channel 

when the second channel load changes in the range 0% to 100%. One can see that both logical 

channels are independent, i.e., the load of one logical channel has a negligible impact on the 

average latency in the other logical channel, and does not influence its throughput.  

For the presented network configuration (and for all other tested configurations), throughput 

TRW_MAX calculated according to (1) is obtained for both the read and write channels, regardless 

 

Fig. VII.3.  Load-latency curves for RingNet with 75 PGs connected (F=5 × G=15) and four parallel rings 

used at the network root (R=4). These curves represent the average latency of each logical channel as a 

function of the channel load. Error bars represent the minimum and maximum average latencies of the 

channel at a given load when the second channel load changes in the range of 0% to 100%.  
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of the multiplication degree of the root ring (R), the number of 1st level rings (F), and the number 

of connected PGs (G) (cf. Appendix VI).  

The most important conclusion drawn from the test is that the theoretical throughput 

TRW_MAX (1) is guaranteed for RingNet, and the latency is correlated with network size, and it 

can be estimated during network configuration. 

The performance of RingNet is compared with the performance of the state-of-the-art 

networks. For RingNet, an average latency of about 90 clock cycles is observed for a network 

with just one PE and increases to about 250 clock cycles when 75 PEs are connected. Negligible 

changes in latency are observed for traffic loads set in the range of 27% to 98%. For a mesh 

NoC with 64 PEs described in [Mai15], an average latency of 60 clock cycles is reported. Next, 

a latency of about 10 clock cycles is reported for CONNECT [Pap15] mesh with 16 PEs. The 

relatively high latency observed in the RingNet network is a result of two factors. First, the 

RingNet ring topology features relatively long paths when compared with a mesh. Next, latency 

is caused by the applied flow control mechanism that exchanges flow control messages before 

a packet can be sent. Therefore, RingNet is not recommended for designs requiring very low 

latency. Nevertheless, the applied flow control mechanism is demonstrated to provide a fair 

network access not reported for the state-of-the-art NoCs [Mai15] and [Pap15]. Moreover, in 

RingNet all the data is send to and from the System Memory. This is a special case of 

permutation traffic pattern, where all PEs send packets to just one destination. For both state-

of-the-art NoCs [Mai15] and [Pap15], results for random traffic pattern only are reported in the 

source papers. From [Dal03] we know that random traffic pattern balances load even for 

topologies and routing algorithms that normally may have poor load balance. On the other hand, 

permutation traffic pattern stresses topology and routing algorithm because it concentrates load 

on individual paths. The author expects that in the case of permutation traffic pattern, like the 

one used in RingNet, latency for both state-of-the-art NoCs [Mai15] and [Pap15] can be higher 

than reported their source documents. 

In order to compare the throughputs of RingNet and the NoCs proposed in [Mai15] and 

[Pap15], from the perspective of the memory-oriented SoCs, the author considers a traffic 

scenario where all PEs send packets to just one destination, i.e., a single memory device 

connected to the network. In such a simplified case, the throughput of the network is at most 

equal to the throughput of a network interface through which the memory is connected. 
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Whereas, the throughputs of a network interface for NoCs from [Mai15], [Pap15], and for 

RingNet are proportional to the flit width and frequency of a clock. In the following Chapter 8, 

it will be demonstrated that RingNet features substantially higher maximum frequency and uses 

less resources for the same flit width. It means that in the traffic scenario where all PEs sends 

packets to just one destination, RingNet provides higher throughput than the state-of-the-art 

NoCs from [Mai15] and [Pap15]. 

7.3. Network access fairness test 

In test 7.2, the average parameters over all processing elements (PEs) are estimated. In real 

network applications, fair access to NoC for each PE can be an even more important aspect than 

the average parameters. Two types of fairness can be distinguished: latency fairness and 

throughput fairness. Latency fairness means that all PEs should experience the same latency, 

whereas throughput fairness means that PEs should experience throughput proportional to their 

relative request rates. From the literature it is known that fairness depends on the network load 

[Dal03]. In the case of a network experiencing such a low load that a single packet is transmitted 

through the network at a time, throughput is always granted according to request. For such a 

case, throughput fairness is observed. In the same case of a low load, latency fairness depends 

on the length of paths in a network and the routing algorithm and is not influenced by the flow 

control algorithm. As the network load increases and approaches 100%, the flow control 

mechanism starts to balance the traffic from different sources and its impact on fairness 

increases. The aim of this test is to examine the fairness of the RingNet network for a wide 

range of loads, especially for loads approaching 100%.  

In the test, a RingNet network with 75 PEs is simulated (F=5 × G=15), and four parallel 

rings are used at the root level (R=4). PEs are simulated using packet generators (PGs) 

requesting the aggregated load of 27% to 100% of the logic channel throughput TRW_MAX (1) for 

both logic channels. In this experiment, all PGs send packets to the System Memory with 

priority 0. In order to check the fairness, the statistics need to be gathered for each individual 

PG. For each PG, the author collects the values of the average latency LPG expressed in clock 

cycles, and the values of throughput TPG expressed in bits per clock cycle, for both logical 

channels. 
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In Table VII.2, the average values of LPG and TPG, calculated over all PGs (𝐿𝑃𝐺  and 𝑇𝑃𝐺, 

respectively), are presented together with a standard deviation for those variables (σ𝐿𝑃𝐺
 and 

σ𝑇𝑃𝐺
, respectively).  

 

Low values of the standard deviations mean that all PGs are expected to experience the same 

performance expressed in terms of the average latency and granted throughput. The results 

demonstrate that RingNet provides fair access for each connected PE. These conclusions are 

valid for a wide range of loads, nevertheless, different mechanisms are responsible for fairness 

for different loads values. For moderate load of 27%, most time slots in RingNet ring are empty 

and throughput can be granted as requested resulting in throughput fairness. In simulated 

RingNet topology, each PG is in the same distance from System Memory, i.e., total number of 

network switches that are passed, first by a packet on its way to System Memory, and second 

by a response packet on its way back to the PG, are equal for each PG. For moderate load of 

27%, the equal distance from each PG to System Memory is enough to provide latency fairness. 

For high load of 97% and for network in saturation, throughput and latency fairness are still 

observed. For such high loads, flows from different PGs constantly compete for network 

resources and the traffic is successfully balanced in each ring by the flow control mechanism 

described in Section 6.3.1.  

More results that demonstrate the fair access for other network sizes are available in 

Appendix VII.  

TABLE VII.2 

TRAFFIC STATISTICS OVER 75 PGS 

Load 

(percentage of 

the throughput 

TRW_MAX (1)) 

Average latency  

(clock cycles) 

Average throughput  

(bits per cycle) 

Read Write Read Write 

𝐿𝑃𝐺 σ𝐿𝑃𝐺
 𝐿𝑃𝐺 σ𝐿𝑃𝐺

 𝑇𝑃𝐺  σ𝑇𝑃𝐺
 𝑇𝑃𝐺  σ𝑇𝑃𝐺

 

27% 236 6 243 6 0.7 0.01 0.68 0.01 

97% 259 5 267 5 2.4 0.01 2.4 0.01 

100% 1157 7 1175 9 2.5 0.00 2.48 0.00 
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7.4. Latency distribution test 

In Sections 7.2 and 7.3, average latencies observed in RingNet network are discussed. It can 

also be informative to research the distribution of packet latency. Outliners in latency 

distribution may indicate problems with flow control mechanism. In the case of RingNet ring, 

outliners in latency distribution can indicate that some packets are constantly rejected by Root 

Interface (RI) and cycle around the ring. As stated in Section 6.3.1.2, special mechanism is 

implemented in Leaf-to-Root Manager, which should prevent continuous rejection of the same 

packet. In this section, latency distribution for a wide range of loads is studied, with the 

objective to confirm proper work of applied flow control mechanism.  

A network with five 1st level rings (F=5) and 15 PGs connected at each ring (G=15) is 

simulated under the loads of 27% to 97%. Four parallel rings are used at the root level (R=4). 

Fig. VII.4 depicts a histogram of packet latency for the read logical channel. The data are 

collected for a sample PE (PG connected to a 1st level ring as a 4th PE). For the write channel 

and for other PGs, the histograms look similar, especially width of latency distributions are of 

the same   order. Those similarities are reasonable in view of the fact that compliance to the 

rule of latency fairness was demonstrated in test 7.3. 

 

The values of 227 and 322 are the minimum and maximum latency observed, respectively. 

For low loads, more packets experience latency close to the minimum. An increase of the load 

 

Fig. VII.4.  Histogram of packet latency for read channel for an example of PE. 
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results in shifting the histogram towards higher latencies. The difference between the extreme 

values is 95 clock periods. The width of the observed latency distribution can be put into 

perspective by comparing it with characteristic delays introduced by properly functioning flow 

control mechanisms. For example, postponing the packet insertion to a ring due to occupancy 

of a time slot increases latency by 11 clock periods, as it is a distance in time that separates two 

consecutive time slots from the same logical channel (see Section 6.3.1.1). Latency can be 

increased multiple times when a number of time slots are occupied in a row, which is likely for 

a highly loaded network. Another example of a flow mechanism that increases latency is packet 

rejection that may happen in the Root Interface in the absence of available buffer space (see 

Section 6.3.1.2 for details). The rejected packet needs to cycle a ring and the introduced delay 

depends on the size of the ring. For a ring with 15 Leaf Interfaces (LIs), which is used as the 1st 

level ring in this test, the introduced delay equals 49 clock periods. For a ring with 5 LIs, which 

is used at the root of the network tree, this delay equals 23 clock periods. Both kinds of delay 

can be introduced at each level of the RingNet tree. Both discussed flow control mechanisms 

are likely to introduce delays under high loads. This is observed in Fig. VII.4 as the histogram 

shift towards higher latencies. The observed difference between the lowest and the highest 

latency can be a result of expected delays introduced by the flow control mechanism, therefore 

its correct operation cannot be questioned. 

7.5. Packet prioritization test 

The proposed RingNet architecture supports packet prioritization. Higher priority packets 

obtain access to the Leaf-to-Root (L2R) channels first. Under high load conditions, the high 

priority packets should experience lower latency; also, the requested throughput should be 

granted starting from the highest priority requests. To check the prioritization mechanism, a test 

is conducted under high load conditions:  

- Network with 28 PGs is tested (F=4 × G=7). 

- Two parallel rings are used at the root level (R=2). 

- Each PG has 3 internal sources of packets with priorities 0, 1, and 3. The source of packets 

with priority 0 constantly tries to send a packet, and on its own it would generate the load of 

100% of the theoretical throughput TRW_MAX (1). The sources of packets with priority 1 and 3 

are set to request various loads. 
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In Fig. VII.5, examples of load shares are presented for sources of packets with priority 1 

requesting 20% of the throughput, and sources of packets with priority 3 requesting from 0% 

to 100% of the throughput. For the highest priority packets, the share of throughput is always 

granted as requested. 20% of the throughput, requested for priority 1 packets is granted when 

the packets with the highest priority use less than 80% of the RingNet throughput. The example 

demonstrates that the lower priority packets do not influence the share of throughput granted to 

the higher priority packets. It needs to be emphasized that using the prioritization mechanism 

does not limit the aggregated throughput below the theoretical value TRW_MAX (1) in any tested 

case. 

 

It needs to be emphasized that introducing packets with different priorities did not limit the 

theoretical aggregated throughput in any tested case. 

In Fig. VII.6, latency histograms are depicted for packets with different priorities. The 

presented statistics are collected for the case when packets with priority 3 and 0 utilize 5% and 

95% of the network throughput, respectively. The histograms for both priorities are 

concentrated. The high priority packets experience moderate latencies even under the maximum 

network loads. 

 

Fig. VII.5.   Load, expressed as percentage of the theoretical throughput TRW_MAX (1), granted to each 

priority under constant requested load for priorities 0 and 1 and increasing requested load for priority 3. 
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7.6. Simulation summary 

The proposed communication protocol with prioritization and flow control mechanisms was 

tested in a number of simulations. The results prove that the RingNet network throughput can 

be calculated according to (1) and the average latency can be estimated based on NoC size. 

Moreover, the demonstrated fair access to RingNet network is a distinctive property among 

other NoCs proposed for FPGA. 

In addition to the simulations, RingNet was tested in a hardware application. It was 

successfully used as a communication backbone for an FPGA-based depth map estimation 

device [Dom15] demonstrating the above-mentioned features. 

  

 

Fig. VII.6.  Latency histogram for read channel. 
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Chapter 8. RingNet synthesis 

This chapter summarizes RingNet synthesis for various FPGAs and tests RingNet 

scalability. The objective of RingNet synthesis is to determine the usability of RingNet 

architecture for various FPGA architectures. 

8.1. Methodology 

The author of the dissertation synthesizes individual RingNet modules and rings of different 

sizes that are useful for networks with a tree topology, i.e., rings with one Root Interface (RI) 

and from 2 to 15 Leaf Interfaces (LIs) (Ring 2×1 – Ring 15×1). In the proposed RingNet 

implementation 15 is the maximum number of LIs that can be addressed in a ring (see Section 

6.3.2). Resource utilization and the maximum clock frequency is reported. 

8.1.1. Representation of FPGAs 

RingNet is synthesized for chosen FPGAs from Xilinx (Artix7, Kintex UltraScale, Virtex7), 

Intel (Stratix V, Arria V) and Lattice (ECP5). The newest devices from Xilinx (UltraScale+ 

series) are not supported by the synthesizer used in the research (Synplify Premier 2017.03), 

therefore they could not be tested. Nevertheless, the tested FPGAs provide examples of 

distinctive architectures used by each vendor (cf. Table I.1 and Appendices I – III).  

Providing synthesis results for FPGA architectures offered by three of the leading FPGA 

manufacturers is exceptionally comprehensive, as for other NoCs architectures synthesis results 

are provided for individual FPGA device types [Kap15], [Ret14], [Mai15], [She14], [Mai17], 

[Red19] or for single FPGA device lines [Pap15]. The objective of RingNet synthesis is to 

determine its usability as an inter-FPGA compatible NoC architecture.  

8.1.2. Synthesis software 

For fair comparison, the same synthesis software – Synplify Premier 2017.03-SP1 – is used 

for all devices. According to its producer, Synplify is the industry's most advanced FPGA 

design and debug environment [Syn19]. Synplify Premier is chosen mostly for its multi-FPGA 

vendor support, i.e., syntheses for FPGAs from Achronix, Intel, Microsemi, Xilinx, and Lattice 

are supported [Syn17]. Lattice uses Synplify as a default synthesis tool in its FPGA design and 
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verification environment called Lattice Diamond. Moreover, Synplify Premier reports synthesis 

results in a unified format, which eases the comparison between various FPGA architectures.  

Synplify contains many Electronic Design Automation (EDA) optimization tools, like the 

shift register inferring and the register and logic replication [Syn17]. Those tools can balance 

the resource cost and clock frequency, nevertheless, the tools perform differently for different 

devices. With the aim of obtaining fair results for all devices, the author disables the shift 

register inferring tool. Also, the register and logic replication tools are effectively disabled by 

setting the requested frequency to a low value of 1 MHz.  

8.1.3. Reference for maximum clock frequency 

RingNet NoC is designed for high-throughput applications, e.g., for multimedia processing 

systems. The throughput of a RingNet network is proportional to the clock frequency, therefore, 

keeping the maximum applicable clock frequency as high as possible is important for RingNet 

implementation performance. In Section 5.2.2, the multiple physical technique designed for 

RingNet is discussed that aims at increasing RingNet throughput beyond the throughput 

supported by a single ring. Nevertheless, this technique comes at the cost of increased FPGA 

resource usage, therefore, it should be applied when adjusting the throughput using clock 

frequency is not possible.  

In Section 8.3 the maximum clock frequencies obtained for RingNet modules are presented 

for various FPGA architectures. On the one hand, the obtained results should be compared in 

order to evaluate RingNet performance across various FPGA architectures. On the other hand, 

each type of FPGA device has its own frequency characteristics related to the applied 

technology. The quantitative comparison of RingNet performance across various FPGA devices 

should consider the frequency characteristics of those FPGAs. On way to accomplish this 

objective is to normalize the obtained maximum clock frequency of RingNet modules with 

respect to the maximum clock frequency of a given FPGA device. Nevertheless, the maximum 

clock frequency of an FPGA device is not reported in the literature. One reason for that is the 

great complexity of FPGA architecture and a great number of different frequencies that 

characterize different FPGA resources (LUT, multiplexer, FF, DSP, buffer, etc.) [Alt11]–

[Alt16], [Int16], [Int17], [Xil16a]–[Xil17], [Lat13]–[Lat16]. Moreover, the maximum clock 

frequency for a resource depends on its configuration. Which of the many characteristic 
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frequencies should be used as the intrinsic maximum frequency of a given FPGA is not clearly 

specified. 

The authors of [K12] suggest that the maximum clock frequency of a single DSP block is 

the intrinsic frequency of an FPGA device. Therefore, it is used in this dissertation as a reference 

for the maximum clock frequencies obtained for RingNet modules. For better representation of 

FPGA frequency characteristics, the maximum frequency of BRAM is also used for reference.  

BRAMs and DSPs can be used in many configurations exhibiting different maximum clock 

frequencies. In this dissertation, the maximum clock frequencies of the fastest, fully pipelined 

configurations of DSPs and BRAMs are used: 

- The maximum frequency of the fastest, fully pipelined configuration of a DSP block 

(optional input, output and intermediate registers are utilized), 

- The maximum frequency of fully pipelined BRAM (optional input and output registers 

are utilized) in two configurations: one with simultaneous read and write to the same 

address handled in additional logic (RW check configuration), and second without this 

additional logic (no RW check). Usually, the RW check configuration supports a lower 

maximum clock frequency than the no RW check configuration, due to the delay 

introduced in signal paths in the additional logic. 

8.1.4. Types of FPGA resources reported for RingNet syntheses 

In the literature, a number of utilized FFs and LUTs are used to compare competing NoCs 

[She14], [Ret14], [Mai15], [Pap15], [Kap15], [Mai17], [Red19]. Also in the dissertation, the 

author reports the utilization of those resources for RingNet implemented in various FPGAs. 

Nevertheless, it needs to be emphasized that LUT architectures used by individual vendors are 

different. Moreover, routing for LUTs and FFs is different for FPGAs from individual vendors. 

It is clear that comparing the number of FFs and LUTs used in different FPGAs can be 

meaningless without a thorough analysis of the differences between FPGA architectures. Such 

an analysis of available architectures and their impact on expected LUT and FF utilization is 

considered in Section 8.2. 
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8.2. Utilization of LUTs and FFs in different architectures 

The FPGA architectures applied by individual vendors are described in Appendices I to III. 

In this section, the impact of the differences between the architectures on LUT and FF 

utilization is analyzed for general FPGA-oriented designs and for the RingNet design.  

Through Sections 8.2.1 to 8.2.3, the author estimates the expected ratios between resources 

utilized for a design implemented in different FPGA architectures. The author distinguishes 

between LUTs utilized as LUTRAM and LUTs utilized for logic implementation. Those are 

discussed in Sections 8.2.1 and 8.2.2, respectively. The utilization of FFs is discussed in Section 

8.2.3. 

8.2.1. Utilization of LUTs for LUTRAM implementation 

Memory blocks utilizing LUTRAM can be implemented in single-port, dual-port or 

quad-port configurations [Xil16e], [Int18], [Lat15b]. A special case of the dual-port 

configuration is called a simple dual-port (also called pseudo dual-port). In this configuration, 

two ports are available, and the first port is used for writing, while the second port is used for 

reading. RingNet, and other designs, exploit memories in the simple dual-port configuration for 

first-in-first-out (fifo) buffer implementation. Table VIII.1 summarizes the simple dual-port 

configurations available in FPGAs from individual vendors. 

 

From the average memory bits available per LUT, one can estimate the ratio of LUTs utilized 

in FPGA of one vendor to LUTs utilized in FPGA of another vendor for the simple dual-port 

memory (see Table VIII.2). 

TABLE VIII.1 

LUTS UTILIZED FOR SIMPLE DUAL-PORT MEMORY 

Vendor LUT type 
The smallest simple dual-port memory  Average 

memory bits 

per LUT Number of utilized LUTs Memory size 

Xilinx LUT6 4 
3b×64-word deep or 

6b×32-word deep RAM 
48 

Intel LUT6 20 
20b×32-word deep or 

10b×64-word deep RAM 
32 

Lattice LUT4 6 4b×16-word deep RAM 10.7 
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From Table VIII.1 one can see that the size of the smallest memory block differs from one 

vendor to another. The size of the memory block possible to be implemented is quantized and 

must be an integer multiple of the sizes presented in Table VIII.1. If the size of a memory block 

required in a design does not fit the implementable block sizes, then a bigger block is 

instantiated and part of the block is wasted. For example, a buffer in the RingNet Root Interface 

requires a 72b×32-word deep memory block. In an FPGA by Xilinx, it can be implemented as 

12 blocks of 6b×32-word deep RAM. In an FPGA by Lattice, 36 blocks of 4b×16-word deep 

RAM can be used. For both architectures no memory will be wasted. However, in the Intel 

architecture, 4 blocks of 20b×32-word deep RAM will be instantiated, while the capacity of 3.6 

would be enough. This way 0.4 of the 20b×32-word deep LUTRAM will be wasted due to 

quantized sizes of implementable memory blocks. 

The size of the wasted part of instantiated LUTRAM differs from case to case and should be 

calculated individually. Nevertheless, on average, the wasted part will be smaller if the step of 

the memory size is smaller, i.e., the size of the smallest LUTRAM block is smaller. Lattice uses 

LUTRAM with the smallest step in width and depth, i.e., 4 bits and 16 words, respectively. The 

smallest depth of LUTRAM used by Intel and Xilinx is 32 words. For this depth, the step of 

width for Xilinx equals 6 bits, whereas for Intel the corresponding step is greater and equals 20 

bits. On average, due to the quantized sizes of implementable LUTRAM, the wasted part of 

instantiated memory will be the greatest in Intel devices, and the smallest in Lattice FPGAs. 

This can affect the expected ratios presented in Table VIII.2. Updated estimates of the ratios 

are presented in Table VIII.3. 

TABLE VIII.2 

RELATIVE NUMBER OF LUTS UTILIZED FOR SIMPLE DUAL-PORT MEMORY, ESTIMATED FOR FPGAS OF 

DIFFERENT VENDORS 

Intel : Xilinx Lattice : Xilinx Lattice : Intel 

1.5 : 1 4.5 : 1 3 : 1 

 



 

78 

 

 

RingNet modules use simple dual-port memories of the following sizes:  

- 72b×64-word deep, used in Leaf Interface. 

- 72b×32-word deep, used in Root Interface and Ring Adapter. 

- 72b×16-word deep, used in Slot Generator. 

- 12b×16-word deep, used in Slot Generator and in Leaf Interface. 

- 8b×16-word deep, used in L2R Manager. 

For the presented memory blocks, their implementation in the Lattice architecture gives 

LUTRAM with the least wasted capacity, more LUTRAM capacity is wasted in the Xilinx 

architecture, whereas the implementation in the Intel architecture suffers from the greatest 

waste. This is in line with the general conclusion about the rate of wasted-to-used LUTRAM 

capacity in FPGAs of different vendors. Therefore, LUTRAM utilized for the RingNet network 

is expected to follow the estimated ratios presented in Table VIII.3.  

8.2.2. Utilization of LUTs for logic functions implementation 

A logic function implemented in an FPGA device utilizes LUTs. The number of utilized 

LUTs depends on the FPGA architecture and the function to be implemented. In particular, the 

number of available inputs of a single LUT and the number of inputs of the function are the 

most important factors. 

Lattice uses LUTs with four inputs (LUT4s), whereas Xilinx and Intel offer LUTs with six 

inputs (LUT6s). Without the knowledge about the functions to be implemented, the expected 

ratio of LUTs utilized in FPGA of one vendor to LUTs utilized in FPGA of another vendor can 

be estimated roughly. The ratios are presented in Table VIII.4. 

TABLE VIII.3 

RELATIVE NUMBER OF LUTS UTILIZED FOR SIMPLE DUAL-PORT MEMORY, ESTIMATED FOR FPGAS OF 

DIFFERENT VENDORS 

Intel : Xilinx Lattice : Xilinx Lattice : Intel 

1.5↑ : 1 4.5↓ : 1 3↓ : 1 

Suffix “↑” indicates a value greater or equal to presented, and suffix “↓” indicates a value lower or equal to 

presented. 
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The presented ratios are rough and may be insufficient for predicting LUT utilization for 

different vendors. More accurate ratios can be estimated when the following knowledge is 

applied: 6-input and 5-input functions utilize a single LUT6 in FPGAs by Xilinx and Intel, 

whereas the same functions implemented in Lattice architecture utilize 4 and 2 LUT4s, 

respectively. However, this knowledge can be utilized only for a design with a known share of 

6-inputs and 5-inputs functions. For the RingNet network about 15% of all functions have 6 

inputs and 16% have 5 inputs, the rest have 4 or fewer inputs. Considering this knowledge, 

Table VIII.5 is presented with the expected ratio of LUTs utilized for logic in the RingNet 

network. 

 

As stated in Section 8.1.4, in the literature, FPGA resource usage is reported mostly in terms 

of the number of utilized FFs and LUTs. Nevertheless, the primary resource of FPGA is a logic 

block, which consists not only of LUT and FF, but also additional hardware resources, e.g., 

multiplexers, carry logic or adders (see introduction to FPGA architecture presented in Chapter 

2). This additional hardware can implement simple functions, which otherwise utilize LUTs. 

Especially in the Intel architecture, 2×1 multiplexers are associated with each LUT (see 

Appendix II) and are utilized for 2×1 signal multiplexing. In Xilinx and Lattice architectures, 

such a multiplexing operation utilizes LUT. In RingNet, the 2×1 multiplexing amounts to at 

least 10% of all logic operations (it can be more, depending on the network size), therefore, 

utilizing the multiplexers can preserve a lot of LUTs. The ratios presented in Table VIII.6 

consider the utilization of multiplexers in FPGAs by Intel for RingNet. 

TABLE VIII.4 

RELATIVE NUMBER OF LUTS UTILIZED FOR LOGIC, ESTIMATED FOR FPGAS OF DIFFERENT VENDORS 

Intel : Xilinx Lattice : Xilinx Lattice : Intel 

1 : 1 1↑ : 1 1↑ : 1 

Suffix “↑” indicates a value greater or equal to presented. 

 

TABLE VIII.5 

RELATIVE NUMBER OF LUTS UTILIZED FOR LOGIC IN RINGNET NETWORK, ESTIMATED FOR FPGAS OF 

DIFFERENT VENDORS 

Intel : Xilinx Lattice : Xilinx Lattice : Intel 

1 : 1 1.62 : 1 1.62 : 1 
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The presented estimate does not consider a special function of LUT6 by Xilinx. A single 

LUT6 in the Xilinx architecture can generate two functions of 5 or fewer inputs, especially two 

independent functions of 3 and 2 inputs can be generated (see Appendix III). The decision on 

exploiting this feature is made by the synthesizer, depending on its settings. In general, the 

synthesizer exploits this feature only when there is not enough LUTs for independent 

implementations of each function. It is not the case for synthesis scenarios presented in this 

dissertation, therefore its impact on the LUT utilization ratio is not discussed here. 

8.2.3. FFs utilization 

FFs are similar in all considered architectures. The proposed NoC should utilize 

approximately the same number of FFs at any considered FPGA. Small discrepancies can still 

occur due to the optimization performed by a synthesizer (a mechanism called register 

duplication can sometimes be used in order to increase the maximum frequency of a clock 

signal).  

8.2.4. Summary 

The ratios estimated in Sections 8.2.1 – 8.2.3 are useful for predicting resource utilization 

for designs transferred between different FPGA architectures. Moreover, the ratios can be used 

as a proofing tool, i.e., discrepancy in estimated and obtained resource utilization can indicate 

that the definition of a design prepared in a hardware description language (HDL) was mapped 

to unintended hardware structures. For example, a memory buffer intended to be mapped to 

LUTRAM can be mapped to FFs if specific HDL rules are not followed [Alt09].  

In this dissertation, the presented ratios are used in Section 8.3.2, in which the author 

discusses resource utilization for RingNet modules for different FPGA architectures. Following 

TABLE VIII.6 

RELATIVE NUMBER OF LUTS UTILIZED FOR LOGIC IN RINGNET NETWORK, ESTIMATED FOR FPGAS OF 

DIFFERENT VENDORS 

Intel : Xilinx Lattice : Xilinx Lattice : Intel 

0.91↓ : 1 1.62 : 1 1.78↑ : 1 

Suffix “↑” indicates a value greater or equal to presented, and suffix “↓” indicates a value lower or equal to 

presented. 
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the ratios may confirm that the discrepancies in resource utilization do not come from any 

overlooked differences between FPGA architectures, which may be critical for the search for a 

universal FPGA NoC. 

8.3. Synthesis results 

The RingNet syntheses for various FPGAs are summarized in Table VIII.7, which reports 

the maximum clock frequency and the utilized FFs and LUTs. Utilized LUTs are presented for 

two categories: LUTs utilized as LUTRAM and LUTs utilized for logic implementation. 

 

 



 

82 

 

 

TABLE VIII.7 

RESOURCES UTILIZATION AND ESTIMATED MAXIMUM FREQUENCY AFTER SYNTHESIS FOR RINGNET MODULES, RINGNET RINGS, AND THE STATE-OF-THE-ART SWITCHES 

RingNet modules, 

RingNet rings, 

state-of-the-art. 

switches, and FPGA 

hardware blocks 

FFs utilized / LUTs utilized as logic + LUTs utilized as RAM / Maximum clock frequency in MHz 

Xilinx Intel Lattice 

Artix7 

xc7a100tcsg324-1 

Kintex UltraScale 

xcku060-ffva1156-3-e 

Virtex7 

xc7vx550tffg1158-1 

Stratix V 

5SGXMABK2H40C3 

Arria V 

5AGXBA7D6F31C6 

ECP5 

lfe5u_85f-8 

Ring adapter 1×2 383 /  93  +  48  / 485 383 / 94  + 48  / 837 383 /  94  +  48  / 469 383 / 105 + 144 / 551 383 / 102 + 144 / 377 383 / 189 + 216 / 312 

Ring adapter 2×1 462 / 184 +  96  / 459 462 / 184 + 96  / 837 462 / 184 +  96  / 486 462 / 123 + 288 / 529 462 / 127 + 288 / 345 462 / 351 + 432 / 312 

L2R Manager 499 / 271 +  96  / 337 499 / 264 + 96  / 875 499 / 286 +  96  / 461 499 / 317 + 128 / 527 507 / 349 + 128 / 334 499 / 373 + 384 / 374 

Slot Generator 106 /  11  +  56  / 487 106 / 11  + 56  / 837 106 /  11  +  56  / 487 106 /  14  + 168 / 983 106 /  12  + 168 / 468 106 /  16  + 126 / 372 

Leaf Interface 759 / 227 + 104 / 405 759 / 218 + 104 / 807 759 / 227 + 104 / 509 759 / 145 + 166 / 524 761 / 160 + 166 / 293 761 / 391 + 450 / 235 

Root Interface 648 / 125 +  48  / 469 648 / 125 + 48  / 837 648 / 125 +   48 / 483 648 /  56  + 144 / 779 648 /  57  + 144 / 381 648 / 204 + 216 / 314 

Ring 2×1 2k8 / 805 + 424 / 354 2k8 / 801 + 424 / 753 2k8 / 805 + 424 / 445 2k8 / 631 + 916 / 449 2k8 / 648 + 914 / 273 2k8 / 1k3 + 1k4 / 235 

Ring 4×1 4k3 / 1k2 + 632 / 363 4k3 / 1k2 + 632 / 700 4k3 / 1k2 + 632 / 460 4k3 / 934 + 1k2 / 430 4k3 / 966 + 1k2 / 250 4k3 / 2k0 + 2k3 / 235 

Ring 6×1 5k8 / 1k7 + 840 / 333 5k8 / 1k7 + 840 / 763 5k8 / 1k7 + 840 / 440 5k8 / 1k3 + 1k6 / 409 5k8 / 1k3 + 1k6 / 262 5k9 / 2k8 + 3k3 / 235 

Ring 8×1 7k3 / 2k1 + 1k0 / 328 7k3 / 2k1 + 1k0 / 726 7k3 / 2k1 + 1k0 / 440 7k3 / 1k6 + 1k9 / 397 7k3 / 1k7 + 1k9 / 272 7k4 / 3k6 + 4k2 / 235 

Ring 11×1 9k5 / 2k8 + 1k4 / 333 9k5 / 2k8 + 1k4 / 753 9k5 / 2k8 + 1k4 / 446 9k5 / 2k1 + 2k4 / 434 9k6 / 2k2 + 2k4 / 241 9k7 / 4k9 + 5k8 / 235 

Ring 15×1 12k5 / 3k7 + 1k8 / 325 12k5 / 3k7 + 1k8 / 763 12k5 / 3k7 + 1k8 / 443 12k5 / 2k7 + 3k1 / 403 12k5 / 2k8 + 3k0 / 222 12k8 / 6k5 + 7k6 / 235 

Switch from [3]  --- /     1678     / 470     

Switch from [4] --- /     430     / 241 (results for Virtex6 LX760 speed grade -2)    

DSP                 / 392                 / 687                 / 463                 / 400                 / 200                 / 185 

BRAM no RW check                 / 388                 / 660                 / 458                 / 650                 / 285                 / 272 

BRAM RW check                 / 339                 / 575                 / 400                 / 455                 / 240                 / 214 

For each FPGA device, for RingNet rings and for hardware blocks, the lowest value of the maximal clock frequency is marked in red. 
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8.3.1. Maximum clock frequency estimation  

The obtained frequency values are compared with the maximum frequencies specified by 

vendors for hardware blocks of each FPGA [Alt11]–[Alt16], [Int16], [Int17], [Xil16a]–[Xil17], 

[Lat13]–[Lat16]. The frequencies for the common DSP and BRAM blocks are presented. The 

maximum frequencies are given for the fastest, fully pipelined configuration of each hardware 

block. For BRAM, two versions are given: one with simultaneous read and write to the same 

address handled in additional logic (RW check), and another one without this extension (no RW 

check). The provided frequencies are a raw estimation of what maximum frequency can be 

expected for a typical, high performance project implementation for each device (cf. Section 

8.1.3). From Table VIII.7, it can be seen that the maximum frequencies obtained for RingNet 

modules are comparable with or higher than those given for DSPs and BRAMs. In Table VIII.7, 

for each FPGA device, the lowest frequency reported for the RingNet rings and the lowest 

frequency reported for the hardware blocks are marked in red. On average, the frequency of the 

RingNet ring is 20% higher than the frequency of the hardware block. Nevertheless, in case of 

Artix7 and Stratix V devices, the frequency for the RingNet ring is lower than the frequency 

for the hardware block by 4% and 1%, respectively. 

Still, the results are generated for the required clock frequency set to 1 MHz. If the required 

frequency is tuned, the Synplify synthesizer can optimize modules using techniques like register 

replication, and higher maximum frequencies can be obtained, gaining several dozens of MHz 

on average. The obtained maximum clock frequencies are estimations, and actual frequency 

values should be generated by EDA tools provided by a device vendor like Vivado from Xilinx 

(see Chapter 9). 

8.3.2. Resource utilization 

Resource utilization for basic RingNet modules and rings is reported in Table VIII.7. The 

utilization of flip-flops (FFs) and look up tables (LUTs) is presented. For all tested FPGAs from 

Xilinx, the number of utilized resources are almost equal for each FPGA, no matter which 

RingNet module or ring is considered. The same is true for FPGAs from Intel. This is expected 

and is a consequence of similar architectures of logic element used by a vendor for all his 

FPGAs (see Section 8.2 and the architectures description in Appendices I – III).  
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Aiming at brevity, the resource utilization results from Table VIII.7 can be averaged over 

each vendor’s devices. This is eligible due to the above-mentioned similarities in resource 

utilization in all FPGAs from a single vendor. The averaged results for RingNet rings are 

presented in Tables VIII.8 – VIII.10. The results are expressed as a ratio of a resource utilized 

in FPGAs of one vendor to the same resource utilized in FPGAs of another vendor. In this form, 

the results can be compared with the ratios estimated in Section 8.2. 

The utilization of FFs is presented in Table VIII.8. As discussed in Section 8.2.3, similar 

utilization of FFs is expected in all considered FPGA architectures. The utilization of FFs in 

different architectures is almost the same, i.e., the maximum deviation from the average module 

size is of 2%. 

 

In Table VIII.9, the utilization of LUTs used for logic is summarized. 

TABLE VIII.8 

RELATIVE NUMBER OF FFS UTILIZED IN FPGAS OF DIFFERENT VENDORS 

RingNet rings Intel : Xilinx Lattice : Xilinx Lattice : Intel 

Ring 2×1 1 : 1 1.01 : 1 1.01 : 1 

Ring 4×1 1 : 1 1.02 : 1 1.02 : 1 

Ring 6×1 1 : 1 1.02 : 1 1.02 : 1 

Ring 8×1 1 : 1 1.02 : 1 1.02 : 1 

Ring 11×1 1 : 1 1.02 : 1 1.02 : 1 

Ring 15×1 1 : 1 1.02 : 1 1.02 : 1 

Average ring 1 : 1 1.02 : 1 1.02 : 1 

Estimated in 8.2.3 1 : 1 1 : 1 1 : 1 
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The number of LUTs utilized as logic in the Lattice device is 1.69 and 2.26 times greater 

than in devices from Intel and Xilinx, on average, respectively. The values are close to the ratios 

estimated in Section 8.2.2 (1.62 and more than 1.78, respectively). The main reason for the 

lower utilization of LUTs in Xilinx and Intel FPGAs is that 6-input LUTs are used in their 

architectures, whereas Lattice uses smaller, 4-input LUTs (cf. Section 8.2.2).  

The number of LUTs utilized as logic for Xilinx devices is in the range of 0.73 to 0.79 of 

the number reported for Intel devices. In Section 8.2.2, the ratio was estimated to be less than 

0.91. The differences in LUT utilization between Xilinx and Intel FPGAs are the result of 

differences in the architectures used by each vendor. In particular, Intel associates its LUTs 

with 2×1 multiplexers that are utilized instead of LUTs in the Leaf Interface and the Root 

Interface for multiplexing signals.  

The number of LUTs utilized as RAM differs significantly between vendors, as it is 

presented in Table VIII.10. As discussed in Section 8.2.1, it is the result of different numbers 

of RAM bits available per utilized LUT. The obtained ratios for RingNet rings match the 

expected ratios.  

TABLE VIII.9 

RELATIVE NUMBER OF LUTS UTILIZED FOR LOGIC IN FPGAS OF DIFFERENT VENDORS 

RingNet rings Intel : Xilinx Lattice : Xilinx Lattice : Intel 

Ring 2×1 0.79 : 1 1.57 : 1 2.00 : 1 

Ring 4×1 0.75 : 1 1.65 : 1 2.19 : 1 

Ring 6×1 0.75 : 1 1.68 : 1 2.26 : 1 

Ring 8×1 0.73 : 1 1.71 : 1 2.32 : 1 

Ring 11×1 0.74 : 1 1.76 : 1 2.38 : 1 

Ring 15×1 0.73 : 1 1.76 : 1 2.43 : 1 

Average ring 0.75 : 1 1.69 : 1 2.26 : 1 

Estimated in 8.2.2 0.91↓ : 1 1.62 : 1 1.78↑ : 1 

Suffix “↑” indicates a value greater or equal to presented, and suffix “↓” indicates a value lower or equal to 

presented. 
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The average ratio between the number of utilized FFs and the number of utilized LUTs is 

equal to 2.2 : 1 for RingNet rings synthesized for Intel and Xilinx devices and 1 : 1 for Lattice. 

Those ratios are close to the ratios of FFs and LUTs available in the devices (see Table II.1) 

that the author finds desirable for an FPGA design. 

For most NoCs, a significant part of FPGA resources is utilized for buffers. It is also true for 

RingNet, where buffers are implemented using LUTRAM, whereas RAM-capable LUTs are a 

limited resource (see Table II.1). The shares of LUTs that are RAM-capable equals 40%, 50%, 

and 50% for the tested FPGAs from Xilinx, Intel, and Lattice, respectively. As for any limited 

resource, using less LUTRAM can make routing of synthesized design easier and provide 

shorter links and higher clock frequency. The author checks what share of the LUTs utilized 

for RingNet rings is utilized for LUTRAM. This share happens to be constant for a given FPGA 

vendor: about 33% for rings synthesized for FPGAs from Xilinx, 55% for Intel and 54% for 

ECP5 from Lattice. The share of utilized RAM-capable LUTs exceeds the share of available 

RAM-capable LUTs, but only by 4% and 5% in the case of Lattice and Intel, respectively. In 

the case of NoC, which in general consume a significant part of resources for buffers, this shows 

reasonable LUTRAM utilization, suitable for FPGA implementation. 

TABLE VIII.10 

 RELATIVE NUMBER OF LUTS UTILIZED FOR LUTRAM IN FPGAS OF DIFFERENT VENDORS 

RingNet rings Intel : Xilinx Lattice : Xilinx Lattice : Intel 

Ring 2×1 2.16 : 1 3.41 : 1 1.58 : 1 

Ring 4×1 1.97 : 1 3.71 : 1 1.88 : 1 

Ring 6×1 1.88 : 1 3.98 : 1 2.12 : 1 

Ring 8×1 1.82 : 1 4.04 : 1 2.22 : 1 

Ring 11×1 1.73 : 1 4.15 : 1 2.40 : 1 

Ring 15×1 1.70 : 1 4.18 : 1 2.46 : 1 

Average ring 1.88 : 1 3.91 : 1 2.11 : 1 

Estimated in 8.2.1 1.5↑ : 1 4.5↓ : 1 3↓ : 1 

Suffix “↑” indicates a value greater or equal to presented, and suffix “↓” indicates a value lower or equal to 

presented. 
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Through the presented synthesis results, it is shown that RingNet modules can be efficiently 

implemented in devices of various types from different vendors, with comparable resource 

utilization and a high value of the maximum clock frequency. 

8.3.3. Comparison between state-of-the-art switches and RingNet network 

In Table VIII.7, the results for the state-of-the-art 64-bit flits switches are presented for 

reference [Mai15], [Pap15]. The 5-port switch proposed in [Mai15] is reported to utilize 1678 

LUTs per PE when implemented in the Xilinx Kintex UltraScale device. The CONNECT 

network using 3-port switches and configured in ring topology [Pap15] is reported to utilize 

430 LUTs per PE when implemented in Xilinx Virtex-6 LX760. On the other hand, RingNet 

utilizes only 367 LUTs per PE if 15×1 ring is used. It is clear that 3-port switches used in 

RingNet and CONNECT utilize fewer LUTs than the 5-port switch from [Mai15]. In RingNet 

ring, unlike in [Mai15] and [Pap15], some network modules, i.e., Slot Generators and L2R 

Manager are common to the number of connected PEs. The cost of the modules is shared among 

the number of the connected PEs, which decreases the resources utilized per PE. It is the reason 

for fewer LUTs utilized per PE in RingNet when compared with CONNECT. It needs to be 

pointed out that the shared L2R Manager used in RingNet not only lowers resource utilization 

but also increases latency, which is discussed in Chapter 7. On the other hand, the L2R Manager 

has knowledge about the required load, therefore it can provide a fair access for all its associated 

PEs. 

When implemented in the devices of the same speed class, the RingNet rings can be clocked 

with higher clock frequency than switches proposed in [Mai15], as well as the CONNECT 

network. This feature is achieved by the use of small and optimized 3-port switches in RingNet. 

For example, for the Kintex UltraScale Xilinx devices, the maximum clock frequency is above 

700 MHz and about 470 MHz for RingNet and the network of switches [Mai15], respectively 

(cf. Table VIII.7). Another example shows that for a Virtex6 device, the maximum frequency 

for CONNECT network is about 31% – 59% of the maximum DSP frequency, whereas it is 

84% to 107% of the maximum DSP frequency for a RingNet ring.  

The RingNet network utilizes less resources than the NoCs from [Mai15], and [Pap15], but 

it comes at the expense of increased latency (see Chapter 7). On the other hand, the high latency 

can be mitigated with high maximum clock frequency of RingNet. 
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8.3.4. Summary 

In Section 8.3, synthesis results are presented for sample FPGA devices representing 

architectures used by leading vendors. In Section 8.1.1, the clock frequency applicable to 

RingNet rings is checked to be equal or higher than 96% of the maximum clock frequency of 

FPGA hardware resources. In Section 8.1.2, resource utilization for RingNet modules and rings 

is presented for different FPGA architectures. The differences in resource utilization observed 

between the FPGA architectures follow the expected ratios. Therefore, it is most probable that 

no NoC-related, critical differences between FPGA architectures are overlooked at the design 

stage of the RingNet architecture. Obtaining high frequency NoC and predictable resource 

utilization shows that the identified common features of considered FPGA architectures are 

exploited, which results in inter-FPGA compatible NoC.  

In Section 8.3.3, the performance of the RingNet architecture is compared with state-of-the-

art NoCs [Mai15], [Pap15] for sample FPGAs. It turned out that the RingNet network utilizes 

less resources than the state-of-the-art NoCs. Moreover, the RingNet network can be clocked 

with substantially higher frequency than both state-of-the-art NoCs. The advantage of the 

RingNet architecture comes from the use of small and optimized 3-port switches. The 3-port 

switch efficiently utilizes LUTs with a restricted number of inputs (see Sections 2.2.3 and 

5.1.3), and the applied ring topology lets the network spread over the whole FPGA (see Section 

5.2.1). The prohibition of direct communication between processing elements (see Section 

5.1.1) allows for the use of fixed-size network buffers that utilize highly-available distributed 

RAM (see Sections 5.1.2 and 5.2.3) and keep the resource cost of the RingNet below the cost 

of the state-of-the-art NoCs. 
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Chapter 9. Comparison between implemented RingNet ring and 

AXI4 Interconnect 

The author compares RingNet with AXI4, a widely used communication infrastructure for 

FPGAs. Both have common features. According to [Xil15], AXI4 is designed for 

high-performance memory-mapped requirements, just like RingNet. Both use packets with a 

single address flit and separate write and read channels. In contrast to RingNet, AXI4 supports 

packets of different sizes up to 256 flits and various data widths from 32 up to 1024 bits. AXI4 

implementation for Xilinx devices is provided in [Xil15]. 

AXI4 connects memory-mapped devices using AXI Interconnect. It is built of a crossbar, a 

data fifo used for buffering, pipeline flip-flops used to break a critical timing path, and an 

address range decoder (see Section 4.1 for more information). AXI Interconnect is available as 

a standalone IP in the Xilinx IP Catalog. 

9.1. Methodology 

Aiming at fair comparison, the author configured a RingNet ring and AXI4 Interconnect to 

have similar features. The configurations are described in Table IX.1. 



 

90 

 

 

The RingNet architecture is compared with AXI4 Interconnection in terms of the resource 

utilizations and the maximum clock frequencies. 

The implementation results are obtained just for a sample FPGA device, namely Artix7 from 

Xilinx (xc7a100tcsg324-1). The synthesis discussed in Chapter 8 already showed comparable 

results of RingNet for different types of FPGA. Therefore, the conclusions from the 

implementation can also be extended to the other FPGAs. 

The synthesis results presented in Chapter 8 are obtained using the Synplify Premiere 

synthesizer. Synthesis results are estimations and minor differences between resource 

utilization and clock frequency of the synthesized design and the design implemented in an 

FPGA device are common. In order to check the actual resource utilization and the maximum 

frequency of a design, an implementation needs to be performed using EDA tools provided by 

the device vendor. Vivado Design Suite is a native set of EDA tools from Xilinx, therefore it is 

used to obtain implementation results for RingNet rings and AXI4 Interconnect for Artix 7 

FPGA. AXI4 Interconnect was configured using the AXI Interconnect RTL 1.7 generator from 

Vivado Design Suite 2016.4. The implementations were performed using Vivado 2016.4.  

TABLE IX.1  

RINGNET RING AND AXI4 INTERCONNECT CONFIGURATION 

Parameter RingNet ring AXI4 Interconnect 

Address width 37 bits  37 bits 

Data width 64 bits (single ring) 64 bits 

Number and types 

of available 

interfaces 

N×1:  

- 1 RI for connecting another 

ring or a memory device  

- N (2 – 15) of NIs for 

connecting PEs 

N×1:  

- 1 slave interface for connecting 

memory device, 

- N (2 – 15) of master interfaces for 

connecting PEs 

Arbiter L2R Manager Round-Robin arbiter 

Buffering LUTRAM-based fifos 

Performance 

optimization 

---  Crossbar in performance optimized 

version named Shared-Address, 

Multiple-Data (SAMD), 

Use of pipelining FFs called AXI 

Register Slice 

Data enable  Enable bit for each transmitted data byte. 
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The goal of the implementations is to find the maximum clock frequencies for the RingNet 

ring and AXI4 Interconnect. The implementation is performed by the Vivado packing 

algorithm. As discussed in [Luu16], a packing algorithm iteratively assigns parts of 

user-defined digital design to logic blocks of a given FPGA architecture. At each iteration the 

algorithm tries to satisfy user constraints, e.g., requested clock frequency of the design. The 

iterative nature of this algorithm gives suboptimal packing and suboptimal maximum clock 

frequency of the packed design. In consequence, it can happen that the increased frequency of 

the requested clock results in a lower maximum clock frequency of the packed design. 

Therefore, in order to find the actual maximum clock frequency for the RingNet ring and AXI4 

Interconnect, multiple implementations were performed for the requested clock frequencies 

changed with the resolution of 1 MHz.  

9.2. Implementation results 

The results obtained for the maximum obtained frequencies are presented in Table IX.2. 

 

One can compare the results obtained for the implementation and synthesis of RingNet rings 

(see Table VIII.7 for Artix7 and Table IX.2). The differences in the number of utilized LUTs 

reported in both tables are minor. The maximum clock frequency is higher for the 

implementation by 12% on average. This increase is expected and is the result of optimizations 

enabled during the implementation. 

TABLE IX.2  

UTILIZED RESOURCES AND THE MAXIMUM FREQUENCY OF RINGNET RING AND AXI4 INTERCONNECT 

IMPLEMENTATIONS 

  
LUTs utilized FFs utilized Max freq. [MHz] 

A
X

I4
 

In
te

rc
o

n
n

ec
t 2×1 1370 (22% as RAM) 2801 268 

4×1 2205 (23% as RAM) 4480 226 

6×1 3175 (22% as RAM) 6151 192 

15×1 7181 (23% as RAM) 13650 151 

R
in

g
N

et
 r

in
g

 2×1 1185 (44% as RAM) 2047 396 

4×1 1846 (43% as RAM) 3188 392 

6×1 2557 (44% as RAM) 4343 382 

15×1 5650 (43% as RAM) 9595 365 
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9.2.1. Resource utilization 

For all the cases RingNet ring requires less resources than AXI4 Interconnect. The FF 

utilization is about 40% lower for all configurations. The reduction in the number of used LUTs 

ranges from 16% (for the 2×1 configuration) to 27% (for the 15×1 configuration). Despite 

utilizing less LUTs, a RingNet ring utilizes more LUTs as RAM than a corresponding AXI4 

Interconnect, providing more buffer space. 

Both RingNet rings and AXI4 Interconnect utilize a part of the resources for core modules 

that are shared between a number of attached PEs. Those core modules for RingNet ring are: 

L2R Manager, Slot Generators, and Root Interface, whereas the core modules of AXI4 

Interconnect are the Round-Robin arbiter and a slave interface. For both architectures the 

numbers of utilized LUTs and FFs follow the equation (4). 

𝑅𝑇𝑜𝑡𝑎𝑙 = 𝑝 ∙ 𝑅𝑃𝐸 + 𝑅𝑐𝑜𝑟𝑒                                      (4), 

where p is the number of connected PEs, 𝑅𝑃𝐸 is the number of LUTs or FFs utilized per PE and 

𝑅𝑐𝑜𝑟𝑒 is a constant number of LUTs or FFs utilized for the core modules. The parameters 𝑅𝑃𝐸 

and 𝑅𝑐𝑜𝑟𝑒 can be calculated for LUTs and FFs based on the results presented in Table VI by 

using linear regression. Results of the regression are presented in Table IX.3. 

 

For other state-of-the-art NoCs from [Mai15], [Pap15], one switch is added per processing 

element (PE), therefore the utilization of resources is proportional to the number of PEs. For 

interconnects like RingNet or AXI4, core modules are used, and their cost is shared between 

all the connected PEs. As already stated in the previous section, this approach can reduce the 

overall resource utilization of a network. 

TABLE IX.3 

RESOURCES UTILIZED FOR RINGNET RING AND AXI4 INTERCONNECT IMPLEMENTATIONS 

 
Resources added per PE (𝑅𝑃𝐸) 

Resources utilized for core 

modules (𝑅𝑐𝑜𝑟𝑒) 

 
LUTs FFs LUTs FFs 

AXI4 Interconnect 449 834 473 1133 

RingNet ring 344 581 497 884 

 

 



 

93 

 

9.2.2. Maximum clock frequency 

From Table IX.2, one can conclude that AXI4 Interconnect does not scale well and the 

maximum clock frequency decreases rapidly for a growing size of the AXI4 crossbar. On the 

other hand, RingNet, due to its optimized 3-port switches and ring topology, provides high 

maximum clock frequency across a wide range of network sizes. For the corresponding 

configurations, RingNet supports higher frequencies than AXI4 Interconnect. The increase in 

the maximum clock frequency is from 48% (for the 2×1 configuration) up to 142% (for the 

15×1 configuration). 

9.2.3. Summary 

In Section 9.2, RingNet rings are compared with the state-of-the-art crossbar AXI4 

Interconnect. Both interconnections are configured to have similar features, and the results of 

their implementation in Xilinx FPGA are presented. RingNet rings are demonstrated to use 40% 

fewer FFs and 16% to 27% fewer LUTs. Moreover, RingNet rings support clock frequencies 

from 48% to 142% higher than AXI4 Interconnect, depending on the number of interconnected 

processing elements. The reasons for the high performance of the RingNet architecture have 

already been discussed in Section 8.3.4 and the utilization of an optimized 3-port switch is 

pointed out as its main advantage. Long connections are one of the reasons of the poorer 

performance of AXI4 Interconnect [Mai15]. Moreover, the logic for the AXI4 Interconnect 

crossbar does not scale well. How well or poorly does an interconnection scale can be evaluated 

in terms of the degradation of the maximum clock frequency observed between the smallest 

and the biggest tested interconnection size. For RingNet rings, the maximum clock frequency 

degradation observed between a 2×1 configuration and a 15×1 configuration is 8% (from 396 

MHz to 365 MHz), whereas 44% of clock frequency degradation is observed for AXI4 

Interconnect (from 268 MHz to 151 MHz). 

  



 

94 

 

Chapter 10. Summary of the dissertation 

In Section 1.3 two theses, T1 and T2, have been formulated. Both theses of the dissertation 

have been proven, which is summarized in Section 10.1. Further, in Section 10.2 the main 

achievements of the dissertation are gathered. Section 10.3 briefly discusses the application of 

the proposal. Finally, in Section 10.4 the possible direction for future research is presented. 

10.1.  Achievements related to theses 

In both theses of the dissertation, the author states that it is possible to develop a 

network-on-chip featured with guaranteed throughput and network access fairness. In the 

dissertation, a novel RingNet network-on-chip is presented with the aim of validating the theses. 

RingNet architecture is described in Chapter 5. The description of the RingNet protocol and its 

modules are presented in Chapter 6. In Chapter 7, the property of guaranteed throughput is 

demonstrated through simulations. Particularly, the maximum achievable throughputs of 

logical channels are shown to match the value calculated according to the formula (1) given in 

Section 6.3.3.2. Moreover, the simulation results demonstrate network access fairness 

expressed as fair throughput allocation between interconnected processing elements and similar 

experienced latency.  

Ad. T1) It is possible to develop a network-on-chip architecture and protocol featured with 

controlled throughput, network access fairness, and maximum clock frequency higher than 90% 

of the maximum clock frequency of FPGA hardware resources, across FPGAs of leading 

vendors. 

The postulated clocking frequency for RingNet is demonstrated in Section 8.3. The 

maximum clock frequency for RingNet modules is compared with the maximum frequency 

reported for hardware DSP and BRAM blocks in highly pipelined, high performance 

configurations. For FPGA architectures of leading vendors, the maximum frequency that 

RingNet modules and rings can be clocked at, is equal to or higher than 96% of the frequency 

applicable to the DSP and BRAM blocks.  

The reported high maximum clock frequency is a result of thorough utilization of resources 

available in all considered FPGA architectures. In particular, 3-port switches are used (see 

Section 5.1.3), which requires simple logic, suitable for high-frequency, LUT-based 
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implementations. Moreover, the applied prohibition of direct communication of processing 

elements lowers the memory requirements for network buffers (see Section 5.1.1), therefore 

small-capacity, highly-available, high-frequency distributed RAM is utilized for this purpose. 

Resource utilization for chosen FPGAs from different vendors is discussed in Chapter 8. In 

Section 8.2, the expected ratios of the resources utilized in FPGA from one vendor to the 

resources utilized in FPGA from another vendor are estimated. In Section 8.3, it is shown that 

the results from the syntheses of RingNet modules follow the expected ratios. Adherence to the 

estimated ratios clearly shows that no difference between FPGA architectures, which may be 

critical for NoC implementation, is overlooked. 

Ad. T2) It is possible to develop a network-on-chip architecture and protocol with controlled 

throughput and network access fairness for FPGAs which would use less resources and would 

be featured with a higher maximum clock frequency than the state-of-the-art crossbar (AXI4 

Interconnect). 

RingNet rings are compared with AXI4 Interconnect in Chapter 9. It is shown that the 

RingNet ring requires less resources than AXI4 Interconnect. The FF utilization is about 40% 

lower and the reduction in the number of used LUTs is by 16% to 27% for various 

configurations. The reported clock frequencies are higher in favor of RingNet by at least 48%. 

Therefore, the RingNet architecture is shown to clearly outperform the state-of-the-art solution 

significantly. 

10.2.  Important original achievements of the dissertation  

The primary original achievement of the dissertation is the proposal of an inter-FPGA 

compatible NoC architecture. For all tested FPGA devices, which represent FPGA architectures 

from leading vendors, the proposed RingNet NoC can work with frequencies as high or higher 

than 96% of the maximal clock frequency of FPGA hardware resources (Section 8.3.1). 

Moreover, for sample FPGA devices, maximal clock frequencies reported for RingNet are 

substantially higher than the frequencies reported for state-of-the-art FPGA-oriented NoCs 

(Section 8.3.3) and the widely-accepted crossbar (Section 9.2.2). The high clock frequency of 

RingNet goes hand in hand with its lower resource cost per interconnected processing element 

when compared with state-of-the-art FPGA-oriented NoCs (Section 8.3.3) and the widely-

accepted crossbar (Section 9.2.1). The high clock frequency observed for RingNet network and 
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its efficient FPGA resource utilization observed across FPGA architectures of leading vendors 

makes RingNet an inter-FPGA compatible NoC. RingNet is the only NoC designed for FPGAs 

that is known to the author of the dissertation that reaches the demanding goal of inter-FPGA 

compatibility (Section 4.2.3).  

The author proposed an original approach to the problem of determining the buffer size in 

NoC architectures. The author identified the a priori unknown traffic load as the main cause of 

the problem (Section 3.2) and postulated that traffic load in RingNet is controlled by a 

destination processing element (Section 5.1.1). Aiming at this objective, direct communication 

between processing elements is prohibited in RingNet NoC (Section 5.1.1) and processing 

elements exchange data through System Memory (e.g., external SDRAM) and control 

information is exchanged through a RingNet module called a Reflector (its idea and 

implementation are presented in Section 6.3.4 and Appendix IV, accordingly). This original 

approach to FPGA-based NoC limits congestions (discussed in Section 6.3.4), and therefore, 

lets the fixed-size network buffers be exploited. The applied indirect communication comes at 

the expense of increased latency when compared with state-of-the-art NoCs (see Section 7.2), 

though on the other hand, the high latency can be mitigated with higher maximum clock 

frequency reported for RingNet (see Section 8.3.3). 

The virtual cut-through switching technique and LUTRAM-based buffers are adopted for 

RingNet, as this combination of switching technique and buffer type is known to be efficient 

for NoCs implemented in Xilinx FPGAs (Section 4.2.2). The original achievement of the author 

of the dissertation is that he demonstrated that virtual cut-through switching and LUTRAM-

based buffers are efficient also in other FPGA architectures (synthesis results are presented in 

Chapter 8, and simulation results are presented in Chapter 7).  

The author proposed an original tree-of-rings network topology suitable for FPGA (Section 

5.2.1). The aim of the proposed hybrid topology is to combine the advantages of ring topology 

and tree topology into one efficient NoC topology for FPGA. The ring topology can result in 

low resource cost and high frequency for FPGA implementation, as it utilizes 3-port switches 

(discussed in Section 5.1.3). The combination of the ring topology with tree topology aims at 

reducing the latency of pure ring topology (simulation results are presented in Section 7.2).  

The author proposed an original flow control mechanism for the RingNet architecture that 

provides throughput fairness and latency fairness for all connected processing elements, 
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provides priority support, and predictable maximum throughput described by a given formula 

(the formula is given in Section 6.3.3.2, simulation results are presented in Section 7.2). The 

flow control mechanism is described in Section 6.3.1.2 and the results of the fairness test are 

discussed in Section 7.3 and Appendix VII.  

In order to make a reliable assessment of the achievement of the dissertation, the author has 

carried out a series of experiments described in Chapters 7 – 9. To this end, the author has 

implemented RingNet components in Verilog language: Leaf Interface and Root Interface, 

library of LUTRAM-based fifo buffers used in wide range of RingNet components, L2R 

Manager, Ring Adapter, memory interfaces for RingNet, Reflector, Slot Generator. The author 

adapted RingNet components in Verilog language for FPGAs from various producers. This 

required preparing alternative parts of code (especially defining memory buffers) according to 

specifications provided by the producers. The author estimates the total number of his own 

Verilog code lines at 8000. The experiments that assessed the achievement of the dissertation, 

especially simulations that the author has performed, consumed substantial amounts of 

computational costs. The results presented in the dissertation summarize over 3000 simulations. 

Additional simulations were performed with the aim of network tuning and debugging. More 

than 15000 simulations were performed that took the equivalent of about 500 days of 

continuous computations of a single-threaded computer. The preparation of such a wide range 

of experiments made up a substantial part of the dissertation. 

Moreover, the author analyzed the common features and differences in logic block 

architectures across FPGAs from leading vendors (Chapter 2, Appendices I – III) and proposed 

an original set of ratios useful for estimating the utilization of LUTs and FFs for designs 

transferred between FPGAs from Lattice, Intel and Xilinx (Section 8.2). 

The original achievements of the dissertation have been presented in the paper “RingNet: A 

Memory-Oriented Network-On-Chip Designed for FPGA,” published in Institute of Electrical 

and Electronics Engineers (IEEE) Transactions on Very Large Scale Integrated (VLSI) Systems 

in 2019 [Sia19]. 

10.3.  Application of RingNet 

SoCs are built out of modules, i.e., processing elements (PEs) and interconnects. An 

attractive aspect of SoC modularity is that the once defined modules can be used again in other 
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SoCs. Reuse of modules can save the time and cost of future developments and it justifies 

putting more effort into a one-off development that will be averaged over many SoCs. Those 

optimizations are essential for developers being under time-to-market pressure.  

The interconnection utilized for SoC can impact the reusability of developed modules. In 

particular, the interconnect determines the interface of PEs, and it is desired to use a 

standardized interface in order to maximize module reusability. This is one reason why NoC 

with its defined interface is preferred to design-specific interconnections. RingNet is one of a 

number of NoCs developed for FPGAs ([Pap12], [She14], [Ret14], [Mai15], [Pap15], [Kap15], 

[Was17], [Kap17a], [Kap17b], [Kap17c], [Vip17], [Mai17], [Sid18], [Ahm18], [Red19]) and 

like others, it can be utilized in FPGA-based SoCs. However, like no other NoC, RingNet 

implementations are demonstrated to be efficient in terms of the maximum clock frequency and 

resource consumption for flagship FPGA devices from major manufacturers. Modules featured 

with the RingNet interface can potentially be reused for different FPGA architectures, as 

RingNet can be transferred between different FPGA architectures and keep its high 

performance.  

RingNet is a network architecture offering quality tools for applications that are sensitive to 

traffic parameters. The simulation results demonstrate that RingNet features guaranteed 

throughput, predictable latency, traffic prioritization, and fair network access.  

In the introduction to the dissertation (in Section 1.2), examples of multimedia processing 

considered suitable for FPGAs have been given, e.g., HEVC coding [Buk17], audio 

beamforming and the audio wave field synthesis [The11]. Due to the complexity of the 

multimedia processing algorithms, those are suitable to be implemented as SoCs. For this 

purpose, complex processing is divided into steps and those steps are implemented as 

processing elements, e.g., video coding can be divided into steps of input signal noise reduction, 

prediction, transform coding, deblocking filtering, entropy coding, etc. In [Stę13] one example 

of the AVC coder implementation following the idea is given. Moreover, multimedia 

processing SoCs in general require high throughput and substantial memory capacity which can 

be satisfied using SDRAM memory devices and RingNet designed to provide enough 

throughput to fully exploit the SDRAM. Therefore, the author believes that the RingNet NoC 

architecture and protocol may be widely adopted in FPGA-based SoC designs, especially in 

high-volume data processing applications like video processing and compression. 
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10.4.  Future work 

In complex SoCs, it may be desired to establish clock domains with individual clock 

frequencies, e.g., with the aim of optimizing power dissipation. The author believes that the 

RingNet architecture, and especially the RingNet ring can be used to isolate parts of a complex 

SoC, which can operate in separate clock domain. Processing elements with similar maximum 

clock frequency, or in general with common power management, can be grouped in a common 

ring. Nevertheless, the usage of rings in separate clock domains requires methods for inter-

domain transitions. Considerations on such methods for RingNet would be an interesting 

direction for future research, in particular, when searching for techniques that would be efficient 

for several families of FPGA devices. 
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Appendices 

The primary resource of an FPGA is an array of logic blocks. A logic block contains look-

up tables (LUTs) and flip-flops (FFs). Different FPGA architectures use logic blocks with 

different numbers of FFs and LUTs, and various additional hardware resources that increase 

logic block capabilities. In Appendices I – III, logic block architectures from three leading 

FPGA vendors are presented: Lattice Semiconductor Corp., FPGA department of Intel 

(formerly Altera), and Xilinx Inc. The purpose of this review is to give insight into differences 

between the three architectures, which may affect the implementation of the inter-FPGA 

compatible NoC. 

I. Lattice architecture description 

The appendix discusses details of the logic block architecture applied in Lattice FPGAs 

(LatticeECP2, LatticeECP3, and ECP5). A logic block in the Lattice architecture is called a 

slice. Most slices in Lattice FPGAs contain two LUTs and two FFs, as depicted in Fig. A.I.1. 
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In LatticeECP2 and LatticeECP3 devices, some slices may have no FFs.  

FFs can be used to store an output value from associated LUTs. On the other hand, LUTs 

and FFs can be used independently. For this purpose, a signal path skipping LUT and a signal 

path skipping FF are present in the Lattice slice architecture. A similar feature can be identified 

in all considered FPGAs from other vendors. For Intel FPGAs, independent usage of the 

associated LUT and FF is called register packing.  

Considering FPGAs produced by Intel, Xilinx, and Lattice, the last one offers the simplest 

logic block architecture utilizing LUTs with 4 inputs (LUT4). 

Thanks to additional multiplexers available in the Lattice slice and inter-slice paths, a 

function with more than 4 inputs can be constructed by utilizing a higher number of LUT4s. 

The inter-slice path connects slices that are grouped into structures called Programmable 
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Fig. A.I.1.  Block diagram of a slice, i.e., logic block from FPGAs by Lattice. 
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Functional Units (PFUs) [Lat13]–[Lat16]. A single PFU can be configured to provide up to 

LUT7 functionality. The architecture of PFU differs slightly between LatticeECP2, 

LatticeECP3, and ECP5 devices. A simplified block diagram of PFU for LatticeECP2 and 

LatticeECP3 is presented in Fig. A.I.2 

 

PFU is connected to programmable signal pathways, i.e., a configurable communication 

backbone of every FPGA device (cf. Chapter 2). PFU contains four logic blocks (slices). In 

LatticeECP2 and LatticeECP3 devices, the last slice has no FFs. In ECP5 devices, FFs are also 

present in the last slice. In LatticeECP2, LatticeECP3, and ECP5, all slices in all PFUs can be 

configured to realize logic functions or ROM.  

PFU can be configured to realize a distributed RAM (LUTRAM) function. In ECP5 all PFUs 

are LUTRAM-capable, whereas in LatticeECP2 and LatticeECP3 just a part of PFUs can realize 

LUTRAM.  

The LUTRAM configuration of PFU utilizes 3 out of 4 slices in the PFU to build a 

4b×16-word deep memory block with separate read and write ports (pseudo dual-port RAM 

configuration) or with a single read and write port (single-port RAM configurations). In those 

configurations, one slice is used as an input for memory address and control signals, whereas 

LUTs of the remaining two slices are used as memory blocks, each providing a 1b×16 space. 

Bigger blocks of LUTRAM can be constructed utilizing a higher number of PFUs.  
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Fig. A.I.2.  Block diagram of a Programmable Functional Unit (PFU) from LatticeECP2 and LatticeECP3 

FPGAs by Lattice. 
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II. Intel ALM description 

A logic block in FPGAs manufactured by Intel is called an Adaptive Logic Module (ALM) 

[Alt11]–[Alt16], [Int16], [Int17]. In all considered Intel devices, ten ALMs constitute a bigger 

structure called a Logic Array Block (LAB).  

The architecture of ALM is similar for all FPGA families offered by Intel. A few differences 

between the families lie in technology process, DSP functionality and additional registers 

inserted on programmable signal paths (HyperFlex registers added in Stratix 10 devices). 

Nevertheless, those functionalities are not essential for RingNet implementation. A block 

diagram of the ALM architecture is presented in Fig. A.II.1.  

 

 An ALM is composed of two combinational adaptive LUTs (ALUTs) and 4 FFs. An ALUT 

is defined as a LUT and an associated two-bit adder.  
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Fig. A.II.1.  Block diagram of an Adaptive Logic Module from FPGAs by Intel. 
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ALM, as a logic function generator can realize: 

• 1 × 7-input function (only for a subset of possible 7-input functions), 

• 1 × 6-input function (for all possible functions), 

• 2 × 6-input function (with at least 4 inputs shared),  

• 2 × 5-input functions (with at least 2 inputs shared), 

• 2 × 4-input functions, 

• Other combinations of two functions, each having 6 inputs at most and with a total 

number of 8 inputs at most. 

Intel describes its LUTs as LUT6 [Alt11], [Alt15a], [Alt15b], [Alt16], [Int16], [Int17]. In 

the actual ALM architecture LUT6s are not present. Each LUT6 is realized as one LUT4 and 

two LUT3s connected with multiplexers. This combination can realize a subset of functions 

possible to be implemented in a true LUT6. The size of a true LUT6, in terms of the number of 

bits stored in its table equals 64, whereas the total number of bits stored in one LUT4 and two 

LUT3s equals 32 bits. Nevertheless, for the sake of simplicity in the dissertation the author 

describes LUTs in Intel FPGAs as LUT6 in the same way, as it is presented in Intel documents 

[Alt11]–[Alt16], [Int16], [Int17].  

ALM output can be driven by a LUT, a two-bit adder, or an FF. If the output from a LUT or 

two-bit adder is not stored in associated FF then the FF can be used to store data unrelated to 

the data processed in the LUT. This feature can improve resource utilization and is called 

register packing. This feature is also available in FPGAs by Lattice and Xilinx, as discussed in 

Appendices I and III.  

From the RingNet perspective, an important feature of ALM is related to the presence of 

2×1 multiplexers at the input of each FF (the second column of multiplexers depicted in Fig. 

A.II.1). This multiplexer is controlled by an external signal called a syncload. This construction 

increases the number of possible functions performed in ALM, especially a 2×1 signal 

multiplexer can be implemented without utilizing LUTs. 2×1 multiplexing is a common 

operation in RingNet, therefore the discussed multiplexer in the ALM architecture can 

potentially preserve a lot of LUTs.  

From 24% to 50% of all ALMs in FPGAs manufactured by Intel can be configured as 

LUTRAM. Each ALM contains 64 bits of memory in its two LUTs. For Intel FPGAs it is not 
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possible to use a single ALM as LUTRAM, rather a whole LAB (10 × ALM) needs to be 

configured together as one memory block. As a result, the smallest LUTRAM block contains 

640 bits of memory. It can be used as 20b×32-word deep memory or 10b×64-word deep 

memory with separate read and write ports (pseudo dual-port RAM configuration) or with a 

single read and write port (single-port RAM configurations). 

III. Xilinx CLB description 

A block diagram of a logic block available in Xilinx Spartan6 and series 7 FPGAs is 

presented in Fig. A.III.1.  

 

A logic block in FPGAs manufactured by Xilinx is called a slice. The slice consists of four 

smaller blocks, each containing one LUT6 and two FFs. In Spartan6, a simplified version of 

the slice is also available, called SLICEX which does not have multiplexers depicted in Fig. 
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Fig. A.III.1.  Block diagram of a slice from Spartan6 and series 7 FPGAs manufactured by Xilinx. 
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A.III.1 at the output of a slice. In the UltraScale and UltraScale+ series the slice is twice the 

size and has eight LUT6s and sixteen FFs.  

Slices in Xilinx devices are grouped in Configurable Logic Blocks (CLBs). A CLB available 

in the Spartan6 and 7 series contains two slices, whereas a CLB available in UltraScale and 

UltraScale+ contains only one slice but twice as big.  

The LUTs in Xilinx FPGAs have 6 inputs (LUT6s). There are two independent outputs (O5 

and O6) from each LUT. Thanks to the two independent outputs, a single LUT6 can generate 

two functions at once, improving the utilization of an FPGA. A single LUT6 can generate: 

• 1 × arbitrarily defined 6-input combinational function, 

• 2 × arbitrarily defined 5-input combinational functions, as long as these two functions 

share common inputs, 

• 2 × arbitrarily defined combinational functions of 3 and 2 inputs or less. 

The slice has inputs that bypass LUT6s. Moreover, an output from the slice is available that 

bypasses FFs. Those bypasses make it possible to use both LUT6 and FF for unrelated data. A 

similar mechanism is known from Intel and Lattice FPGAs and it is called register packing. 

From 14% up to 50% of the slices in Xilinx FPGAs are LUTRAM-capable SLICEMs. A 

LUT6 in the SLICEM has additional inputs for address and data (not depicted in Fig. A.III.1). 

Using a combination of LUT6s, a wild range of memories can be constructed in single, dual 

and quad-port configurations. RingNet modules exploit memories with separate read and write 

ports (pseudo dual-port RAM configuration). The smallest available blocks of pseudo dual-port 

LUTRAM are: 

• 6b×32-word deep memory utilizing four LUT6, 

• 3b×64-word deep memory utilizing four LUT6. 

A bigger block of RAM can be constructed utilizing more LUT6s. 
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IV. Example of Reflector implementation design 

As stated in Chapter 5, RingNet is dedicated for memory-oriented SoCs, i.e., systems where 

most of the traffic starts or ends in the memory. Therefore, the performance of RingNet is 

assessed in terms of the performance of data transport between PEs and System Memory 

(throughput, latency, and other reliability parameters are presented in Chapter 7). Moreover, in 

Chapter 8, synthesis results are presented for all the RingNet modules that create paths between 

PEs and System Memory, i.e., ring adapters and modules that create RingNet rings (L2R 

Manager, Slot Generator, Leaf Interface, and Root Interface). The Reflector is not on the path 

of data transported between PEs and System Memory. The Reflector is a control information 

buffer and, therefore, only control packets (events and event confirmations) reach this module. 

Nevertheless, the Reflector is required for the management of RingNet-interconnected SoC (see 

Section 5.1.1) and it is important to demonstrate that the Reflector module with functions 

postulated in Section 6.3.4 can be implemented. Therefore, in Appendix IV, an example of a 

Reflector architecture design is discussed and its synthesis results for FPGA architectures 

considered in the dissertation are presented. Obviously, the author’s design is not the only one 

possible.  

IV.1. Reflector architecture 

The Reflector mediates in the communication between processing elements (PEs). A PE can 

communicate with another PE by sending an event message through the Reflector. The events 

are buffered in the Reflector and sent to the destination PE, one at a time. After receiving the 

event, the destination PE sends the event confirmation to the Reflector. 

Fig. A.IV.1 depicts a block diagram of an example of Reflector implementation for a 

network of up to 256 PEs. 

The Reflector contains three large buffers: 

1) Bank of first-in-first-out buffers (fifos) for events, each dedicated for a single PE, 

2) Bank of state registers for processing elements (PEs),  

3) General event buffer. 
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Individual fifos, used to separate events for each PE, are gathered into the bank of event 

fifos. Each fifo can store 4 events. The total capacity of the bank for 256 PEs equals 58kb. The 

memory with substantial capacity is efficiently implemented with the use of block RAM 

(BRAM). Utilizing LUTRAM or FF for the memory can result in low clock frequency and a 

high number of utilized LUTs. The drawback of BRAM utilization is that it provides a common 

port for all the fifos, so it limits the access to just one fifo at a time. Nevertheless, events and 

event confirmations reach the Reflector one at a time and there is no need for parallel access to 

event fifos. 
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The bank of state registers for PEs stores information about each PE, i.e., its network address, 

the number of events waiting in the Reflector, etc. For the 256 PEs it utilizes 18kb of memory. 

The bank of state registers for PEs is implemented using BRAM, just like the bank of event 

fifos. 

The general event buffer is introduced for events that do not fit into the event fifos due to 

the fifos fullness. When a slot in the appropriate event fifo is released, an event from the general 

event buffer is transferred into the event fifo. The proposed general buffer for 1024 events 

utilizes 74kb of BRAM memory. 

Up to 1028 events dedicated for a single PE can be buffered in the Reflector: 4 slots are 

reserved for each PE in its event fifo, and 1024 slots are shared between all PEs in the general 

event buffer. The general event buffer provides flexible allocation of buffer space between PEs 

realized according to their needs, whereas an event fifo dedicated for a single PE guarantees 

minimal allocation for each PE. 

 The buffers in the Reflector are controlled by four finite-state machines (FSMs). Those 

FSMs are: 

1) Event receiving handler, 

2) Event confirmation receiving handler, 

3) General buffer handler, 

4) Event sending handler. 

Algorithms realized by the FSMs are described using flowcharts depicted in Figures 

A.IV.2 – A.IV.5. 

The event receiving handler executes the algorithm depicted in Fig. A.IV.2 each time a new 

event is received. 
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The handler reads the ID of the destination PE from the received event packet. Next, from 

the bank of states, the handler determines the state of the event fifo assigned to the destination 

PE. If the fifo is not full, the handler pushes the event there, otherwise, the event is pushed to 

the general event buffer. Pushing the event is recorded in the bank of PEs states. If there is just 

one event in the event fifo, then the event sending handler is triggered and the event sending 

process is started. 

 

 

Start

Get the PE identification 
number from the event 

packet.

NY The dedicated PE 
event fifo is full?

Push the event to the PE 
event fifo.

Push the event to the 
general event buffer.

End

In the PE state memory, 
increment the number of 

events in the PE event 
fifo.

In the PE state memory, 
increment the number of 

events in the general 
event buffer.

Is it the first event 
in the PE event fifo?

Push the PE identification 
number to the event 

sending handler.

NY

 

Fig. A.IV.2.  Flowchart of an event receiving handler. 
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The event sending handler executes the algorithm depicted in Fig. A.IV.3.  

 

The handler waits for an ID of a PE that can come from two receiving handlers: the event 

receiving handler or the event confirmation receiving handler. According to the received ID an 

event is read from a proper event fifo. The event is send through an attached Root Interface 

when the interface is ready to accept a new packet. Nevertheless, the event is not deleted from 

the event fifo until an event confirmation reaches the Reflector. 

  

 

Is a new PE 
identification number 

recieved form the 
reciving handlers ?

Start

N
Y

Read event from the PE 
event fifo.

Wait untill the attached 
Root Interface is ready 

for a new packet.

Push the event to the 
Root Interface.

 

Fig. A.IV.3.  Flowchart of an event sending handler. 
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The algorithm executed by the event confirmation receiving handler is depicted in Fig. 

A.IV.4. The handler deletes the confirmed event from the event fifo, and updates information 

in the PE state memory accordingly. In the case of an event existing in the event fifo, the handler 

triggers the event sending handler to process it. 

 

The general buffer handler executes the algorithm depicted in Fig. A.IV.5. The handler deals 

with the events that were once rejected from the bank of event fifos due to fifo fullness. Those 

events, stored in the general event buffer, are constantly searched by the handler and the state 

of their corresponding fifos is checked. An event is transferred to a corresponding fifo if an 

empty space is available. 

 

Is there more events 
in the PE event fifo?

Push the PE identification 
number to the event 

sending handler.

Start

Get the PE identification 
number from the event 

confirmation packet.

End

Pop the confirmed event 
from the PE event fifo.

NY

In the PE state memory, 
decrement the number 

of events in the PE event 
fifo.

 

Fig. A.IV.4.  Flowchart of a new event confirmation handler. 
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For the sake of brevity, only a minimal set of services provided by the Reflector are 

discussed, i.e., events buffering, sending, and confirming. Nevertheless, the Reflector is a 

device that contains full information about the system, and it provides other services. Those 

services include informing a dedicated PE about malfunctions detected in the system or about 

the risk of general event buffer overflow. The Reflector also informs about new PEs connected 

to the network, e.g., as a result of a dynamic system reconfiguration.  

Is the dedicated PE 
event fifo full?

YN

Start

Set buffer pointer to the first 
valid slot.

Slot is empty?

Increment the buffer pointer.

Read PE identification 
number from the event.

Read the PE 
state memory.

Push the event to 
the PE event fifo.

In the PE state memory, 
increment the number of 
events in the dedicated 

PE event fifo.

YN

Push the event back to the 
general event buffer.

Read the pointed event.

 

Fig. A.IV.5.  Flowchart of a general buffer handler. 
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IV.2 Synthesis results 

The author implemented the presented Reflector architecture in Verilog HDL language. The 

proper work of the proposed Reflector architecture has been verified in simulations. The 

prepared definition is synthesized according to the methodology presented in Chapter 8. As the 

presented Reflector architecture aims at efficient BRAM utilization, the number of used 

BRAMs is included in the synthesis report. Resource utilization and maximum clock frequency 

for Reflector synthesis is presented in Table A.IV.1 

TABLE A.IV.1 

RESOURCE UTILIZATION AND MAXIMUM CLOCK FREQUENCY FOR SAMPLE REFLECTOR IMPLEMENTATION. 

 

 

Xilinx Intel Lattice 

 

 

Artix7  

xc7a100tcsg32

4-1 

KintexUS 

xcku060-

ffva1156-1-i 

Virtex7 

xc7vx550tffg1

158-1 

Stratix V 

5SGXMABK2

H40C3 

Arria V 

5AGXBA7D6F

31C6 

ECP5 

lfe5u_85f-8 

Utilized 

resources 

LUTs 574 585 577 651 665 802 

FFs 1070 1144 1070 1294 1297 1152 

BRAM 6 × RAMB36 

(36kb) 

6 × RAMB36 

(36kb) 

6 × RAMB36 

(36kb) 

10 × M20K 

(20kb) 

17 × M10K 

(10kb) 

11 × EBR 

(18kb) 

Maximu

m clock 

frequency 

In MHz 275 303 313 234 183 154 

In relation to 

hardware 
blocks 

frequency 

81% 66% 78% 59% 64% 83% 

 

The number of LUTs and FFs utilized for the Reflector and a small RingNet ring in 2×1 

configuration can be compared. The ring utilizes about 2800 FFs and from 1200 to 2700 LUTs, 

depending on the FPGA device used (cf. Table VIII.7 from Section 8.3). The proposed 

implementation of the Reflector utilizes less than half of those resources. The presented results 

demonstrate that the cost of the Reflector in terms of utilized LUTs and FFs is comparable to 

connecting one additional processing element to the RingNet network. BRAMs are the 

resources which are not utilized for any RingNet module other than the Reflector. BRAM in 

the Xilinx architecture is denoted as RAMB36 and has the capacity of 36 kb. Six RAMB36 are 

utilized for all tested FPGAs from Xilinx. In the Intel architecture blocks denoted as M10K and 

M20K are available with the capacity of 10kb and 20kb. Ten M20Ks are utilized for the 

Reflector in Stratix V devices, and seventeen M10K for Arria V. In the Lattice device BRAM 

is denoted as Embedded Block RAM (EBR). Each EBR has the capacity of 18kb and eleven 

EBRs are utilized for the Reflector. The RAM capacity required for the presented Reflector 
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architecture is equal to 150kb. The actual capacity of utilized BRAMs is equal to 216kb, 200kb, 

170kb, and 198kb in devices from Xilinx, two devices from Intel, and the device from Lattice, 

respectively. The reason for the wasted capacity is the mismatch between the width of the 

available BRAMs and the widths required for Reflector buffers. Nevertheless, successful 

utilization of BRAMs for the implementation of the required 150kb capacity of fifo buffers is 

the achievement of the presented Reflector architecture. The alternative, i.e., implementation 

of buffers with that capacity in LUTRAM, can degrade the frequency characteristic of the 

design and increase the usage of LUTs multiple times (3125 and 14000 LUTs are required in 

Xilinx and Lattice architectures for this purpose, respectively). 

In Table A.IV.1, the maximum clock frequencies reported for the Reflector are compared 

with the maximum frequency applicable to the hardware block available in FPGA devices. The 

hardware blocks of DSP and BRAM are used for this comparison according to the methodology 

discussed in Section 8.1.3. The methodology is used in Section 8.3.1 also for other RingNet 

modules. The maximum clock frequencies reported for the proposed Reflector architecture are 

in the range of 59% – 83% of the reference clock frequencies. For comparison, other RingNet 

modules and rings are featured with the maximum clock frequency as high as 96% of the 

reference clock frequencies or higher. On the one hand, the presented frequency results 

demonstrate that the provided Reflector implementation is not at the same level of optimization 

as other RingNet modules. On the other hand, the prepared Verilog source code for the 

Reflector is not optimized and the author expects that higher frequencies can be achieved. 

Nevertheless, the proposed implementation of the Reflector should be used in a separate clock 

domain so it does not limit the maximum clock frequency of the whole RingNet network and 

does not limit the network throughput.  

IV.3 Summary 

The aim of the appendix is to present details of an example of Reflector architecture and to 

demonstrate that the module can be realized in FPGA architectures considered in the 

dissertation. Both those goals have been obtained. Especially the utilization of BRAMs for the 

purpose of implementation of 256 fifo buffers in all tested FPGA architectures is a success of 

the presented design. Thanks to the BRAM utilization, the number of LUTs and FFs used for 

the Reflector is as low as the number of LUTs and FFs required to connect one processing 

element to the RingNet network.  
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V. Simulation results of the average latency test 

In Appendix V, the average latency for the read and write channels is presented for various 

loads and network sizes. The results illustrate the conclusions of Section 7.2. The parameters 

of the test are: 

• R: Multiplication degree of the root level, i.e., the number of parallel rings used at 

the root level, set in the range of 1–4. 

• F: The number of 1st level rings, set in the range of 1–5. 

• G: The number of packet generators (PGs) connected to a single 1st level ring, chosen 

from the set {1, 2, 3, 4, 7, 15}. 

• Logical channel load. The aggregated load generated by all PGs is set in the range of 

0%–100% of the theoretical throughput TRW_MAX (1). The logical channel load is 

separately set for the read and write channels. 

The results for the read channel are presented in Tables A.V.1 – A.V.20. The results are 

grouped according to the logical channel loads: 

• Tables A.V.1 – A.V.4 correspond to loads equal 100% (network in saturation), 

• Tables A.V.5 – A.V.8 correspond to loads in the range of 92% – 97% (network near 

saturation), 

• Tables A.V.9 – A.V.12 correspond to loads in the range of 85% – 92% (high load), 

• Tables A.V.13 – A.V.16 correspond to loads in the range of 69%–73% (moderate 

load), 

• Tables A.V.17 – A.V.20 correspond to loads in the range of 27% – 28% (low load). 

In each group of four tables, the results for increased numbers of parallel rings used at the 

root level are presented. The results for the write channel are presented in Tables A.V.21 – 

A.V.40:  

• Tables A.V.21 – A.V.24 correspond to loads equal 100% (network in saturation), 

• Tables A.V.25 – A.V.28 correspond to loads in the range of 92% – 97% (network 

near saturation), 

• Tables A.V.29 – A.V.32 correspond to loads in the range of 85% – 92% (high load), 
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• Tables A.V.33 – A.V.36 correspond to loads in the range of 69%–73% (moderate 

load), 

• Tables A.V.37 – A.V.40 correspond to loads in the range of 27% – 28% (low load). 

Latencies observed for the read logical channel and write logical channel can be compared 

for the same network size and for the same load. On average, the latency observed in the write 

logical channel is 7 clock cycles longer than the latency observed in the read logical channel. 

In the RingNet network, parallel rings are used aiming at increasing the network throughput 

(see Section 5.2.2). Nevertheless, the increased number of parallel rings introduces additional 

registers at network paths and increases the observed latency. For a network below saturation 

(load below 100%), increasing the number of parallel rings at the root level by one results in 

latency increased by 6 clock cycles, on average. For a saturated network, all the network buffers 

are occupied and the latency is correlated with the capacity of network buffers, i.e., with the 

number of packets kept in the network buffers that wait to access the same path. As the second 

ring at the root level doubles the number of available paths without doubling the total buffer 

capacity in the network, reduced latency can be observed (compare Table A.V.1 with Table 

A.V.2, and Table A.V.21 with Table A.V.22). A further reduction in latency for a network in 

saturation can be observed when 3 and 4 parallel rings are used at the root level (Tables A.V.3, 

A.V.4, A.V.23, A.V.24).  
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TABLE A.V.1 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND 

WRITE AND READ CHANNEL LOADS EQUAL 100%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 88 166 209 252 394 764 

2 210 297 390 478 749 1528 

3 318 459 594 729 1127 2300 

4 417 602 780 958 1516 3058 

5 514 750 980 1193 1877 3672 

 

TABLE A.V.2 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 124 193 236 280 421 791 

3 272 341 407 476 667 1257 

4 353 449 541 632 892 1672 

5 436 550 666 780 1108 2002 

  

  



 

119 

 

TABLE A.V.3 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 152 220 264 308 449 819 

4 311 365 432 494 674 1188 

5 374 452 533 610 830 1441 

TABLE A.V.4 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 156 223 272 316 454 824 

5 349 401 459 515 689 1157 

TABLE A.V.5 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND 

WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 95 118 120 122 147 194 

2 113 134 142 145 182 225 

3 129 148 155 161 185 241 

4 130 151 157 163 189 245 

5 140 163 169 175 201 258 

   



 

120 

 

TABLE A.V.6 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 132 144 146 154 179 226 

3 139 156 158 163 186 235 

4 141 158 163 167 190 238 

5 155 170 175 180 202 253 

TABLE A.V.7 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 152 169 171 177 202 249 

4 149 165 170 174 196 244 

5 159 174 178 186 207 254 

TABLE A.V.8 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 155 170 176 181 204 254 

5 162 179 184 188 211 259 
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TABLE A.V.9 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND 

WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–92%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 94 118 119 120 144 189 

2 113 132 139 141 169 214 

3 127 145 151 157 178 230 

4 128 147 153 157 179 231 

5 138 158 164 168 192 242 

TABLE A.V.10 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE CHANNEL LOAD IS IN THE RANGE 85%–91%, READ CHANNEL LOAD IS IN THE RANGE 85%–

92%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 130 143 145 151 175 221 

3 138 155 156 161 183 229 

4 140 156 160 164 186 232 

5 153 168 172 177 197 244 

TABLE A.V.11 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–91%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 150 167 169 174 197 243 

4 147 163 168 171 193 239 

5 158 173 177 182 203 249 
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TABLE A.V.12 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–91%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 152 169 174 177 199 247 

5 162 176 181 186 208 254 

TABLE A.V.13 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND 

WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 93 116 117 118 140 183 

2 111 130 136 137 160 203 

3 126 142 146 151 170 216 

4 125 143 147 150 170 214 

5 136 153 158 160 181 224 

TABLE A.V.14 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 129 141 142 148 170 213 

3 137 153 153 158 178 221 

4 138 153 156 160 180 223 

5 150 165 168 172 190 235 
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TABLE A.V.15 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 147 163 164 169 190 235 

4 145 160 164 168 188 232 

5 156 170 174 178 197 241 

TABLE A.V.16 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 149 164 169 172 193 238 

5 158 173 178 182 202 246 

TABLE A.V.17 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 1 RING USED AT ROOT LEVEL, AND 

WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 27%–28%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 93 115 115 115 136 176 

2 110 127 132 132 152 192 

3 123 138 141 144 162 205 

4 122 138 141 143 161 204 

5 132 147 151 153 171 213 
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TABLE A.V.18 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 2 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 27%–28%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 127 138 138 143 162 204 

3 134 149 149 152 171 213 

4 136 149 152 154 173 215 

5 147 160 162 166 184 227 

TABLE A.V.19 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 3 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE CHANNEL LOAD IS IN THE RANGE 27%–28%, READ CHANNEL LOAD EQUALS 27%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 142 157 158 162 181 223 

4 141 155 159 161 180 222 

5 152 165 168 172 190 233 

TABLE A.V.20 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR READ CHANNEL FOR 4 PARALLEL RINGS USED AT ROOT 

LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 27%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 144 159 162 165 184 226 

5 154 168 171 175 193 236 
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TABLE A.V.21 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL, 

AND WRITE AND READ CHANNEL LOADS EQUAL 100%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 95 172 216 260 401 771 

2 217 304 398 485 756 1535 

3 325 468 601 736 1134 2307 

4 425 611 790 969 1523 3064 

5 521 762 978 1201 1879 3712 

TABLE A.V.22 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 132 200 238 287 428 798 

3 296 365 430 500 691 1281 

4 379 478 571 661 916 1700 

5 469 589 699 812 1153 2037 

TABLE A.V.23 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 163 224 275 318 456 830 

4 334 393 454 515 696 1210 

5 402 476 558 633 856 1466 
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TABLE A.V.24 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 100%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 168 230 279 323 462 834 

5 368 423 481 538 708 1175 

TABLE A.V.25 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL, 

AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 100 125 127 129 154 202 

2 120 141 149 152 187 232 

3 135 155 162 167 193 249 

4 136 158 163 170 196 252 

5 147 169 177 183 210 266 

TABLE A.V.26 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 140 152 154 162 187 234 

3 146 163 166 170 194 242 

4 148 165 170 174 198 246 

5 162 176 182 187 209 261 
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TABLE A.V.27 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 159 177 181 187 211 260 

4 157 173 178 183 205 254 

5 167 183 187 194 215 263 

TABLE A.V.28 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 92%–97%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 162 179 185 191 213 264 

5 170 185 191 195 218 267 

TABLE A.V.29 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL, 

AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–92%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 99 124 126 127 151 196 

2 119 139 146 148 175 222 

3 134 152 158 164 185 237 

4 134 154 159 164 186 237 

5 145 164 172 176 200 249 
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TABLE A.V.30 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE CHANNEL LOAD IS IN THE RANGE 85%–91%, READ CHANNEL LOAD IS IN THE RANGE 

85%–92%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 138 151 152 159 182 228 

3 145 162 163 168 190 236 

4 147 163 167 171 193 238 

5 160 175 179 184 204 252 

TABLE A.V.31 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–91%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 157 175 178 183 206 254 

4 155 171 176 180 202 248 

5 166 181 185 191 211 258 

TABLE A.V.32 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 85%–91%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 159 177 182 186 207 257 

5 168 184 188 194 215 262 
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TABLE A.V.33 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL, 

AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 97 122 123 124 146 189 

2 118 137 143 144 166 210 

3 131 148 153 157 175 221 

4 130 149 153 156 175 220 

5 142 160 165 168 188 231 

TABLE A.V.34 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 136 148 149 155 177 221 

3 142 159 160 164 184 227 

4 144 159 163 166 186 229 

5 158 172 175 179 197 242 

TABLE A.V.35 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 153 170 172 177 198 243 

4 151 167 172 175 196 240 

5 163 178 182 186 205 250 
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TABLE A.V.36 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 69%–73%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 154 171 175 179 200 246 

5 166 180 185 189 209 254 

TABLE A.V.37 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 1 RING USED AT ROOT LEVEL, 

AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 27%–28%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 91 114 114 114 135 176 

2 117 134 139 138 159 200 

3 123 138 141 144 162 205 

4 121 138 140 143 161 204 

5 139 154 158 160 178 220 

TABLE A.V.38 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 2 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS ARE IN THE RANGE 27%–28%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 134 145 145 150 169 211 

3 134 149 149 152 171 213 

4 135 149 152 154 174 215 

5 154 167 169 173 191 234 
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TABLE A.V.39 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 3 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE CHANNEL LOAD IS IN THE RANGE 27%–28%, READ CHANNEL LOAD EQUALS 27%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 142 158 159 162 181 224 

4 141 155 159 162 181 223 

5 159 172 175 179 197 240 

TABLE A.V.40 

AVERAGE LATENCY (EXPRESSED IN CLOCK CYCLES) FOR WRITE CHANNEL FOR 4 PARALLEL RINGS USED AT 

ROOT LEVEL, AND WRITE AND READ CHANNEL LOADS EQUAL 27%. 

  Number of PGs connected to a 1st level ring (G) 

  1 2 3 4 7 15 

N
u

m
b

er
 o

f 
1

st
 

le
v

el
 r

in
g

s 
(F

) 1 --- --- --- --- --- --- 

2 --- --- --- --- --- --- 

3 --- --- --- --- --- --- 

4 144 158 162 165 184 226 

5 161 175 178 182 200 243 
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VI. Load-latency curves for RingNet 

In Appendix IV, load-latency curves for RingNet of various sizes are presented. The results 

illustrate the conclusions of Section 7.2. The parameters of the test are: 

• R: Multiplication degree of the root level, i.e., the number of parallel rings used at 

the root level, set in the range of 1–4. 

• F: The number of 1st level rings, set in the range of R–5. A RingNet network with 

fewer 1st level rings (F) than there are parallel rings used at the root level (R) is not 

tested, as it cannot generate a 100% load.   

• G: The number of packet generators (PGs) connected to a single 1st level ring, chosen 

from the set {1, 2, 3, 4, 7, 15}. 

• Logical channel load. The aggregated load generated by all PGs is set in the range of 

0%–100% of the theoretical throughput TRW_MAX (1). The logical channel load is 

separately set for the read and write channels. 

Load-latency curves for each combination of R, F, and G parameters are depicted in separate 

figures. 84 figures are presented in the Appendix. Table A.VI.1 lists the ranges of figures 

corresponding to a given value of the multiplication degree of the root level (R) and a given 

number of PGs connected to a single 1st level ring (G). Each range presented in Table A.VI.1 

comprises figures for a given R and G and for an increasing number of 1st level rings (F). 

TABLE A.VI.1 

SUMMARY FOR THE FIGURES PRESENTED IN APPENDIX VI. 

  Multiplication degree of the root level (R) 

  1 2 3 4 

N
u

m
b

er
 o

f 
P

G
s 

co
n

n
ec

te
d

 

to
 a

 1
st
 l

ev
el

 r
in

g
 (

G
) 

1 A.VI.1 – A.VI.5 A.VI.31 – A.VI.34 A.VI.55 – A.VI.57 A.VI.73 – A.VI.74 

2 A.VI.6 – A.VI.10 A.VI.35 – A.VI.38 A.VI.58 – A.VI.60 A.VI.75 – A.VI.76 

3 A.VI.11 – A.VI.15 A.VI.39 – A.VI.42 A.VI.61 – A.VI.63 A.VI.77 – A.VI.78 

4 A.VI.16 – A.VI.20 A.VI.43 – A.VI.46 A.VI.64 – A.VI.66 A.VI.79 – A.VI.80 

7 A.VI.21 – A.VI.25 A.VI.47 – A.VI.50 A.VI.67 – A.VI.69 A.VI.81 – A.VI.82 

15 A.VI.26 – A.VI.30 A.VI.51 – A.VI.54 A.VI.70 – A.VI.72 A.VI.83 – A.VI.84 
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For all tested configurations, the average latency for both logical channels increases with the 

channel load. An increase of the channel load from 27% to 97% results in the average latency 

increase by only 10%, whereas the most significant increase of 19% is observed for the 

configuration G=15, F=5, R=1 (Fig A.VI.30). For the logical channel in saturation, i.e., when 

the channel load reaches 100%, all network buffers are full, and the average latency increases 

drastically, as for many other NoCs [Dal03].  

The dependence of the read and write logical channels is checked in simulations and depicted 

in the form of error bars. Error bars represent the minimum and maximum average latency of 

the channel at a given load when the second channel load changes in the range of 0% to 100%. 

Dots denote the results for the load of the second channel in the range of 85% to 92% of its 

maximum throughput. In the tested RingNet implementation, the interaction between the read 

and write logical channels happens through a physical Leaf-to-Root (L2R) control channel. 

This is the physical channel used by both logical channels for sending requests to the L2R 

Manager (see Section 6.3.1 for details). Requests sent for the use of one logical channel can 

affect the other logical channel, i.e., they can delay the time that the second logical channel 

sends its request by a few clock cycles. The requested time slots for short and long packet start 

on a RingNet ring once per each 11-clock cycle burst (cf. Section 6.3.1 and Fig. VI.3), therefore 

the requested packet slots can be granted every 11-clock cycle. A delayed request may cross 

the border of the 11-clock cycle burst and postpone the grant of a packet slot by additional 11 

clock cycles. This additional latency is observed in many of the figures as error bars with the 

height of about 12 clock cycles. E.g., in Fig.A.VI.1 such error bars are observed for both logical 

channels, and in Fig.A.VI.31 and in Fig.A.VI.55 the error bars are observed for the read logical 

channel and write logical channel, respectively. Nevertheless, the increased latency is 

negligible and both logical channels can be treated as independent, i.e., the load of one logical 

channel has a negligible impact on the average latency in the other logical channel, and does 

not influence its throughput.  

For all the 84 figures, which represent 84 different RingNet network configurations, the 

load-latency curves reach the 100% load value, i.e., throughput TRW_MAX calculated 

according to (1) is obtained for all tested configurations. As discussed in Section 7.2, the results 

demonstrate that the RingNet network throughput can be controlled and that it follows equation 

(1).  
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Fig.A.VI.1.  Load-latency curve for RingNet with one 1st level ring and 1 PG connected at the ring, and one 

ring used at the network root (F=1 × G=1, R=1). 

 

Fig.A.VI.2.  Load-latency curve for RingNet with 2 1st level rings and 1 PG connected at each ring, and one 

ring used at the network root (F=2 × G=1, R=1). 
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Fig.A.VI.3.  Load-latency curve for RingNet with 3 1st level rings and 1 PG connected at each ring, and one 

ring used at the network root (F=3 × G=1, R=1). 

 

Fig.A.VI.4.  Load-latency curve for RingNet with 4 1st level rings and 1 PG connected at each ring, and one 

ring used at the network root (F=4 × G=1, R=1). 

 

Fig.A.VI.5.  Load-latency curve for RingNet with 5 1st level rings and 1 PG connected at each ring, and one 

ring used at the network root (F=5 × G=1, R=1). 
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Fig.A.VI.6.  Load-latency curve for RingNet with one 1st level ring and 2 PGs connected at the ring, and one 

ring used at the network root (F=1 × G=2, R=1). 

 

Fig.A.VI.7.  Load-latency curve for RingNet with 2 1st level rings and 2 PGs connected at each ring, and one 

ring used at the network root (F=2 × G=2, R=1). 

 

Fig.A.VI.8.  Load-latency curve for RingNet with 3 1st level rings and 2 PGs connected at each ring, and one 

ring used at the network root (F=3 × G=2, R=1). 
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Fig.A.VI.9.  Load-latency curve for RingNet with 4 1st level rings and 2 PGs connected at each ring, and one 

ring used at the network root (F=4 × G=2, R=1). 

 

Fig.A.VI.10.  Load-latency curve for RingNet with 5 1st level rings and 2 PGs connected at each ring, and 

one ring used at the network root (F=5 × G=2, R=1). 

 

Fig.A.VI.11.  Load-latency curve for RingNet with one 1st level ring and 3 PGs connected at the ring, and 

one ring used at the network root (F=1 × G=3, R=1). 
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Fig.A.VI.12.  Load-latency curve for RingNet with 2 1st level rings and 3 PGs connected at each ring, and 

one ring used at the network root (F=2 × G=3, R=1). 

 

Fig.A.VI.13.  Load-latency curve for RingNet with 3 1st level rings and 3 PGs connected at each ring, and 

one ring used at the network root (F=3 × G=3, R=1). 

 

Fig.A.VI.14.  Load-latency curve for RingNet with 4 1st level rings and 3 PGs connected at each ring, and 

one ring used at the network root (F=4 × G=3, R=1). 
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Fig.A.VI.15.  Load-latency curve for RingNet with 5 1st level rings and 3 PGs connected at each ring, and 

one ring used at the network root (F=5 × G=3, R=1). 

 

Fig.A.VI.16.  Load-latency curve for RingNet with one 1st level ring and 4 PGs connected at the ring, and 

one ring used at the network root (F=1 × G=4, R=1). 

 

Fig.A.VI.17.  Load-latency curve for RingNet with 2 1st level rings and 4 PGs connected at each ring, and 

one ring used at the network root (F=2 × G=4, R=1). 
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Fig.A.VI.18.  Load-latency curve for RingNet with 3 1st level rings and 4 PGs connected at each ring, and 

one ring used at the network root (F=3 × G=4, R=1). 

 

Fig.A.VI.19.  Load-latency curve for RingNet with 4 1st level rings and 4 PGs connected at each ring, and 

one ring used at the network root (F=4 × G=4, R=1). 

 

Fig.A.VI.20.  Load-latency curve for RingNet with 5 1st level rings and 4 PGs connected at each ring, and 

one ring used at the network root (F=5 × G=4, R=1). 
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Fig.A.VI.21.  Load-latency curve for RingNet with one 1st level ring and 7 PGs connected at the ring, and 

one ring used at the network root (F=1 × G=7, R=1). 

 

Fig.A.VI.22.  Load-latency curve for RingNet with 2 1st level rings and 7 PGs connected at each ring, and 

one ring used at the network root (F=2 × G=7, R=1). 

 

Fig.A.VI.23.  Load-latency curve for RingNet with 3 1st level rings and 7 PGs connected at each ring, and 

one ring used at the network root (F=3 × G=7, R=1). 
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Fig.A.VI.24.  Load-latency curve for RingNet with 4 1st level rings and 7 PGs connected at each ring, and 

one ring used at the network root (F=4 × G=7, R=1). 

 

Fig.A.VI.25.  Load-latency curve for RingNet with 5 1st level rings and 7 PGs connected at each ring, and 

one ring used at the network root (F=5 × G=7, R=1). 

 

Fig.A.VI.26.  Load-latency curve for RingNet with one 1st level ring and 15 PGs connected at the ring, and 

one ring used at the network root (F=1 × G=15, R=1). 
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Fig.A.VI.27.  Load-latency curve for RingNet with 2 1st level rings and 15 PGs connected at each ring, and 

one ring used at the network root (F=2 × G=15, R=1). 

 

Fig.A.VI.28.  Load-latency curve for RingNet with 3 1st level rings and 15 PGs connected at each ring, and 

one ring used at the network root (F=3 × G=15, R=1). 

 

Fig.A.VI.29.  Load-latency curve for RingNet with 4 1st level rings and 15 PGs connected at each ring, and 

one ring used at the network root (F=4 × G=15, R=1). 



 

144 

 

 

Fig.A.VI.30.  Load-latency curve for RingNet with 5 1st level rings and 15 PGs connected at each ring, and 

one ring used at the network root (F=5 × G=15, R=1). 

 

Fig.A.VI.31.  Load-latency curve for RingNet with 2 1st level rings and 1 PG connected at each ring, and 2 

parallel rings used at the network root (F=2 × G=1, R=2). 

 

Fig.A.VI.32.  Load-latency curve for RingNet with 3 1st level rings and 1 PG connected at each ring, and 2 

parallel rings used at the network root (F=3 × G=1, R=2). 
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Fig.A.VI.33.  Load-latency curve for RingNet with 4 1st level rings and 1 PG connected at each ring, and 2 

parallel rings used at the network root (F=4 × G=1, R=2). 

 

Fig.A.VI.34.  Load-latency curve for RingNet with 5 1st level rings and 1 PG connected at each ring, and 2 

parallel rings used at the network root (F=5 × G=1, R=2). 

 

Fig.A.VI.35.  Load-latency curve for RingNet with 2 1st level rings and 2 PGs connected at each ring, and 2 

parallel rings used at the network root (F=2 × G=2, R=2). 
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Fig.A.VI.36.  Load-latency curve for RingNet with 3 1st level rings and 2 PGs connected at each ring, and 2 

parallel rings used at the network root (F=3 × G=2, R=2). 

 

Fig.A.VI.37.  Load-latency curve for RingNet with 4 1st level rings and 2 PGs connected at each ring, and 2 

parallel rings used at the network root (F=4 × G=2, R=2). 

 

Fig.A.VI.38.  Load-latency curve for RingNet with 5 1st level rings and 2 PGs connected at each ring, and 2 

parallel rings used at the network root (F=5 × G=2, R=2). 
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Fig.A.VI.39.  Load-latency curve for RingNet with 2 1st level rings and 3 PGs connected at each ring, and 2 

parallel rings used at the network root (F=2 × G=3, R=2). 

 

Fig.A.VI.40.  Load-latency curve for RingNet with 3 1st level rings and 3 PGs connected at each ring, and 2 

parallel rings used at the network root (F=3 × G=3, R=2). 

 

Fig.A.VI.41.  Load-latency curve for RingNet with 4 1st level rings and 3 PGs connected at each ring, and 2 

parallel rings used at the network root (F=4 × G=3, R=2). 
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Fig.A.VI.42.  Load-latency curve for RingNet with 5 1st level rings and 3 PGs connected at each ring, and 2 

parallel rings used at the network root (F=5 × G=3, R=2). 

 

Fig.A.VI.43.  Load-latency curve for RingNet with 2 1st level rings and 4 PGs connected at each ring, and 2 

parallel rings used at the network root (F=2 × G=4, R=2). 

 

Fig.A.VI.44.  Load-latency curve for RingNet with 3 1st level rings and 4 PGs connected at each ring, and 2 

parallel rings used at the network root (F=3 × G=4, R=2). 
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Fig.A.VI.45.  Load-latency curve for RingNet with 4 1st level rings and 4 PGs connected at each ring, and 2 

parallel rings used at the network root (F=4 × G=4, R=2). 

 

Fig.A.VI.46.  Load-latency curve for RingNet with 5 1st level rings and 4 PGs connected at each ring, and 2 

parallel rings used at the network root (F=5 × G=4, R=2). 

 

Fig.A.VI.47.  Load-latency curve for RingNet with 2 1st level rings and 7 PGs connected at each ring, and 2 

parallel rings used at the network root (F=2 × G=7, R=2). 
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Fig.A.VI.48.  Load-latency curve for RingNet with 3 1st level rings and 7 PGs connected at each ring, and 2 

parallel rings used at the network root (F=3 × G=7, R=2). 

 

Fig.A.VI.49.  Load-latency curve for RingNet with 4 1st level rings and 7 PGs connected at each ring, and 2 

parallel rings used at the network root (F=4 × G=7, R=2). 

 

Fig.A.VI.50.  Load-latency curve for RingNet with 5 1st level rings and 7 PGs connected at each ring, and 2 

parallel rings used at the network root (F=5 × G=7, R=2). 
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Fig.A.VI.51.  Load-latency curve for RingNet with 2 1st level rings and 15 PGs connected at each ring, and 2 

parallel rings used at the network root (F=2 × G=15, R=2). 

 

Fig.A.VI.52.  Load-latency curve for RingNet with 3 1st level rings and 15 PGs connected at each ring, and 2 

parallel rings used at the network root (F=3 × G=15, R=2). 

 

Fig.A.VI.53.  Load-latency curve for RingNet with 4 1st level rings and 15 PGs connected at each ring, and 2 

parallel rings used at the network root (F=4 × G=15, R=2). 
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Fig.A.VI.54.  Load-latency curve for RingNet with 5 1st level rings and 15 PGs connected at each ring, and 2 

parallel rings used at the network root (F=5 × G=15, R=2). 

 

Fig.A.VI.55.  Load-latency curve for RingNet with 3 1st level rings and 1 PG connected at each ring, and 3 

parallel rings used at the network root (F=3 × G=1, R=3). 

 

Fig.A.VI.56.  Load-latency curve for RingNet with 4 1st level rings and 1 PG connected at each ring, and 3 

parallel rings used at the network root (F=4 × G=1, R=3). 
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Fig.A.VI.57.  Load-latency curve for RingNet with 5 1st level rings and 1 PG connected at each ring, and 3 

parallel rings used at the network root (F=5 × G=1, R=3). 

 

Fig.A.VI.58.  Load-latency curve for RingNet with 3 1st level rings and 2 PGs connected at each ring, and 3 

parallel rings used at the network root (F=3 × G=2, R=3). 

 

Fig.A.VI.59.  Load-latency curve for RingNet with 4 1st level rings and 2 PGs connected at each ring, and 3 

parallel rings used at the network root (F=4 × G=2, R=3). 
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Fig.A.VI.60.  Load-latency curve for RingNet with 5 1st level rings and 2 PGs connected at each ring, and 3 

parallel rings used at the network root (F=5 × G=2, R=3). 

 

Fig.A.VI.61.  Load-latency curve for RingNet with 3 1st level rings and 3 PGs connected at each ring, and 3 

parallel rings used at the network root (F=3 × G=3, R=3). 

 

Fig.A.VI.62.  Load-latency curve for RingNet with 4 1st level rings and 3 PGs connected at each ring, and 3 

parallel rings used at the network root (F=4 × G=3, R=3). 
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Fig.A.VI.63.  Load-latency curve for RingNet with 5 1st level rings and 3 PGs connected at each ring, and 3 

parallel rings used at the network root (F=5 × G=3, R=3). 

 

Fig.A.VI.64.  Load-latency curve for RingNet with 3 1st level rings and 4 PGs connected at each ring, and 3 

parallel rings used at the network root (F=3 × G=4, R=3). 

 

Fig.A.VI.65.  Load-latency curve for RingNet with 4 1st level rings and 4 PGs connected at each ring, and 3 

parallel rings used at the network root (F=4 × G=4, R=3). 
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Fig.A.VI.66.  Load-latency curve for RingNet with 5 1st level rings and 4 PGs connected at each ring, and 3 

parallel rings used at the network root (F=5 × G=4, R=3). 

 

Fig.A.VI.67.  Load-latency curve for RingNet with 3 1st level rings and 7 PGs connected at each ring, and 3 

parallel rings used at the network root (F=3 × G=7, R=3). 

 

Fig.A.VI.68.  Load-latency curve for RingNet with 4 1st level rings and 7 PGs connected at each ring, and 3 

parallel rings used at the network root (F=4 × G=7, R=3). 
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Fig.A.VI.69.  Load-latency curve for RingNet with 5 1st level rings and 7 PGs connected at each ring, and 3 

parallel rings used at the network root (F=5 × G=7, R=3). 

 

Fig.A.VI.70.  Load-latency curve for RingNet with 3 1st level rings and 15 PGs connected at each ring, and 3 

parallel rings used at the network root (F=3 × G=15, R=3). 

 

Fig.A.VI.71.  Load-latency curve for RingNet with 4 1st level rings and 15 PGs connected at each ring, and 3 

parallel rings used at the network root (F=4 × G=15, R=3). 
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Fig.A.VI.72.  Load-latency curve for RingNet with 5 1st level rings and 15 PGs connected at each ring, and 3 

parallel rings used at the network root (F=5 × G=15, R=3). 

 

Fig.A.VI.73.  Load-latency curve for RingNet with 4 1st level rings and 1 PG connected at each ring, and 4 

parallel rings used at the network root (F=4 × G=1, R=4). 

 

Fig.A.VI.74.  Load-latency curve for RingNet with 5 1st level rings and 1 PG connected at each ring, and 4 

parallel rings used at the network root (F=5 × G=1, R=4). 



 

159 

 

 

Fig.A.VI.75.  Load-latency curve for RingNet with 4 1st level rings and 2 PGs connected at each ring, and 4 

parallel rings used at the network root (F=4 × G=2, R=4). 

 

Fig.A.VI.76.  Load-latency curve for RingNet with 5 1st level rings and 2 PGs connected at each ring, and 4 

parallel rings used at the network root (F=5 × G=2, R=4). 

 

Fig.A.VI.77.  Load-latency curve for RingNet with 4 1st level rings and 3 PGs connected at each ring, and 4 

parallel rings used at the network root (F=4 × G=3, R=4). 
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Fig.A.VI.78.  Load-latency curve for RingNet with 5 1st level rings and 3 PGs connected at each ring, and 4 

parallel rings used at the network root (F=5 × G=3, R=4). 

 

Fig.A.VI.79.  Load-latency curve for RingNet with 4 1st level rings and 4 PGs connected at each ring, and 4 

parallel rings used at the network root (F=4 × G=4, R=4). 

 

Fig.A.VI.80.  Load-latency curve for RingNet with 5 1st level rings and 4 PGs connected at each ring, and 4 

parallel rings used at the network root (F=5 × G=4, R=4). 
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Fig.A.VI.81.  Load-latency curve for RingNet with 4 1st level rings and 7 PGs connected at each ring, and 4 

parallel rings used at the network root (F=4 × G=7, R=4). 

 

Fig.A.VI.82.  Load-latency curve for RingNet with 5 1st level rings and 7 PGs connected at each ring, and 4 

parallel rings used at the network root (F=5 × G=7, R=4). 

 

Fig.A.VI.83.  Load-latency curve for RingNet with 4 1st level rings and 15 PGs connected at each ring, and 4 

parallel rings used at the network root (F=4 × G=15, R=4). 
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Fig.A.VI.84.  Load-latency curve for RingNet with 5 1st level rings and 15 PGs connected at each ring, and 4 

parallel rings used at the network root (F=5 × G=15, R=4). 
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VII. Simulation results of the test for RingNet access fairness 

In Appendix VII, the results of the fairness experiment are presented. The results illustrate 

the conclusions of Section 7.3. 

The parameters of the test are: 

• R: Multiplication degree of the root level, i.e., the number of parallel rings used at 

the root level, set in the range of 1 – 4. 

• F: The number of 1st level rings, set in the range of 2 – 5. A RingNet network with 

fewer 1st level rings (F) than there are parallel rings used at the root level (R) is not 

tested, as it cannot generate a 100% load.   

• G: The number of packet generators (PGs) connected to a single 1st level ring, chosen 

from the set {1, 2, 3, 4, 7, 15}. 

• Logical channel load. The aggregated load generated by all PGs is set in the range of 

27% – 100% of the theoretical throughput TRW_MAX (1). The same logical channel 

load is set for the read and write channels. 

PEs are simulated using Packet Generators (PGs). For each individual PG, the author collects 

the values of the average latency LPG expressed in clock cycles, and the values of the throughput 

TPG expressed in bits per clock cycle, for both logical channels. 

In tables, the values of LPG, and the values of TPG, calculated over all PGs (  and , 

respectively), are presented together with a standard deviation for those variables (  and 

, respectively). 

Fairness test results for each combination of R, F, and G parameters are presented in separate 

tables. 83 tables are presented in the Appendix. In Table A.VII.i, the ranges of tables are 

presented that correspond to a given value of the multiplication degree of the root level (R) and 

a given number of PGs connected to a single 1st level ring (G). Each range presented in Table 

A.VII.i comprises tables with fairness test results for a given R and G value and for an increasing 

number of 1st level rings (F). 
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TABLE A.VII.i 

SUMMARY FOR THE TABLES PRESENTED IN APPENDIX VII. 

  Multiplication degree of the root level (R) 

  1 2 3 4 

N
u

m
b

er
 o

f 
P

G
s 

co
n

n
ec

te
d

 

to
 a

 1
st
 l

ev
el

 r
in

g
 (

G
) 

1 A.VII.1 – A.VII.4 A.VII.30 – A.VII.33 A.VII.54 – A.VII.56 A.VII.72 – A.VII.73 

2 A.VII.5 – A.VII.9 A.VII.34 – A.VII.37 A.VII.57 – A.VII.59 A.VII.74 – A.VII.75 

3 A.VII.10 – A.VII.14 A.VII.38 – A.VII.41 A.VII.60 – A.VII.62 A.VII.76 – A.VII.77 

4 A.VII.15 – A.VII.19 A.VII.42 – A.VII.45 A.VII.63 – A.VII.65 A.VII.78 – A.VII.79 

7 A.VII.20 – A.VII.24 A.VII.46 – A.VII.49 A.VII.66 – A.VII.68 A.VII.80 – A.VII.81 

15 A.VII.25 – A.VII.29 A.VII.50 – A.VII.53 A.VII.69 – A.VII.71 A.VII.82 – A.VII.83 

In order to assess latency fairness, relative standard deviation is calculated according to the 

following formulas: 

c𝐿 =    (A.1) 

c𝑇 =    (A.2) 

High values of cL and cT mean that the standard deviation is relatively big, in comparison 

with the average value of a parameter. The highest observed values of cL are reported in Table 

A.VII.ii together with the network configuration they are observed for. The source table is also 

specified. Cases that are reported in Table A.VII.ii are marked in red in their source tables for 

easy identification. 

TABLE A.VII.ii 

THE HIGHEST OBSERVED RELATIVE STANDARD DEVIATIONS FOR THE AVERAGE LATENCY CALCULATED OVER 

ALL PGS. 

 

Low load  

(i.e., 26% – 27% of the 
theoretical throughput 

TRW_MAX) 

Moderate load  

(i.e., 70% – 72% of the 
theoretical throughput 

TRW_MAX) 

High load 

(i.e., 88% – 91% of the 
theoretical throughput 

TRW_MAX) 

Near saturation 

(i.e., 92% – 97% of the 
theoretical throughput 

TRW_MAX) 

Saturation 

(i.e., 100% of the 
theoretical throughput 

TRW_MAX) 
 

cL 

Network 
configuration 

(table) 
cL 

Network 
configuration 

(table) 
cL 

Network 
configuration 

(table) 
cL 

Network 
configuration 

(table) 
cL 

Network 
configuration 

(table) 

R
ea

d
 

4.2% 
F=2 × G=1, R=1 

(A.VII.1) 
3.2% 

F=2 × G=1, R=1 

(A.VII.1) 
2.8% 

F=2 × G=1, R=1 

(A.VII.1) 
2.9% 

F=2 × G=1, R=2 

(A.VII.30) 
6.8% 

F=4 × G=1, R=4 

(A.VII.72) 

W
ri

te
 

4.1% 
F=2 × G=1, R=1 

(A.VII.1) 
3.4% 

F=2 × G=3, R=1 

(A.VII.11) 
3.6% 

F=2 × G=3, R=1 

(A.VII.11) 
3.6% 

F=2 × G=3, R=1 

(A.VII.11) 
7.4% 

F=4 × G=1, R=4 

(A.VII.72) 
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For all tested network loads and for both logical channels, the highest values of cL are 

observed for small networks, with 6 PGs at most. For those cases,  is below 6 clock cycles 

if the network is not in saturation, or 13 cycles for a network in saturation. Differences in latency 

of this magnitude are negligible and latency throughput is proved for the tested RingNet 

configurations. 

The highest values of cT are reported in Table A.VII.iii together with the network 

configuration they are observed for. The source table is also specified. Cases that are reported 

in Table A.VII.iii are marked in red in their source tables for easy identification. 

TABLE A.VII.iii 

THE HIGHEST OBSERVED RELATIVE STANDARD DEVIATIONS FOR THE AVERAGE THROUGHPUT CALCULATED 

OVER ALL PGS. 

The highest values of cT are observed for the largest network configurations tested, i.e., with 

60 and 75 connected PGs. Nevertheless, the highest cT value of just 2% is reported. The author 

concludes that throughput fairness is proved for the tested RingNet configurations. 

 

 

 

 

 

 

Low load  

(i.e., 26% – 27% of the 

theoretical throughput 

TRW_MAX) 

Moderate load  

(i.e., 70% – 72% of the 

theoretical throughput 

TRW_MAX) 

High load 

(i.e., 88% – 91% of the 

theoretical throughput 

TRW_MAX) 

Near saturation 

(i.e., 92% – 97% of the 

theoretical throughput 

TRW_MAX) 

Saturation 

(i.e., 100% of the 

theoretical throughput 

TRW_MAX) 
 

cT 

Network 
configuration 

(table) 
cT 

Network 
configuration 

(table) 
cT 

Network 
configuration 

(table) 
cT 

Network 
configuration 

(table) 
cT 

Network 
configuration 

(table) 

R
ea

d
 

1.9% 
F=4 × G=15, R=1 

(A.VII.28) 
1.2% 

F=5 × G=15, R=1 

(A.VII.29) 
1.0% 

F=5 × G=15, R=1 

(A.VII.29) 
1.0% 

F=5 × G=15, R=1 

(A.VII.29) 
0.5% 

F=4 × G=15, R=1 

(A.VII.28) 

W
ri

te
 

2.0% 
F=4 × G=15, R=1 

(A.VII.28) 
1.1% 

F=5 × G=15, R=1 

(A.VII.29) 
1.1% 

F=5 × G=15, R=1 

(A.VII.29) 
1.2% 

F=5 × G=15, R=1 

(A.VII.29) 
0.5% 

F=4 × G=15, R=1 

(A.VII.28) 
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TABLE A.VII.1 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=2 × G=1, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 110 4.65 117 4.75 6.3 0.015 6.3 0.010 

71% 111 3.60 118 3.55 16.5 0.005 16.5 0.015 

88% 113 3.15 119 3.10 20.4 0.025 20.5 0.010 

92% 113 2.95 120 2.90 21.3 0.010 21.3 0.005 

100% 210 5.50 217 5.50 23.3 0.000 23.3 0.000 

Results marked in red correspond to the highest observed values of cL, which are reported in Table A.VII.ii. 

TABLE A.VII.2 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=3 × G=1, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 123 4.57 123 4.41 4.2 0.000 4.2 0.012 

72% 126 3.50 131 3.15 11.1 0.052 11.1 0.029 

89% 127 3.20 134 3.19 13.8 0.041 13.8 0.014 

94% 129 3.06 135 3.11 14.6 0.012 14.6 0.005 

100% 318 4.68 325 4.68 15.5 0.000 15.5 0.005 
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TABLE A.VII.3 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=4 × G=1, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 122 4.57 121 4.61 3.2 0.008 3.2 0.005 

72% 125 3.50 130 3.48 8.4 0.011 8.4 0.015 

90% 128 3.26 134 3.18 10.5 0.021 10.5 0.019 

96% 130 3.10 136 3.11 11.1 0.024 11.1 0.008 

100% 417 5.27 425 4.13 11.6 0.000 11.6 0.000 

TABLE A.VII.4 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=5 × G=1, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 132 4.56 139 4.64 2.5 0.014 2.5 0.012 

72% 136 3.55 142 3.71 6.7 0.022 6.7 0.010 

90% 138 3.31 145 3.18 8.4 0.020 8.4 0.019 

95% 140 3.05 147 3.17 8.8 0.016 8.8 0.020 

100% 514 5.94 521 5.90 9.3 0.000 9.3 0.000 
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TABLE A.VII.5 

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 2 PGS CONNECTED AT THE RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=1 × G=2, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 115 0.35 114 0.45 6.3 0.015 6.3 0.010 

71% 116 0.25 122 0.15 16.5 0.005 16.5 0.015 

88% 118 0.20 124 0.10 20.4 0.025 20.5 0.010 

92% 118 0.20 125 0.15 21.3 0.010 21.3 0.005 

100% 166 0.50 172 0.50 23.3 0.000 23.3 0.000 

TABLE A.VII.6 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=2 × G=2, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 127 0.89 134 0.91 3.2 0.008 3.2 0.005 

72% 130 1.98 137 1.95 8.4 0.011 8.4 0.015 

90% 132 2.44 139 2.50 10.5 0.021 10.5 0.019 

96% 134 2.64 141 2.63 11.1 0.024 11.1 0.008 

100% 297 4.46 304 0.50 11.6 0.004 11.6 0.000 

TABLE A.VII.7 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=3 × G=2, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 138 0.97 138 1.19 2.1 0.007 2.1 0.005 

73% 142 2.09 148 2.53 5.6 0.022 5.6 0.011 

90% 145 2.60 152 2.70 7.0 0.017 7.0 0.022 

96% 148 2.84 155 2.96 7.4 0.027 7.4 0.021 

100% 459 6.89 469 3.68 7.8 0.000 7.8 0.000 

   



 

169 

 

TABLE A.VII.8 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=4 × G=2, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 138 0.88 138 0.91 1.6 0.007 1.6 0.007 

73% 143 2.28 149 2.49 4.2 0.012 4.2 0.015 

91% 147 2.74 154 2.75 5.3 0.014 5.3 0.011 

97% 151 2.84 158 3.03 5.6 0.014 5.6 0.015 

100% 602 21.06 611 20.46 5.8 0.003 5.8 0.000 

TABLE A.VII.9 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=5 × G=2, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 147 3.57 154 3.77 1.3 0.008 1.3 0.005 

73% 153 2.85 160 3.15 3.4 0.012 3.4 0.008 

91% 158 3.08 165 3.15 4.2 0.021 4.2 0.011 

97% 163 3.03 169 3.19 4.5 0.012 4.5 0.014 

100% 750 19.04 762 15.14 4.7 0.000 4.7 0.004 

TABLE A.VII.10 

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 3 PGS CONNECTED AT THE RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=1 × G=3, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 115 0.78 114 0.67 4.2 0.012 4.2 0.009 

72% 117 0.66 123 0.45 11.1 0.012 11.1 0.012 

89% 119 0.53 126 0.42 13.8 0.009 13.8 0.028 

94% 120 0.45 127 0.37 14.6 0.005 14.6 0.016 

100% 209 0.82 216 0.82 15.5 0.005 15.5 0.005 
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TABLE A.VII.11 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=2 × G=3, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 132 4.72 139 5.00 2.1 0.005 2.1 0.013 

73% 136 3.44 143 4.84 5.6 0.012 5.6 0.015 

90% 139 3.19 146 5.22 7.0 0.007 7.0 0.014 

96% 142 2.70 149 5.41 7.4 0.020 7.4 0.021 

100% 390 5.55 397 3.40 7.8 0.000 7.8 0.000 

Results marked in red correspond to the highest observed values of cL, which are reported in Table A.VII.ii. 

TABLE A.VII.12 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=3 × G=3, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 141 4.45 141 4.44 1.4 0.008 1.4 0.008 

73% 147 3.52 153 3.84 3.8 0.010 3.8 0.011 

91% 151 3.20 158 3.91 4.7 0.016 4.7 0.015 

96% 155 3.05 162 3.93 5.0 0.009 5.0 0.016 

100% 594 13.56 601 9.40 5.2 0.000 5.2 0.000 

TABLE A.VII.13 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=4 × G=3, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 141 4.18 140 4.16 1.1 0.008 1.1 0.009 

73% 147 3.53 153 3.78 2.8 0.012 2.8 0.013 

91% 153 3.37 159 3.45 3.5 0.015 3.5 0.009 

96% 157 3.34 163 3.62 3.7 0.014 3.7 0.018 

100% 780 14.11 790 9.92 3.9 0.000 3.9 0.000 
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TABLE A.VII.14 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=5 × G=3, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 151 3.89 158 3.92 0.9 0.008 0.9 0.008 

73% 158 3.24 165 3.60 2.3 0.011 2.3 0.011 

91% 165 3.42 172 3.44 2.8 0.009 2.8 0.013 

97% 169 3.00 177 3.52 3.0 0.016 3.0 0.010 

100% 980 28.97 979 6.81 3.1 0.004 3.1 0.002 

TABLE A.VII.15 

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 4 PGS CONNECTED AT THE RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=1 × G=4, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 115 0.94 114 0.95 3.2 0.011 3.2 0.013 

72% 118 0.82 124 0.65 8.4 0.022 8.4 0.018 

90% 120 0.67 127 0.78 10.5 0.013 10.5 0.011 

96% 122 0.66 129 0.67 11.1 0.018 11.1 0.028 

100% 252 1.12 260 1.12 11.6 0.000 11.6 0.000 

TABLE A.VII.16 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=2 × G=4, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 132 5.00 138 4.95 1.6 0.008 1.6 0.009 

73% 137 3.64 144 3.51 4.2 0.015 4.2 0.012 

91% 141 3.04 147 3.08 5.3 0.017 5.3 0.020 

97% 145 2.82 152 2.45 5.6 0.019 5.6 0.011 

100% 478 5.61 485 5.63 5.8 0.000 5.8 0.000 

   



 

172 

 

TABLE A.VII.17 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=3 × G=4, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 144 4.68 144 4.29 1.1 0.008 1.1 0.009 

73% 151 3.54 157 3.65 2.8 0.012 2.8 0.013 

91% 157 3.25 164 3.07 3.5 0.015 3.5 0.009 

96% 161 3.34 167 2.89 3.7 0.014 3.7 0.018 

100% 729 21.70 736 19.26 3.9 0.000 3.9 0.000 

TABLE A.VII.18 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=4 × G=4, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 143 4.89 143 4.81 0.8 0.007 0.8 0.007 

73% 150 3.77 156 3.71 2.1 0.009 2.1 0.012 

91% 157 3.35 164 3.33 2.7 0.012 2.7 0.008 

97% 163 3.36 170 3.06 2.8 0.009 2.8 0.010 

100% 958 19.52 969 22.79 2.9 0.000 2.9 0.000 

TABLE A.VII.19 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=5 × G=4, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

28% 153 4.60 160 4.78 0.6 0.004 0.6 0.005 

73% 160 3.75 168 3.69 1.7 0.010 1.7 0.007 

91% 168 3.56 176 3.49 2.1 0.007 2.1 0.007 

97% 175 3.08 183 3.21 2.3 0.008 2.3 0.009 

100% 1193 22.65 1201 40.66 2.3 0.002 2.3 0.003 
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TABLE A.VII.20 

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 7 PGS CONNECTED AT THE RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=1 × G=7, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 136 1.86 135 1.92 1.8 0.011 1.8 0.007 

73% 140 1.72 146 1.64 4.8 0.016 4.8 0.006 

91% 144 1.55 151 1.53 6.0 0.021 6.0 0.018 

96% 147 1.56 155 1.49 6.4 0.021 6.4 0.012 

100% 394 2.00 401 2.00 6.6 0.000 6.6 0.000 

TABLE A.VII.21 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=2 × G=7, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 152 5.04 159 5.26 0.9 0.007 0.9 0.006 

73% 160 3.65 167 3.59 2.4 0.012 2.4 0.006 

91% 169 2.14 175 2.36 3.0 0.010 3.0 0.010 

97% 181 3.18 187 3.19 3.2 0.011 3.2 0.012 

100% 749 16.24 756 17.24 3.3 0.005 3.3 0.005 

TABLE A.VII.22 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=3 × G=7, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 162 4.91 162 4.92 0.6 0.004 0.6 0.006 

73% 170 3.94 175 4.17 1.6 0.008 1.6 0.011 

91% 178 3.26 185 3.49 2.0 0.009 2.0 0.010 

97% 185 3.41 193 3.37 2.2 0.011 2.2 0.009 

100% 1127 3.42 1134 3.38 2.2 0.000 2.2 0.002 
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TABLE A.VII.23 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=4 × G=7, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

28% 161 4.84 161 4.51 0.5 0.005 0.5 0.006 

73% 170 3.74 175 3.98 1.2 0.008 1.2 0.009 

91% 179 3.67 186 3.72 1.5 0.010 1.5 0.010 

97% 189 3.75 196 3.67 1.6 0.009 1.6 0.008 

100% 1516 15.14 1523 18.88 1.7 0.000 1.7 0.000 

TABLE A.VII.24 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=5 × G=7, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 171 4.24 178 4.43 0.4 0.006 0.4 0.006 

73% 181 3.79 188 3.94 1.0 0.007 1.0 0.008 

91% 192 4.00 200 3.82 1.2 0.008 1.2 0.009 

97% 201 3.68 210 3.75 1.3 0.007 1.3 0.008 

100% 1877 33.38 1879 25.62 1.3 0.000 1.3 0.000 

TABLE A.VII.25 

TRAFFIC STATISTICS FOR RINGNET WITH ONE 1ST LEVEL RING AND 15 PGS CONNECTED AT THE RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=1 × G=15, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 176 4.13 176 4.06 0.9 0.008 0.9 0.008 

73% 183 3.84 189 3.87 2.3 0.011 2.3 0.011 

91% 189 3.90 196 3.95 2.8 0.009 2.8 0.013 

97% 194 3.70 202 3.76 3.0 0.016 3.0 0.010 

100% 764 4.32 771 4.32 3.1 0.000 3.1 0.000 
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TABLE A.VII.26 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=2 × G=15, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

28% 192 6.34 199 6.37 0.4 0.005 0.4 0.005 

73% 203 5.27 210 5.08 1.1 0.009 1.1 0.006 

91% 214 4.64 222 4.91 1.4 0.008 1.4 0.008 

97% 225 4.12 232 4.43 1.5 0.010 1.5 0.008 

100% 1528 6.99 1536 6.99 1.5 0.000 1.5 0.000 

TABLE A.VII.27 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=3 × G=15, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 205 6.14 205 6.14 0.3 0.005 0.3 0.005 

73% 216 5.57 221 5.42 0.8 0.007 0.8 0.008 

92% 230 5.00 237 4.53 0.9 0.007 0.9 0.006 

97% 241 4.96 249 5.07 1.0 0.007 1.0 0.009 

100% 2300 6.75 2307 6.75 1.0 0.004 1.0 0.004 

TABLE A.VII.28 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=4 × G=15, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 204 6.40 204 6.27 0.2 0.004 0.2 0.004 

73% 214 5.65 220 5.36 0.6 0.006 0.6 0.006 

92% 231 5.62 237 5.47 0.7 0.006 0.7 0.007 

97% 245 5.33 252 5.59 0.8 0.007 0.8 0.006 

100% 3058 6.99 3064 6.99 0.8 0.004 0.8 0.004 

Results marked in red correspond to the highest observed values of cT, which are reported in Table A.VII.iii. 
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TABLE A.VII.29 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND ONE 

RING USED AT THE NETWORK ROOT (F=5 × G=15, R=1). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 213 6.44 220 6.42 0.2 0.003 0.2 0.003 

73% 224 5.78 231 5.39 0.5 0.005 0.5 0.005 

92% 242 5.37 249 5.74 0.6 0.006 0.6 0.006 

97% 258 5.01 266 5.57 0.6 0.006 0.6 0.007 

100% 3672 40.46 3712 33.86 0.6 0.000 0.6 0.000 

Results marked in red correspond to the highest observed values of cT, which are reported in Table A.VII.iii. 

TABLE A.VII.30 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=1, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 127 0.70 134 0.60 12.5 0.020 12.5 0.000 

69% 129 2.55 136 1.95 32.0 0.070 32.0 0.005 

85% 130 3.55 138 2.60 39.4 0.010 39.4 0.010 

92% 132 3.75 140 2.60 42.7 0.085 42.7 0.015 

100% 124 3.50 132 3.50 46.5 0.005 46.5 0.000 

Results marked in red correspond to the highest observed values of cL, which are reported in Table A.VII.ii. 

TABLE A.VII.31 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=1, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 134 4.54 134 4.44 8.4 0.012 8.4 0.019 

69% 137 3.53 142 3.23 21.4 0.033 21.3 0.045 

87% 138 3.18 145 3.11 26.9 0.014 27.0 0.014 

92% 139 3.02 146 2.91 28.5 0.012 28.4 0.000 

100% 272 5.21 296 5.19 31.0 0.000 31.0 0.000 

   



 

177 

 

TABLE A.VII.32 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=1, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 136 4.12 135 3.93 6.3 0.011 6.3 0.008 

71% 138 3.44 144 3.01 16.5 0.015 16.5 0.012 

88% 140 3.22 147 3.03 20.5 0.015 20.5 0.008 

92% 141 3.02 148 2.94 21.3 0.031 21.3 0.015 

100% 353 5.00 379 4.76 23.3 0.000 23.3 0.000 

TABLE A.VII.33 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=1, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 147 3.82 154 3.84 5.1 0.014 5.1 0.011 

71% 150 3.25 158 3.22 13.1 0.034 13.1 0.009 

89% 153 2.87 160 3.13 16.5 0.020 16.5 0.011 

95% 155 2.91 162 3.05 17.7 0.021 17.7 0.030 

100% 436 5.42 469 4.58 18.6 0.000 18.6 0.000 

TABLE A.VII.34 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=2, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 138 1.05 145 0.95 6.3 0.011 6.3 0.008 

71% 141 2.78 148 2.97 16.5 0.015 16.5 0.012 

88% 143 3.73 151 4.55 20.5 0.015 20.5 0.008 

92% 144 3.68 152 4.85 21.3 0.031 21.3 0.015 

100% 193 5.52 200 5.52 23.3 0.000 23.3 0.000 
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TABLE A.VII.35 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=2, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 149 0.96 149 1.13 4.2 0.017 4.2 0.007 

72% 153 2.52 159 2.67 11.1 0.022 11.1 0.011 

89% 155 2.98 162 2.82 13.8 0.024 13.8 0.018 

94% 156 3.11 163 2.80 14.6 0.020 14.6 0.017 

100% 341 2.64 365 1.77 15.5 0.005 15.5 0.004 

TABLE A.VII.36 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=2, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 149 1.02 149 1.00 3.2 0.012 3.2 0.008 

72% 153 2.48 159 2.61 8.4 0.017 8.4 0.019 

90% 156 2.95 163 2.98 10.5 0.019 10.5 0.015 

96% 158 3.09 165 3.00 11.1 0.016 11.1 0.013 

100% 449 8.59 478 9.68 11.6 0.000 11.6 0.000 

TABLE A.VII.37 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=2, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 160 1.06 167 0.87 2.5 0.010 2.6 0.007 

72% 165 2.41 172 2.47 6.7 0.020 6.7 0.019 

90% 168 2.83 175 2.80 8.4 0.012 8.4 0.020 

95% 169 3.16 176 3.02 8.8 0.020 8.8 0.012 

100% 550 8.48 589 14.32 9.3 0.000 9.3 0.000 
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TABLE A.VII.38 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=3, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 138 1.16 145 1.12 4.2 0.010 4.2 0.015 

72% 142 2.76 149 3.01 11.1 0.018 11.1 0.020 

89% 145 3.80 152 4.64 13.8 0.013 13.8 0.015 

94% 146 4.00 154 5.28 14.7 0.017 14.6 0.024 

100% 236 5.56 238 0.82 15.5 0.005 15.5 0.004 

TABLE A.VII.39 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=3, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 149 1.10 149 1.22 2.8 0.011 2.8 0.008 

72% 153 2.61 160 2.82 7.4 0.021 7.4 0.013 

90% 156 2.93 163 3.08 9.3 0.031 9.3 0.020 

95% 159 3.01 165 3.01 9.9 0.021 9.8 0.017 

100% 407 4.15 430 6.16 10.3 0.003 10.3 0.003 

TABLE A.VII.40 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=3, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 152 4.19 152 4.07 2.1 0.009 2.1 0.013 

73% 157 3.38 163 3.36 5.6 0.019 5.6 0.017 

90% 160 3.18 167 3.31 7.0 0.016 7.0 0.013 

96% 163 3.07 170 3.29 7.4 0.014 7.4 0.016 

100% 541 5.94 571 6.71 7.8 0.000 7.8 0.000 
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TABLE A.VII.41 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=3, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 162 3.84 169 3.89 1.7 0.007 1.7 0.011 

72% 168 3.31 175 3.31 4.5 0.012 4.5 0.014 

91% 172 3.09 179 3.38 5.6 0.012 5.6 0.012 

96% 175 3.08 182 3.29 6.0 0.013 6.0 0.022 

100% 665 7.40 699 8.64 6.2 0.004 6.2 0.004 

TABLE A.VII.42 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=4, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 143 4.75 150 4.64 3.2 0.010 3.2 0.017 

72% 148 2.91 155 2.56 8.4 0.016 8.4 0.014 

90% 151 1.94 159 1.13 10.5 0.018 10.5 0.019 

96% 154 1.41 162 0.67 11.1 0.015 11.1 0.035 

100% 280 5.61 287 5.61 11.6 0.003 11.6 0.000 

TABLE A.VII.43 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=4, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 152 4.53 152 4.35 2.1 0.009 2.1 0.013 

73% 158 3.27 164 3.26 5.6 0.019 5.6 0.017 

90% 161 2.96 168 3.04 7.0 0.016 7.0 0.013 

96% 163 3.05 170 3.11 7.4 0.014 7.4 0.016 

100% 476 6.04 500 5.41 7.8 0.000 7.8 0.000 
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TABLE A.VII.44 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=4, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 154 4.81 154 4.70 1.6 0.007 1.6 0.010 

73% 160 3.58 166 3.55 4.2 0.015 4.2 0.009 

91% 164 3.29 171 3.30 5.3 0.014 5.3 0.016 

97% 167 3.14 174 3.16 5.6 0.012 5.6 0.015 

100% 632 12.20 661 12.42 5.8 0.000 5.8 0.000 

TABLE A.VII.45 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=4, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 166 4.68 173 4.75 1.3 0.006 1.3 0.010 

73% 172 3.68 179 3.60 3.4 0.011 3.4 0.011 

91% 177 3.34 184 3.24 4.2 0.016 4.2 0.015 

97% 180 3.22 187 3.24 4.5 0.012 4.5 0.010 

100% 780 11.03 812 17.41 4.7 0.004 4.7 0.004 

TABLE A.VII.46 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=7, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 162 3.93 169 3.93 1.8 0.010 1.8 0.009 

73% 170 3.09 177 2.93 4.8 0.012 4.8 0.016 

91% 175 2.40 183 1.85 6.0 0.017 6.0 0.015 

96% 179 2.22 187 1.42 6.4 0.015 6.4 0.012 

100% 422 5.85 428 5.85 6.7 0.000 6.7 0.000 
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TABLE A.VII.47 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=7, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 171 3.53 171 3.45 1.2 0.007 1.2 0.008 

73% 178 3.44 184 3.40 3.2 0.012 3.2 0.009 

91% 183 3.18 190 3.37 4.0 0.016 4.0 0.011 

96% 186 3.46 193 3.31 4.3 0.012 4.3 0.015 

100% 667 11.84 691 11.18 4.4 0.000 4.4 0.000 

TABLE A.VII.48 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=7, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 173 4.52 174 4.70 0.9 0.006 0.9 0.007 

73% 180 3.95 186 3.72 2.4 0.010 2.4 0.011 

91% 186 3.79 193 3.62 3.0 0.010 3.0 0.013 

97% 190 3.74 197 3.62 3.2 0.015 3.2 0.015 

100% 892 7.94 916 8.07 3.3 0.005 3.3 0.005 

TABLE A.VII.49 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=7, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 184 4.45 191 4.44 0.7 0.006 0.7 0.006 

73% 190 3.83 197 3.80 1.9 0.011 1.9 0.010 

91% 197 3.69 204 3.55 2.4 0.010 2.4 0.011 

97% 202 3.74 209 3.59 2.6 0.013 2.6 0.012 

100% 1108 12.34 1153 5.75 2.7 0.000 2.7 0.000 

   



 

183 

 

TABLE A.VII.50 

TRAFFIC STATISTICS FOR RINGNET WITH 2 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=2 × G=15, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 204 6.22 211 6.06 0.9 0.008 0.9 0.007 

73% 213 4.63 221 4.45 2.3 0.010 2.3 0.007 

91% 221 4.12 228 3.94 2.8 0.012 2.8 0.010 

97% 226 3.90 234 3.82 3.0 0.011 3.0 0.014 

100% 792 6.99 798 6.99 3.1 0.000 3.1 0.000 

TABLE A.VII.51 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=15, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 213 6.04 213 6.14 0.6 0.005 0.6 0.006 

73% 221 5.22 227 5.01 1.5 0.008 1.5 0.008 

91% 229 5.09 236 5.21 1.9 0.010 1.9 0.009 

97% 235 5.03 242 4.78 2.0 0.008 2.0 0.012 

100% 1257 15.60 1281 13.84 2.1 0.000 2.1 0.000 

TABLE A.VII.52 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=15, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

28% 215 6.29 215 6.22 0.4 0.006 0.4 0.005 

73% 223 5.51 229 5.41 1.1 0.006 1.1 0.007 

91% 232 5.15 238 5.23 1.4 0.009 1.4 0.009 

97% 238 4.91 246 5.00 1.5 0.009 1.5 0.009 

100% 1671 28.19 1700 25.02 1.6 0.000 1.6 0.000 
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TABLE A.VII.53 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 2 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=15, R=2). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 227 6.31 234 6.37 0.3 0.005 0.3 0.005 

73% 235 5.47 242 5.42 0.9 0.006 0.9 0.007 

91% 244 5.19 252 5.24 1.1 0.009 1.1 0.007 

97% 253 5.06 261 5.00 1.2 0.009 1.2 0.008 

100% 2003 6.91 2037 9.90 1.2 0.000 1.2 0.000 

TABLE A.VII.54 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=1, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 142 4.57 142 4.54 12.5 0.033 12.5 0.019 

69% 147 3.29 153 3.07 32.0 0.019 32.0 0.019 

85% 150 2.94 157 2.57 39.4 0.034 39.4 0.037 

92% 152 2.71 159 2.03 42.7 0.037 42.7 0.050 

100% 152 7.79 163 9.72 46.5 0.005 46.5 0.000 

TABLE A.VII.55 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=1, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 141 4.02 141 3.80 9.5 0.022 9.5 0.004 

70% 145 2.81 151 2.68 24.4 0.039 24.4 0.025 

86% 147 2.37 155 2.19 30.1 0.040 30.1 0.032 

92% 149 2.41 157 2.20 32.0 0.034 32.0 0.029 

100% 311 4.15 334 5.50 34.9 0.000 34.9 0.000 
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TABLE A.VII.56 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=1, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 152 3.67 159 3.67 7.5 0.026 7.5 0.019 

71% 156 2.56 163 2.85 19.7 0.030 19.7 0.031 

87% 158 2.30 166 2.70 24.4 0.029 24.4 0.023 

92% 159 2.21 167 2.64 25.6 0.014 25.6 0.029 

100% 374 4.40 402 7.57 27.9 0.000 27.9 0.000 

TABLE A.VII.57 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=2, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 157 0.92 158 1.05 6.3 0.016 6.3 0.009 

71% 163 2.40 170 2.55 16.5 0.026 16.5 0.018 

88% 167 3.40 175 2.86 20.5 0.012 20.5 0.026 

92% 169 3.33 177 3.01 21.3 0.016 21.3 0.024 

100% 220 9.00 224 5.20 23.3 0.000 23.3 0.000 

TABLE A.VII.58 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=2, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 155 2.64 155 2.55 4.7 0.015 4.7 0.012 

72% 160 2.07 167 2.01 12.5 0.026 12.5 0.014 

89% 163 2.25 171 1.98 15.5 0.031 15.5 0.027 

95% 165 2.38 173 1.97 16.5 0.020 16.5 0.025 

100% 365 3.22 393 4.79 17.4 0.000 17.5 0.005 
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TABLE A.VII.59 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=2, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 165 3.34 172 3.21 3.8 0.007 3.8 0.018 

72% 170 2.85 178 2.87 10.0 0.018 10.0 0.018 

89% 173 2.94 181 2.97 12.5 0.019 12.5 0.024 

94% 174 2.95 183 2.89 13.1 0.014 13.1 0.021 

100% 451 1.73 475 3.60 14.0 0.005 14.0 0.003 

TABLE A.VII.60 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=3, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 158 1.86 159 1.97 4.2 0.009 4.2 0.016 

72% 164 2.83 172 2.93 11.1 0.014 11.1 0.017 

89% 169 3.55 178 3.10 13.8 0.019 13.8 0.024 

94% 171 3.77 181 3.06 14.6 0.016 14.6 0.020 

100% 264 9.02 275 7.40 15.5 0.005 15.5 0.005 

TABLE A.VII.61 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=3, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 159 1.79 159 1.76 3.2 0.010 3.2 0.012 

72% 164 1.91 172 1.90 8.4 0.021 8.4 0.014 

90% 167 2.15 176 2.09 10.5 0.020 10.5 0.020 

96% 170 2.30 178 2.16 11.1 0.018 11.1 0.024 

100% 432 3.89 455 6.16 11.6 0.003 11.6 0.000 
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TABLE A.VII.62 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=3, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 168 3.68 175 3.69 2.5 0.009 2.6 0.010 

72% 174 3.09 182 3.22 6.7 0.016 6.7 0.014 

90% 177 3.09 185 3.00 8.4 0.022 8.4 0.016 

95% 179 2.98 187 2.98 8.8 0.018 8.8 0.015 

100% 533 8.59 558 10.69 9.3 0.000 9.3 0.000 

TABLE A.VII.63 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=4, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 162 4.40 162 4.13 3.2 0.010 3.2 0.012 

72% 169 3.25 177 2.91 8.4 0.021 8.4 0.014 

90% 174 2.77 183 2.51 10.5 0.020 10.5 0.020 

96% 177 3.01 187 2.33 11.1 0.018 11.1 0.024 

100% 308 9.05 318 10.42 11.6 0.003 11.6 0.000 

TABLE A.VII.64 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=4, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 161 3.61 162 3.51 2.4 0.010 2.4 0.011 

72% 168 2.63 175 2.45 6.3 0.018 6.3 0.010 

90% 171 2.29 180 2.07 7.9 0.020 7.9 0.015 

96% 174 2.37 183 2.11 8.4 0.021 8.4 0.023 

100% 494 4.89 515 4.89 8.7 0.002 8.7 0.000 
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TABLE A.VII.65 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=4, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 172 3.41 179 3.29 1.9 0.011 1.9 0.011 

73% 178 2.86 186 2.41 5.1 0.016 5.1 0.014 

91% 182 2.69 191 2.14 6.3 0.019 6.3 0.018 

97% 186 2.59 194 2.01 6.7 0.016 6.7 0.017 

100% 610 4.85 633 7.90 7.0 0.000 7.0 0.000 

TABLE A.VII.66 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=7, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 181 3.97 181 3.91 1.8 0.008 1.8 0.009 

73% 190 3.66 198 3.38 4.8 0.017 4.8 0.014 

91% 197 3.38 206 3.12 6.0 0.017 6.0 0.016 

96% 202 3.42 211 2.45 6.4 0.019 6.4 0.019 

100% 449 9.20 456 9.20 6.7 0.000 6.7 0.000 

TABLE A.VII.67 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=7, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 180 3.41 181 3.23 1.4 0.010 1.4 0.007 

73% 188 3.03 196 2.91 3.6 0.009 3.6 0.011 

91% 193 2.84 202 2.67 4.5 0.014 4.5 0.012 

96% 196 2.82 205 2.82 4.8 0.017 4.8 0.014 

100% 674 3.69 696 2.51 5.0 0.003 5.0 0.003 
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TABLE A.VII.68 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=7, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 190 4.02 197 3.85 1.1 0.007 1.1 0.007 

73% 197 3.44 205 3.23 2.9 0.011 2.9 0.013 

91% 203 3.37 211 2.99 3.6 0.012 3.6 0.013 

97% 207 3.25 215 2.90 3.9 0.014 3.8 0.013 

100% 830 7.14 856 6.31 4.0 0.000 4.0 0.000 

TABLE A.VII.69 

TRAFFIC STATISTICS FOR RINGNET WITH 3 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=3 × G=15, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 223 5.94 224 5.74 0.9 0.006 0.9 0.007 

73% 235 4.80 243 4.68 2.3 0.011 2.3 0.007 

91% 243 4.62 254 4.52 2.8 0.010 2.8 0.012 

97% 249 5.01 260 4.29 3.0 0.012 3.0 0.010 

100% 819 9.97 830 11.64 3.1 0.002 3.1 0.000 

TABLE A.VII.70 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=15, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 222 5.50 223 5.60 0.6 0.005 0.6 0.006 

73% 232 4.68 240 4.67 1.7 0.009 1.7 0.010 

91% 239 4.50 248 4.45 2.1 0.009 2.1 0.010 

97% 244 4.70 254 4.28 2.3 0.009 2.3 0.010 

100% 1188 11.59 1210 15.96 2.3 0.001 2.3 0.001 

   



 

190 

 

TABLE A.VII.71 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 3 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=15, R=3). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 233 5.42 240 5.21 0.5 0.005 0.5 0.006 

73% 241 4.89 249 4.75 1.4 0.009 1.4 0.008 

91% 249 4.86 258 4.59 1.7 0.009 1.7 0.009 

97% 254 4.72 263 4.48 1.8 0.009 1.8 0.010 

100% 1441 7.66 1466 6.17 1.9 0.000 1.9 0.000 

TABLE A.VII.72 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=1, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 145 4.36 144 4.43 12.5 0.029 12.5 0.025 

69% 149 3.43 154 3.08 32.0 0.034 32.0 0.029 

85% 152 3.13 159 2.68 39.4 0.020 39.4 0.011 

92% 155 2.88 162 2.27 42.7 0.043 42.7 0.038 

100% 156 10.59 168 12.39 46.5 0.005 46.5 0.004 

Results marked in red correspond to the highest observed values of cL, which are reported in Table A.VII.ii. 

TABLE A.VII.73 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 1 PG CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=1, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 154 4.55 161 4.65 10.0 0.012 10.1 0.012 

69% 158 3.80 166 4.34 25.6 0.014 25.6 0.029 

86% 162 3.80 168 4.00 32.0 0.046 32.0 0.057 

92% 163 3.45 170 3.93 34.2 0.038 34.1 0.022 

100% 349 4.80 368 4.46 37.2 0.005 37.2 0.005 
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TABLE A.VII.74 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=2, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 159 3.05 158 3.35 6.3 0.026 6.3 0.017 

71% 164 3.19 171 2.82 16.5 0.020 16.5 0.025 

88% 169 3.01 177 2.78 20.5 0.031 20.5 0.031 

92% 170 3.28 179 2.64 21.3 0.034 21.3 0.040 

100% 223 9.13 230 12.72 23.3 0.000 23.3 0.000 

TABLE A.VII.75 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 2 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=2, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 168 4.40 175 4.47 5.1 0.015 5.1 0.016 

71% 173 4.34 180 4.02 13.1 0.014 13.1 0.021 

89% 177 4.02 184 4.26 16.5 0.021 16.5 0.025 

95% 179 4.02 185 4.01 17.7 0.025 17.7 0.024 

100% 401 4.33 423 5.01 18.6 0.000 18.6 0.000 

TABLE A.VII.76 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=3, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 162 2.82 162 2.57 4.2 0.009 4.2 0.014 

72% 169 3.12 175 2.90 11.1 0.018 11.1 0.024 

89% 174 2.96 182 2.49 13.8 0.025 13.8 0.023 

94% 176 2.91 185 2.03 14.6 0.023 14.6 0.024 

100% 272 9.49 279 9.49 15.5 0.005 15.5 0.004 
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TABLE A.VII.77 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 3 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=3, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 171 4.36 178 4.22 3.4 0.010 3.4 0.007 

72% 178 4.01 185 4.03 9.0 0.013 9.0 0.015 

90% 181 3.84 188 3.80 11.1 0.019 11.1 0.014 

96% 184 3.88 191 3.63 11.9 0.025 11.9 0.017 

100% 459 6.88 481 6.18 12.4 0.000 12.4 0.000 

TABLE A.VII.78 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=4, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 165 4.15 165 4.23 3.2 0.011 3.2 0.012 

72% 172 3.36 179 2.90 8.4 0.021 8.4 0.023 

90% 177 3.25 186 2.58 10.5 0.026 10.5 0.032 

96% 181 2.97 191 2.13 11.1 0.019 11.1 0.020 

100% 316 10.11 323 15.35 11.6 0.002 11.6 0.002 

TABLE A.VII.79 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 4 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=4, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 175 4.34 182 4.24 2.5 0.013 2.6 0.010 

72% 182 3.91 189 3.64 6.7 0.016 6.7 0.017 

90% 186 3.61 194 3.42 8.4 0.017 8.4 0.016 

95% 188 3.73 195 3.46 8.8 0.020 8.8 0.021 

100% 515 8.75 538 7.64 9.3 0.000 9.3 0.000 
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TABLE A.VII.80 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=7, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 184 3.90 184 3.60 1.8 0.009 1.8 0.008 

73% 193 3.51 200 2.99 4.8 0.013 4.8 0.014 

91% 199 3.32 207 2.88 6.0 0.017 6.0 0.018 

96% 204 3.14 213 2.00 6.4 0.015 6.4 0.019 

100% 454 12.46 462 12.46 6.7 0.000 6.7 0.000 

TABLE A.VII.81 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 7 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=7, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 193 4.67 200 4.61 1.5 0.008 1.5 0.008 

73% 202 4.31 209 4.10 3.9 0.014 3.9 0.016 

91% 208 4.04 215 3.80 4.8 0.013 4.8 0.015 

96% 211 4.15 218 3.75 5.1 0.011 5.1 0.017 

100% 689 6.11 708 6.42 5.3 0.000 5.3 0.000 

TABLE A.VII.82 

TRAFFIC STATISTICS FOR RINGNET WITH 4 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=4 × G=15, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 226 5.86 226 5.85 0.9 0.008 0.9 0.007 

73% 238 5.19 246 4.64 2.3 0.009 2.3 0.011 

91% 247 4.93 257 4.39 2.8 0.013 2.8 0.014 

97% 254 4.57 263 3.97 3.0 0.011 3.0 0.014 

100% 824 13.04 834 14.96 3.1 0.002 3.1 0.002 
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TABLE A.VII.83 

TRAFFIC STATISTICS FOR RINGNET WITH 5 1ST LEVEL RINGS AND 15 PGS CONNECTED AT EACH RING, AND 4 

PARALLEL RINGS USED AT THE NETWORK ROOT (F=5 × G=15, R=4). 

Load (percentage 

of the throughput 

TRW_MAX (1)) 

Average latency (clock cycles) Average throughput (bits per cycle) 

Read Write Read Write 

        

27% 236 5.97 243 5.92 0.7 0.007 0.7 0.006 

73% 246 5.67 254 5.29 1.8 0.010 1.8 0.009 

91% 254 5.25 262 5.03 2.3 0.012 2.3 0.009 

97% 259 5.37 267 5.00 2.4 0.011 2.4 0.010 

100% 1157 6.93 1175 8.54 2.5 0.000 2.5 0.000 
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