
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.0429000

Arithmetically fast position transformation for
view synthesis and depth estimation
KRZYSZTOF WEGNER1 (Senior Member, IEEE), TOMASZ GRAJEK2 (Senior Member, IEEE),
KRZYSZTOF KLIMASZEWSKI 2
1Mucha sp. z o.o., ul. Szelagowska 17, 61-626 Poznan
2Poznan University of Technology, pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, Poland

Corresponding author: Krzysztof Klimaszewski (e-mail: krzysztof.klimaszewski@put.poznan.pl).

Project funded by The National Centre for Research and Development in the LIDER Programme (LIDER/34/0177/L-8/16/NCBR/2017).
The work was supported by the Ministry of Education and Science, Poland.

ABSTRACT In this paper we present a method of fast computation of matrix transformation in the process
of position transformation of objects of the scene between different, virtual or real, camera positions. The
process finds extensive use in virtual view generation in Free Viewpoint Video (FVV) and virtual reality
applications as well as in depth estimation algorithms. The proposed method relies on the reformulation of
the matrix equation used in the process. As a result, the number of necessary arithmetic operations is reduced
and some of the calculations can be reused for consecutive pixel position transformations. The presented
algorithm produces identical output as an unoptimized algorithm with approximately 22% reduction of the
processing time averaged over the examined representative test sequences.

INDEX TERMS Depth estimation, DIBR, Multiview and depth, Position transformation, View synthesis

I. INTRODUCTION

IN many contemporary applications that focus on the pro-
cessing of 3D scenes, it is necessary to convey information

about the 3D structure of the scene. Such information may
be later used for displaying the correct view for a given
viewpoint in immersive video [1] applications, for a user
wearing a head-mounted display or even for a regular display
[2]. Usually, the information about the structure of the scene
is stored in a depth map - a grayscale image that accompanies
a regular RGB image of a scene recorded by a regular camera.
The resolution of a depth map is usually the same as the
resolution of the RGB image. Each pixel of the depth map for
an RGB image from a given camera has a value dependent
on the distance between the camera and the object of the
scene depicted in the co-located RGB image pixel. Usually,
the dependence is non-linear. A set of images from different
cameras, recording a given scene from different points, to-
gether with the corresponding depth maps for each image,
can be used to generate another, virtual view of the scene,
from a point that was not occupied by any camera during the
recording, in a process called depth image based rendering
(DIBR) [3] [4] [5].

The are two major applications of DIBR: view synthesis
as the most obvious one and the less obvious one: depth esti-
mation. In both of them, the projection of the point position

from one view to the other plays a crucial role. The process
of reprojection is the most important one used in DIBR and
in order to obtain a single frame of a virtual view, it has to be
performed for every pixel of all of the considered real views
together with the corresponding depth maps. Therefore, the
speed of the reprojection process significantly influences the
overall performance of the respective algorithms. The usual
method of performing a reprojection in a multiview system
is based on the relationships stemming from the projective
geometry. The process involves matrix calculations that, in a
general case, can not be avoided. Although for some systems,
a much simpler version of the reprojection algorithm can be
used, but that is only true if the images from cameras are rec-
tified. The accurate rectification process is possible only for
up to three cameras. An approximate method, when applied
to systems with more cameras, introduces additional errors.
For most contemporary systems the rectification process for
all cameras at once is neither possible nor desirable.

The first significant application of reprojection algorithms
is view synthesis. In the process of view synthesis, many
problems are usually encountered that can be overcome by
additional reprojection operations. Among the problems is the
one in which the image may be produced using inconsistent
depth [6], so further processing is necessary, including a
repeated reprojection operation. Another problem that some-

VOLUME 11, 2023 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

times poses an important source of errors is a finite resolution
of the depth map and image, along with the quantized nature
of depth values. The ways to overcome those problems, again,
by using the reprojection algorithm are described in the liter-
ature, like in [7].

Since in practice, this reprojection process does not gen-
erate a full image, there usually are some areas of the image
that were not supplied with any information. Regardless of
the mitigation methods cited above, there usually are some
such areas of the image. Those areas need to be artificially
filled with information that is likely to be perceived as correct
information for the given part of the image. Therefore, after
point transformation, other processing like image inpainting
[8] completes the view synthesis process.

The view synthesis process has been studied in the lit-
erature for many years now. Starting from the idea of free
viewpoint television and 3D television [9] [10], different
algorithms and use cases have been studied [11] [12]. The
study of view synthesis algorithms and systems is ongoing,
newly released papers deal with different shortcomings of
existing algorithms, like the existence of gaps in the virtual
view and the need to fill them [13] as well as prevent the
occurrence of artifacts of different kind [14]. Some work is
also done in order to speed up the process of view synthesis. In
[15] authors implement a method for virtual view generation,
based on patches and the use of a GPU. The use of the patches
is justified by the fact that it is faster than the pixel-wise view
synthesis. Other papers consider different improvements in
the view synthesis algorithm by preprocessing the input data
in order to improve the final output of the view synthesis [16].
The authors of the paper [17] propose amethod of virtual view
synthesis based on the interpolation of data from different real
views of the scene. The view synthesis process is also useful
for view matching, in a similar way as described in [18]. At
the same time the estimation is performed for the location of
cameras and the structure of the scene.

The CPU-based algorithm for view synthesis using a re-
projection based on matrix calculations is a View Synthe-
sis Reference Software (VSRS). View Synthesis Reference
Software is an implementation of a view synthesis algorithm
developed byMPEG of ISO in the course of immersive media
standardization effort with a significant contribution of the
author of this paper [19].

A second area of application of the reprojection algorithms
is depth map estimation. Depth estimation is a process of gen-
erating a depth map for a given image. A depth map includes
information about the distances of individual points of the
image from the camera that was used to record that image.
The said estimation is a process of checking the similarity
of parts of one image to the parts in the second image. For
each part of the first image, the reprojection algorithm is used
for all considered depth values. The part of the image gets
reprojected onto the second image. For each reprojection, the
so-called reprojection error (the difference between the part
of the second image and the reprojected to that image part
of the first image) is calculated. Finally, the error values are

compared and the lowest is found. The depth value for which
this reprojection was performed is then considered to be the
proper one for the given part of the first image.
In the simplest arrangement of a stereo pair of cameras,

both images are rectified [20] and the correspondence search
is performed along a horizontal direction only. It is the sim-
plest scenario, for which the reprojection procedure is very
simple and does not require any involved calculations. In
more general cases, however, the correspondence search must
be performed along so called epipolar lines [21]. In such
cases, the position of a given point of one of the images is
projected many times to the other image in order to calculate
and check reprojection error. The general case of reprojection
involves a significant amount of computations and transfor-
mations and therefore can consume significant time.
There are two distinct groups of algorithms for depth es-

timation. The first group consists of traditional algorithms
that seek to minimize a certain, usually global, cost function
in the process of the depth estimation [22] [23] [24] [25].
In the depth estimation algorithm, some additional data may
be used, like some low-resolution active depth sensors [26]
[27]. In this group of algorithms, the reprojection process is
extensively used at many stages of the processing. One of
the most important properties of those traditional algorithms
is the relatively low quality of the generated depth maps,
especially when no additional information is used, and sig-
nificant processing time that is required to obtain depth maps
of reasonable quality.
Recently a lot of researchers have focused on deep learning

algorithms for obtaining depth maps. This kind of algorithms
constitutes the second group of depth estimation algorithms.
The reprojection process is commonly used during the learn-
ing process of such neural networks. In the paper [28] the
authors use the process they call warping, a reprojection algo-
rithm that is used to obtain the error metric for the depth map
generated by the neural network. The results demonstrate the
superior performance of deep learning depth map generation
algorithms over the traditional ones. The advantage of such
algorithms is the ability to perform depth estimation much
faster and of much higher quality. The recently developed
algorithms, like the ones presented in [29] [30] [31] [32] show
the big potential of the deep neural networks in applications
of depth map generation. The use of reprojection in this group
of depth estimation algorithms can be found in the process of
network training and in providing initial data for key points
or as initial data in the absence of the depth data from another
source.
The use of deep learning algorithms to generate depthmaps

does have some significant issues that can be overcome by the
use of a more traditional reprojection-based depth estimation.
The mentioned deep learning-based algorithms are trained on
very specific sets of training data, that are usually prepro-
cessed to a significant extent. Rectification is applied to stereo
data used for training - a step that is not necessary for the
reprojection-based algorithms. Also, reprojection-based al-
gorithms can provide accurate depth values for scene objects

2 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

- a feature that can not be guaranteed for some deep learning-
based algorithms. In the recent paper [33], however, the au-
thors demonstrate an entire system for free-viewpoint video,
starting from the acquisition setup, depth map generation, and
virtual view synthesis. The authors demonstrate a real-time
performance of the whole system with good quality of virtual
views, which is an outstanding achievement. The process of
image reprojection is used in the virtual view synthesis, which
would be able to utilize the optimization presented in our
paper.

The deep learning algorithms are also used to post-process
depth maps, as for example in [34], where they are used to
produce a reduced size depth maps for thumbnail generation.
Depth map optimization can also be performed using an ana-
lytic approach, as the same group of researchers demonstrate
in a more recent paper [35].

Regardless the application, the use of the pixel-wise repro-
jection algorithm, in its general form, with matrix calcula-
tions, is suited for cases of arbitrary camera positioning and
for cases where cameras used in the system have different
intrinsic parameters. The usual, direct form of applying the
algorithm can be, however, as will be shown in this paper,
significantly optimized for speed while providing exactly the
same numerical results. In this paper we are presenting a
way of projection operation organization that is mathemati-
cally equivalent to commonly used implementation [19] yet
resulting in vast performance improvement. The work is an
extension of the findings of the paper [36], where authors
pursue the aim of increasing the performance of the virtual
view synthesis by applying vector calculations provided by
modern general purpose processors. It is also shown that some
improvement of the performance can be obtained without the
use of any specialized hardware extensions. This improve-
ment can therefore be applied regardless the hardware used
to perform the reprojection algorithm. In this paper, we show
a detailed derivation of the necessary modifications to the
algorithm, that has been lacking in the literature. We also
study the details of the performance improvement and give
experimental results for some representative test sequences.

The remaining parts of the paper are organized as follows:
first, we show how the position transformation operation is
derived, then we discuss commonly used implementation of
this operation, and then we present a new formulation of the
transformation operation. Finally, we present our algorithm
for fast position transformation and show how it compares to
the algorithm used in the reference software.

II. MULTIVIEW GEOMETRY - REVIEW
Let us consider a point M in 3D space observed by two
cameras simultaneously (Fig 1). Position of pointM in world
3D space is given by homogeneous coordinates [21]

M = [X ,Y ,Z , 1]T , (1)

where X ,Y ,Z are coordinates in the world 3D space.

Y

X
Z

M
M = [X ,Y ,Z , 1]T

u

v

u

v
m1

m1 = [u1, v1, 1]
T

m2

m2 = [u2, v2, 1]
T

Camera 1

Camera 2

FIGURE 1. Projections m1 and m2 of point M onto image planes of
Camera 1 and Camera 2

Positions m1 and m2 of projections of point M onto the
image planes of two considered cameras are expressed by
homogenous coordinates as follows:

m1 = [u1, v1, 1]
T
,

m2 = [u2, v2, 1]
T
,

(2)

where u1, v1, u2, v2 are coordinates on a Camera 1 and Cam-
era 2 image planes.
When reprojection is attempted, one must find the rela-

tionship between the coordinates of projections m1 and m2.
Both m1 and m2 are defined in coordinate systems of their
respective camera image planes. The only common point for
these projections is the point M .
Positions of points m1, m2 are projections of a point M

seen by Camera 1 and Camera 2. They can be derived by a
projection of the 3D position of pointM onto the image plane
of Camera 1 and Camera 2 through projection matrices P1

and P2 that are defined for both cameras with the following
formulas:

m′
1 = P1 ·M,

m′
2 = P2 ·M,

(3)

where, for simplification, vectors m′
1 and m′

2 have been
introduced. Vectors m′

1 and m′
2 define position of m1 and

m2 on image plane of Camera 1 and Camera 2:

m′
1 =

[
z1 ·m1

T , 1
]T

= [z1 · u1, z1 · v1, z1, 1]T ,

m′
2 =

[
z2 ·m2

T , 1
]T

= [z2 · u2, z2 · v2, z2, 1]T .
(4)

This definition of vectorm′
1 (and by analogym′

2) shows that
vector m′

1 is homogeneous extension of position vector m1

multiplied by scalar z1.
By inversion of equation (3) one can obtain position of

point M in global 3D coordinate system based on position
of point m1 or m2 seen by camera 1 or 2:

m′
1 = P1 ·M ⇒M = P1

−1 ·m′
1,

m′
2 = P2 ·M ⇒M = P2

−1 ·m′
2.

(5)

Substituting the position of point M obtained from the
image of point M seen by Camera 1 (m1) into the projection
equation of Camera 2, the relationship between the position

VOLUME 11, 2023 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

of both projections of point M onto the image planes of both
cameras can be obtained.

m′
1 = P1 ·M ⇒M = P1

−1 ·m′
1

m′
2 = P2 ·M︸ ︷︷ ︸

⇓
m′

2 = P2 ·P1
−1 ·m′

1 = H1→2 ·m′
1

(6)

where H1→2 is transformation matrix (homography matrix)
[21]:

H1→2 = P2 ·P−1
1 (7)

So in order to obtain positionm2 of projection of pointM
on the image plane of Camera 2 based on known position of
projection of the same pointM onto the image plane of Cam-
era 1 we need to calculate m′

2 vector from equation (6) and
then divide first and second component of that vector by the
third component (see definition 4) which is just normalization
of the m′

2 vector by its third component:

m2h =
m′

2

m′
2(3)

=
m′

2

z2
=

H1→2 ·m′
1

z2
=

=
H1→2 ·

[
z1 ·m1

T , 1
]T

z2
=

=
H1→2 · [z1 · u1, z1 · v1, z1, 1]T

z2
,

m2 = [m2h(1),m2h(2), 1]
T
,

(8)

where m′
2(3) means value of the third component of the m′

2

vector,m2h(1)means value of the first component of them2h

vector, m2h(2) means value of the second component of the
m2h vector.
The equation above leads to known from literature [21]

[37] equation for coordinate transformation from one image
space to the other.

III. CLASSICAL CALCULATION ORGANIZATION
Direct implementation of equation (8) for point transforma-
tion from one image space to the other leads to the algorithm
presented as algorithm 1.

In the algorithm shown above, a, b and c are coefficients
that are specific for a given depth format andwill be explained
further on.

The algorithm 1, in the form shown, requires the following
number of operations per source image pixel:

• 1 multiplication, 1 addition, and 1 division to denormal-
ize depth value into a distance z1 in source image space,

• 2 multiplications during m1 vector construction,
• 16 multiplications and 12 additions during multiplica-

tion of H1→2 matrix bym1 vector,
• 3 divisions in m2 and depth normalization,
• 1 division, 1 addition, and 1 multiplication for distance

to depth normalization,
so in total 20 multiplications, 14 additions, and 3 divisions,
for each and every pixel in the source image. Summary of
necessary operations for an image of resolution W by H in
provided in table 1.

IV. NEW PROJECTION FORMULATION
A significant reduction of the computation complexity can
be obtained by modifying the order of calculations, as shown
below.
First let us rewrite m′

1 vector

m′
1 = [z1 · u1, z1 · v1, z1, 1]T = z1 ·

[
u1, v1, 1,

1

z1

]T
= z1 · q1,

m′
2 = [z2 · u2, z2 · v2, z2, 1]T = z2 ·

[
u2, v2, 1,

1

z2

]T
= z2 · q2,

(9)
where introduced vectors q1 and q2 have the form:

q1 =

[
u1, v1, 1,

1

z1

]T
,

q2 =

[
u2, v2, 1,

1

z2

]T
.

(10)

With the help of the introduced vectors q1 and q2, the
equation (8) can be rewritten as:

q2 =
m′

2

m′
2(3)

=
m′

2

z2
=

H1→2 ·m′
1

z2
=

H1→2 · z1 · q1

z2
=

=
z1
z2
·H1→2 · q1 =

z1
z2
·H1→2 ·

[
u1, v1, 1,

1

z1

]T
.

(11)
Such formulation allows to save twomultiplications during

m′
1 creation, at a price of one division during q1 vector

creation. Next, we will show how to eliminate this division
as well.
As has been said earlier, the distance z necessary for pro-

jection is commonly stored as a normalized disparity in the
form of a depth map. Relation of distance z and depth sample
δ is given by:

z =
1

δ
2bps−1 ·

(
1

znear
+ 1

zfar

)
+ 1

zfar

, (12)

where bps is the number of bits per sample that are used to
store depth samples commonly 8 or 16, znear and zfar are the
nearest and the farthest distance stored in the given depth map
and are used for normalized disparity denormalization into
a distance z. Turning the equation we can get the inverse of
distance z:

1

z
=

δ

2bps − 1
·
(

1

znear
+

1

zfar

)
+

1

zfar
. (13)

This allows us to obtain the necessary in equation (11)
inverse of distance 1

z directly from depth sample δ. This
eliminates division operation during creation of q1 vector.
Additionally, it eliminates the necessity of division in depth to
distance conversion (12) as direct distance z is never needed
as it will be shown next.
Additionally, after obtaining q2 vector it is easy to extract

depth sample δ2 (normalized disparity) in the second image
space. Vector’s q2 (10) fourth component contains inverse

4 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 1 Direct implementation of the point position transformation
1: procedure Transform
2: for v1 ∈ {0, 1, 2, . . . , height − 1} do
3: for u1 ∈ {0, 1, 2, . . . ,width− 1} do
4: δ1 ← DepthMap(u1, v1) ▷ Read depth map value
5: z1 ← 1

δ1∗a+b ▷ Distance calculation
6: m′

1 ← [z1 · u1, z1 · v1, z1, 1]T ▷ Position vector
7: m′

2 ← H1→2 · m′
1 ▷ Transformation of position

8: m2 ← m′
2

m′
2(3)

▷ Normalization of position
9: u2 ← m2(1) ▷ Read out point coordinates
10: v2 ← m2(2)

11: z2 ← m′
2(3)

m′
2(4)

▷ Read out distance in target image space

12: δ2 ←
(

1
z2
− b

)
· c

13: virtualDepthMap(u2, v2)← δ2 ▷ Store depth value

TABLE 1. Summary of the number of operations for an image of resolution W by H in direct implementation of the equation of point transformation from
source to target image space

Description Multiplications Addition Division
Distance denormalization z1 1 ·W · H 1 ·W · H 1 ·W · H
m′

1 vector construction 2 ·W · H 0 0
Multiplication by transormation matrix 16 ·W · H 12 ·W · H 0
m2 vector normalization 0 0 3 ·W · H
distance z2 normalization 1 ·W · H 1 ·W · H 1 ·W · H
Summary 20 ·W · H 14 ·W · H 5 ·W · H

distance 1
z2

which can be directly planted into the equation
for depth sample δ2, as derived from (13):

δ2 =

(
1

z2
− 1

zfar

)
· 2bps − 1(

1
znear

+ 1
zfar

) , (14)

δ2 =

(
q2(4)−

1

zfar

)
· 2bps − 1(

1
znear

+ 1
zfar

) . (15)

In implementation, constants in equations (13)(14) can be
precalculated which simplifies those equations to:

1

z
=

δ

2bps − 1
·
(

1

znear
+

1

zfar

)
+

1

zfar
=

= δ · a+ b,
(16)

δ =

(
1

z
− 1

zfar

)
· 2bps − 1(

1
znear

+ 1
zfar

) =

=

(
1

z
+ b

)
· c,

(17)

where a,b,c:

a =
1

2bps − 1
·
(

1

znear
+

1

zfar

)
,

b = − 1

zfar
,

c =
2bps − 1(
1

znear
+ 1

zfar

) .
(18)

Up to now, we have shown that the distance z1 is not needed
to create position vectorq1 but it still remains in equation (11)
in front of the square bracket. But this multiplication also can
be eliminated. Let us express the transformation matrix row-
wise:

H1→2 =
[
g1

T ,g2
T ,g3

T ,g4
T]T , (19)

where g1 · · ·g4 are rows of transformation matrix H1→2.
Transformation operation (equation 11) can be expressed as:

q2 =
z1
z2
·H1→2 · q1 =

z1
z2
·
[
g1

T ,g2
T ,g3

T ,g4
T]T · q1 =

=
z1
z2
·
[
q1

T · g1
T ,q1

T · g2
T ,q1

T · g3
T ,q1

T · g4
T]T =

=

[
z1 · q1

T · g1
T , z1 · q1

T · g2
T , z1 · q1

T · g3
T , z1 · q1

T · g4
T
]T

z2
=

=
1

z2
·m′

2.

(20)
but z2 is just the third component of m′

2 vector, so:

z2 = z1 · q1
T · g3

T , (21)

which leads to:

q2 =

[
z1 · q1

T · g1
T , z1 · q1

T · g2
T , z1 · q1

T · g3
T , z1 · q1

T · g4
T
]T

z2
=

=

[
z1 · q1

T · g1
T , z1 · q1

T · g2
T , z1 · q1

T · g3
T , z1 · q1

T · g4
T
]T

z1 · q1
T · g3

T =

=

[
q1

T · g1
T

q1
T · g3

T ,
q1

T · g2
T

q1
T · g3

T , 1,
q1

T · g4
T

q1
T · g3

T

]T
.

(22)

VOLUME 11, 2023 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

This clearly shows that scalars z1 cancel out due to the nor-
malization of q2 vector.
Derivation (22) shows that there is no need for multiplying

by distance z1 in equation (11) since it will cancel out during
m2 normalization.
As a consequence, there is no need for direct calculation of

distance z1.
The proposed formulation allows to elimination of two

multiplications during the construction ofm′
1 vector, and one

division during the calculation of distance z from normalized
disparity δ (taken from depth map).

V. FAST POSITION TRANSFORMATION BY GRADUAL
PROJECTION BUILD UP
Thanks to the new formulation of equation (22) for point
projection from one image space to the other it is possible
to further vastly speed up the transformation process. Instead
of independently applying the transformation (22) for every
pixel of the image, it is possible to gradually build target
position vector m′

2.
In the proposed formulation, the source positions u1 and

v1 do not need to be multiplied by the distance z1 to construct
the source position vector q1 (10).
Let us express the transformation matrix H1→2 column-

wise:
H1→2 = [h1,h2,h3,h4] , (23)

where h1, h2, h3, h4 are column vectors of H1→2 matrix.
Then transformation equation (11) can be expressed as:

q2 =
z1
z2
·H1→2 · q1 =

=
z1
z2
· [h1,h2,h3,h4] ·

[
u1, v1, 1,

1

z1

]T
=

=
z1
z2

(
h1 · u1 + h2 · v1 + h3 + h4 ·

1

z1

) (24)

Equation (24) indicates that the result of the transforma-
tion can be built gradually by accumulation of the column-
wise multiplication of transformation matrix H1→2 by the
components of q1 vector. This allows us to share some of
the computation among pixels of the image. Because usually
during whole image transformation v1 position of the pixel
changes less often than the u1 position, we can reduce the
total number of computations required to transform the entire
image.

This observation leads to the Algorithm 2 for projecting
pixels from one image to the other.

Proposed Algorithm 2 for pixel position transformation
requires:

• 4 multiplications and 4 additions for every row of pixels
- accumulation of term dependent on v,

• 4 multiplications and 4 additions for every pixel in a row
- accumulation of term dependent on u,

• 1 multiplication and 1 addition for every pixel - calcula-
tion of inverse distance invz from depth sample,

• 4 multiplications and 4 additions for every pixel - accu-
mulation of term dependent on invz,

• 3 divisions during m′
2 vector normalization,

• 1 addition and 1 multiplication during normalization of
target distance to depth sample δ2.

A summary of the number of required operations necessary
to project all pixels of the image of W by H resolution is
presented in table 2.
Comparing the number of necessary operations of the pro-

posed algorithm to the direct implementation of equation (8),
which is common in the literature, summarized in table 1,
we can calculate the approximate reduction rate of necessary
multiplication operations:

(6 ·W + 4) · H
20 ·W · H

=
6

20
+

4

20 ·W
. (25)

where W is width and H is height of the image considered.
Commonly nowadays resolution of the processed image is
high W ≫ 1, in the order of several thousand (1980 for a
typical HD video image), so the second fraction is small and
can be omitted:

(6 ·W + 4) · H
20 ·W · H

=
6

20
+

4

20 ·W
≈ 3

10
. (26)

Similarly, we can obtain the reduction rate of necessary
additions and divisions:

(6 ·W + 4) · H
14 ·W · H

=
6

14
+

4

14 ·W
≈ 3

7
, (27)

3 ·W · H
5 ·W · H

=
3

5
. (28)

To summarize, the proposed organization of the computa-
tion requires barely 30% of multiplications, 47% additions,
and 60% divisions. It is worth to point out that in the case
of many implementation platforms such as signal processor
or FPGA, the division operation is the most computationally
expensive one, so the reduction of this kind of operation is the
most important one.

VI. EXPERIMENTAL VERIFICATION
The base for our experiments was the already mentioned
reference virtual view synthesis software VSRS [19]. VSRS
is a CPU-only implementation that does not utilize any vec-
tor instruction speedups like SIMD SSE or AVX. We have
implemented our algorithm in the above-mentioned software
package also without any vector instruction optimization, so
any gains in performance would be only due to the improved
processing algorithm and not due to a hardware-specific im-
plementation.
We have only modified the position projection in the for-

ward depth map projection step and backward texture warp-
ing step to our proposed fast algorithm. We did not modify
any other part of the software. Therefore the results - virtual
view images - obtained with the reference VSRS implemen-
tation and the results obtained with our modified version are
identical.

6 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 2 The proposed procedure for transformation of point location
1: procedure Transform
2: [h1,h2,h3,h4]← H1→2 ▷ Column-wise transformation matix
3: m′

2c ← h3 ▷ Accumulation of the first term independent of pixel position
4: for v1 ∈ {0, 1, 2, . . . , height − 1} do
5: m′

2b ←m′
2c + h2 · v1 ▷ Accumulation of the term dependent on v

6: for u1 ∈ {0, 1, 2, . . . ,width− 1} do
7: m′

2a ←m′
2b + h1 · u1 ▷ Accumulation of the term dependent on u

8: δ1 ← DepthMap(u1, v1) ▷ Read depth sample
9: invz1 ← δ1 ∗ a+ b ▷ Distance denormalization
10: m′

2 ←m′
2a + h4 · invz1 ▷ Accumulation of the term dependent on z

11: m2 ← m′
2

m′
2(3)

▷ Target image position normalization
12: u2 ← m2(1) ▷ Pixel coordinate readout
13: v2 ← m2(2)
14: invz2 ← m2(4) ▷ Distance readout and normalization
15: δ2 ← (invz2 − b) · c
16: virtualDepthMap(u2, v2)← δ2 ▷ Target depth sample storage

TABLE 2. Summary of the number of required operations necessary to project all pixels of the image of W by H resolution

Description Multiplications Additions Divisions
Accumulation of term dependent on v 4 · H 4 · H 0
Accumulation of term dependent on u 4 ·W · H 4 ·W · H 0
Calculation of invz from depth sample 1 ·W · H 1 ·W · H 0
Accumulation of term dependent on invz 4 ·W · H 4 ·W · H 0
m2 vector normalization 0 0 3 ·W · H
Distance z2 to depth sample conversion 1 ·W · H 1 ·W · H 0
Total (6 ·W + 4) · H (6 ·W + 4) · H 3 ·W · H

We have used several well-known and recognizable mul-
tiview test sequences which are provided with high-quality
depth maps. This set includes linear [38], arc multiview con-
tent [39] [40] [41] [41] [42] as well as lightfield (supermulti-
view) [43] content.

FIGURE 2. The schematic depicting the test scenario

For all test sequences, we have rendered virtual views with

the use of the original unmodified VSRS as well as with
the use of VSRS with our calculation method. The virtual
views were generated from the data for two views, specified
as right and left view. The data included images, depth maps,
and camera parameters for two views. No other data was
provided for the algorithm. The virtual view was situated in
the same exact place as the third camera was situated during
the acquisition of the sequence. The schematic depicting the
test scenario is shown in Fig 2. Data from left and right camera
(RGB image and depth image) together with the calibration
data of the camera setup are the input data for the VSRS
algorithm, generating a virtual view. For the purpose of the
tests, the position of the virtual camera is the same as the
position of the middle camera. The middle camera data (RGB
image) is used exclusively for reference and those data are not
used by the VSRS algorithm.

The quality of the resulting virtual view, measured as a
luminance PSNR value of the virtual view generated with
respect to the view recorded by the real camera at the same
spatial position was exactly the same as for the reference
method. This is due to the fact that the presented method
gives exactly the same numerical results for a virtual view
image as the reference method. In the Fig 3 a sample virtual
view generated by VSRS is shown for Poznan Street and BBB
Flowers sequence. For reference also the view from a real
camera situated in the same spot is shown. The virtual view
errors can be noticed mainly on some object borders, like the

VOLUME 11, 2023 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3. Summary of the multiview test sequences used in the experiments

Sequence Resolution Left reference Right reference Virtual
view view view

Poznan Street [38] 1920x1080 3 5 4
Poznan Fencing [42] 1920x1080 0 2 1
Poznan Blocks [39] 1920x1080 0 2 1
BBB Butterfly [43] 1280x768 6 32 19
BBB Flowers [43] 1280x768 6 32 19
Soccer Arc [40] 1920x1080 25 32 28
Ballet [41] 1024x768 3 5 4
Breakdancers [41] 1024x768 2 4 3

stems and petals of the flowers for BBB Flowers. For Poznan
Street please note the errors on pedestrian in the background
and on the car on the left of the image.

In order to compare the performance of both implementa-
tions we have measured the time it takes for both versions of
the software to create respective virtual views.

All experiments have been performed on a single PC with-
out any GPU enhancement as the VSRS implementation is
purely a CPU implementation. All essential parameters have
been summarized in the Table 4.

TABLE 4. Parameters of the computer used to measure the algorithm
efficiency

Processor Intel i7-8700K 3.7GHz
Memory 32 GB
GPU Built-in in CPU
HDD WD 5TB
Operating system Windows 10

VII. RESULTS AND FUTURE WORK
The results of the experiment are shown in Table 5. Each
reported time is expressed in milliseconds and is the time
of synthesis of a virtual view for the whole test sequence.
It can be seen that the time of the virtual view generation
is significantly shorter for our implementation. The virtual
view generation time is shorter by up to 29%. For most of
the sequences, the time was shorter by more than 20%. The
average value of the percentage of speedup for the eight tested
sequences is 22.58%. The smallest gain in performance was
observed for the Ballet and Breakdancers sequences. These
are sequences with low resolution, therefore the accumulation
of the calculations does not provide that much of a gain as for
the sequences with higher resolutions. The proposed method
must recalculate the coefficients for every line separately,
thus lower horizontal resolution will reduce the performance
gain. A slightly lower speedup value for the Poznan Blocks
sequence appears to be justified by a more complex depth
map with many small patches of different depths. In such a
situation the speedup offered by our algorithm is slightly re-
duced due to the fact that if a new depth value is encountered,
the coefficients need to be recalculated. The proposedmethod
performs best for cases where there are large patches of con-
stant values in depth map. The properties of the depth maps
that influence the performance of the presented algorithmwill
be studied in our future work as we aim to provide a metric for

estimating the possible gains provided by our method. Based
on this data, the depth map preprocessing algorithms will be
proposed that allow to speed up the reprojection-based view
synthesis process.

The obvious concept for future work is algorithm scalabil-
ity by using parallel computations. Since processing of each
image row is independent from others, the work could be split
tomultiple work units and distributed across CPU/GPU cores.

VIII. SUMMARY

In the paper, we have presented a new formulation of the
position transformation operation which results in a new fast
position transformation algorithm. The proposed formulation
is a result of authors analysis of the existing algorithm used
in DERS software. The devised method of changing the order
of operations and replacing the variables used in the existing
algorithm resulted in a significant increase of the execution
speed while providing exactly identical output data as the
unmodified algorithm. The proposed algorithm can be used
to speed up view synthesis and depth estimation algorithms
that heavily rely on position transformations. The algorithm
can easily be applied wherever the original version is used.
It provides a significant speedup of approximately 20% of
computation time at virtually no cost at all since the speedup
is based on the rearranging of matrix operations that allow
to reuse parts of calculations for consecutive pixels of repro-
jected views.

APPENDIX A VARIABLES USED IN THE TEXT

In the table belowwe summarize the most important variables
used in the text.

8 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Poznan Street BBB Flowers

Virtual view

Real view
(reference)

Virtual view

Real view
(reference)

FIGURE 3. Sample virtual views obtained during the tests. Poznan Street to the left, BBB Flowers to the right. Views from real cameras are given for
reference below virtual views. Some details of the images are shown in greater scale in the two lower rows.They demonstrate the errors in the virtual
view generation common to the VSRS, from left to right: improper handling of transparency, blurring, sharp edges of objects in virtual view, inpainted
areas with missing features (features not present on any source views), ghosting due to different lighting of source views

TABLE 6. Variables used in the text

Variable name Description
M point coordinates in 3D space
mx point coordinates in 2D image space of

camera x
m′

x homogenous point coordinates in 2D image
space of camera x

ux , vx horizontal and vertical coordinates of point in
image space of camera x

zx homogenous coordinates multiplier for
camera x

Px projection matrix of camera x
H1→2 transformation (homography) matrix

between camera 1 and 2
mxh normalized homogenous point coordinates

m′
x

W , H image width and height, correspondingly

REFERENCES
[1] Ozgur Oyman, Rob Koenen, Paul Higgs, Chris Johns, Richard Mills, and

Mick O’Doherty. Virtual reality industry forum’s view on state of the
immersive media industry. SMPTE Motion Imaging Journal, 128(8):91–
96, 2019.

[2] Olgierd Stankiewicz, Marek Domański, Adrian Dziembowski, Adam
Grzelka, Dawid Mieloch, and Jarosław Samelak. A free-viewpoint tele-
vision system for horizontal virtual navigation. IEEE Transactions on
Multimedia, 20(8):2182–2195, 2018.

[3] S. Zinger, L. Do, and P.H.N. de With. Free-viewpoint depth image based
rendering. Journal of Visual Communication and Image Representation,
21(5):533–541, 2010. Special issue on Multi-camera Imaging, Coding and
Innovative Display.

[4] Michael Schmeing and Xiaoyi Jiang. Depth Image Based Rendering, pages
279–310. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[5] Xiaodong Chen, Haitao Liang, Huaiyuan Xu, Siyu Ren, Huaiyu Cai, and
Yi Wang. Virtual view synthesis based on asymmetric bidirectional dibr
for 3d video and free viewpoint video. Applied Sciences, 10(5), 2020.

[6] Zengming Deng and Mingjiang Wang. Reliability-based view synthesis
for free viewpoint video. Applied Sciences, 8(5), 2018.

[7] Xiaodong Chen, Haitao Liang, Huaiyuan Xu, Siyu Ren, Huaiyu Cai, and
Yi Wang. Artifact handling based on depth image for view synthesis.
Applied Sciences, 9(9), 2019.

[8] Yu Zeng, Zhe Lin, Jimei Yang, Jianming Zhang, Eli Shechtman, and
Huchuan Lu. High-resolution image inpainting with iterative confidence
feedback and guided upsampling. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV
2020, pages 1–17, Cham, 2020. Springer International Publishing.

[9] Masayuki Tanimoto, Mehrdad Panahpour Tehrani, Toshiaki Fujii, and
Tomohiro Yendo. Ftv for 3-d spatial communication. Proceedings of the
IEEE, 100(4):905–917, 2012.

VOLUME 11, 2023 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[10] Christoph Fehn, René De La Barré, and Siegmund Pastoor. Interactive 3-
dtv-concepts and key technologies. Proceedings of the IEEE, 94(3):524–
538, 2006.

[11] Adrian Dziembowski, Dawid Mieloch, Olgierd Stankiewicz, Marek Do-
mański, Gwangsoon Lee, and Jeongil Seo. Virtual view synthesis for 3dof+
video. In 2019 Picture Coding Symposium (PCS), pages 1–5. IEEE, 2019.

[12] Adrian Dziembowski, Adam Grzelka, Dawid Mieloch, Olgierd
Stankiewicz, Krzysztof Wegner, and Marek Domański. Multiview
synthesis—improved view synthesis for virtual navigation. In 2016
Picture Coding Symposium (PCS), pages 1–5. IEEE, 2016.

[13] Guangcheng Wang, Kui Jiang, Ke Gu, Hongyan Liu, Hantao Liu, and
Wenjun Zhang. Coarse- and fine-grained fusion hierarchical network for
hole filling in view synthesis. IEEE Transactions on Image Processing,
33:322–337, 2024.

[14] Jiahe Wang and Jiayue Liu. Virtual viewpoint rendering method based on
multi-threshold layering. In 2023 8th International Conference on Image,
Vision and Computing (ICIVC), pages 639–644, 2023.

[15] Zhihui Ke, Xiaobo Zhou, Dadong Jiang, Hao Yan, and Tie Qiu. Collabvr:
Reprojection-based edge-client collaborative rendering for real-time high-
quality mobile virtual reality. In 2023 IEEE Real-Time Systems Symposium
(RTSS), pages 304–316, 2023.

[16] Hui Chen and Lei Zhu. Digital twin oriented virtual view rendering
algorithm based on k-means. In 2023 IEEE 13th International Conference
on Electronics Information and Emergency Communication (ICEIEC),
pages 116–119, 2023.

[17] Yifan Wang, Fuzheng Yang, Ying Chen, and Wei Zhang. Virtual view
synthesis using joint information from multi-view. Journal of Visual
Communication and Image Representation, 92:103799, 2023.

[18] Dmytro Mishkin, Jiri Matas, and Michal Perdoch. Mods: Fast and robust
method for two-view matching. Computer Vision and Image Understand-
ing, 141:81–93, 2015.

[19] Takanori Senoh, Jamamoto Kenji, Tetsutani Nobuji, Yasuda Hiroshi, and
Krzysztof Wegner. View synthesis reference software (vsrs) 4.2 with
improved inpainting and hole filing. In ISO/IEC JTC1/SC29/WG11
MPEG2017, 2017.

[20] Pasquale Lafiosca and Marta Ceccaroni. Rectifying homographies for
stereo vision: Analytical solution for minimal distortion. In Kohei Arai,
editor, Intelligent Computing, pages 484–503, Cham, 2022. Springer Inter-
national Publishing.

[21] Richard I Hartley. Theory and practice of projective rectification. Interna-
tional Journal of Computer Vision, 35(2):115–127, nov 1999.

[22] Dawid Mieloch and Adam Grzelka. Segmentation-based method of in-
creasing the depth maps temporal consistency. International Journal of
Electronics and Telecommunications, 64(3), 2018.

[23] Yanwen Qin, Xin Jin, Yanqin Chen, and Qionghai Dai. Enhanced depth
estimation for hand-held light field cameras. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
2032–2036. IEEE, 2017.

[24] Ségolène Rogge, Daniele Bonatto, Jaime Sancho, Rubén Salvador, Ed-
uardo Juarez, Adrian Munteanu, and Gauthier Lafruit. Mpeg-i depth
estimation reference software. In 2019 International Conference on 3D
Immersion (IC3D), pages 1–6, 2019.

[25] Xiaoyue Wan, Zhuo Chen, and Xu Zhao. View consistency aware holistic
triangulation for 3d human pose estimation. Computer Vision and Image
Understanding, 236:103830, 2023.

[26] Maciej Kurc. Hybrid techniques of depth map estimation and their appli-
cation in three-dimensional video systems. PhD Dissertation at Poznan
University of Technology, 2019.

[27] Yun-Suk Kang and Yo-Sung Ho. Disparity map generation for color image
using tof depth camera. In 2011 3DTV Conference: The True Vision-
Capture, Transmission and Display of 3D Video (3DTV-CON), pages 1–4.
IEEE, 2011.

[28] Haoliang Zhao, Huizhou Zhou, Yongjun Zhang, Yong Zhao, Yitong Yang,
and Ting Ouyang. Eai-stereo: Error aware iterative network for stereo
matching. In Proceedings of the Asian Conference on Computer Vision,
pages 315–332, 2022.

[29] Gangwei Xu, Junda Cheng, Peng Guo, and Xin Yang. Attention concatena-
tion volume for accurate and efficient stereo matching. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
12971–12980, 2022.

[30] Junpeng Jing, Jiankun Li, Pengfei Xiong, Jiangyu Liu, Shuaicheng Liu,
Yichen Guo, Xin Deng, Mai Xu, Lai Jiang, and Leonid Sigal. Uncertainty
guided adaptive warping for robust and efficient stereo matching. In 2023

IEEE/CVF International Conference on Computer Vision (ICCV), pages
3295–3304, 2023.

[31] Gangwei Xu, Yun Wang, Junda Cheng, Jinhui Tang, and Xin Yang.
Accurate and efficient stereo matching via attention concatenation vol-
ume. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(4):2461–2474, 2024.

[32] Xiangyin Meng, Jie Wen, Yang Li, Chenlong Wang, and Jingzhen Zhang.
Dfnet-trans: An end-to-end multibranching network for depth estimation
for transparent objects. Computer Vision and Image Understanding,
240:103914, 2024.

[33] Shuai Guo, Jingchuan Hu, Kai Zhou, Jionghao Wang, Li Song, Rong Xie,
andWenjun Zhang. Real-time free viewpoint video synthesis system based
on dibr and a depth estimation network. IEEE Transactions onMultimedia,
pages 1–16, 2024.

[34] Xiongli Chai, Feng Shao, Qiuping Jiang, and Yo-Sung Ho. Mstgar:
Multioperator-based stereoscopic thumbnail generation with arbitrary res-
olution. IEEE Transactions on Multimedia, 22(5):1208–1219, 2020.

[35] Xiongli Chai, Feng Shao, Qiuping Jiang, and Yo-Sung Ho. Roundness-
preserving warping for aesthetic enhancement-based stereoscopic image
editing. IEEE Transactions on Circuits and Systems for Video Technology,
31(4):1463–1477, 2021.

[36] Jakub Stankowski and Adrian Dziembowski. Fast view synthesis for im-
mersive video systems. In 28th International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision : WSCG 2020,
2020.

[37] Bogusław Cyganek and J. Paul Siebert. An Introduction to 3D Computer
Vision Techniques and Algorithms. John Wiley & Sons, Ltd, 2009.

[38] Marek Domański, Tomasz Grajek, Krzysztof Klimaszewski, Maciej Kurc,
Olgierd Stankiewicz, Jakub Stankowski, and Krzysztof Wegner. Poz-
nań multiview video test sequences and camera parameters m17050. In
ISO/IEC JTC1/SC29/WG11, MPEG2009, 2009.

[39] Marek Domański, Adrian Dziembowski, Agnieszka Kuehn, Maciej Kurc,
Adam Łuczak, Dawid Mieloch, Jakub Siast, Olgierd Stankiewicz, and
Krzysztof Wegner. Poznan blocks - a multiview video test sequence and
camera parameters for free viewpoint television m32243. In ISO/IEC
JTC1/SC29/WG11 MPEG2014, 2014.

[40] P Goorts. Real-time adaptive plane sweeping for free viewpoint navigation
in soccer scenes. doctoral dissertation, 2014.

[41] C. Lawrence, Zitnick Sing, Bing Kang, Matthew Uyttendaele, Simon A. J.
Winder, and Richard Szeliski. High-quality video view interpolation using
a layered representation. ACM SIGGRAPH 2004 Papers, 2004.

[42] Adrian Dziembowski, Dawid Mieloch, and Marek Domański.
Color-corrected poznan fencing sequence m48095. In ISO/IEC
JTC1/SC29/WG11 MPEG2019, 2019.

[43] P Kovacs, A Fekete, K Lackner, VK Adhikarla, and A Zare. Big buck
bunny light-field test sequences m35721. In ISO/IEC JTC1/SC29/WG11
MPEG2015, 2015.

KRZYSZTOF WEGNER (SM) received the M.Sc.
degree from the Poznan University of Technology,
in 2008. He is a co-author of several papers on
free view television, depth estimation, and view
synthesis. His professional interests include video
compression in multipoint view systems, depth es-
timation form stereoscopic images, view synthesis
for free view television, and face detection and
recognition. He was involved in ISO standardiza-
tion activities, where he contributes to the devel-

opment of the future 3D video coding standards. He was a Co-Chair of the
MPEG FTV Group, which aimed at the development of a new generation
of coding standards for super-multiview displays and free-viewpoint nav-
igation. He is a Senior Member of Institute of Electrical and Electronics
Engineers (IEEE)

10 VOLUME 11, 2023

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TOMASZ GRAJEK (M’14—SM’18) received his
M.Sc. and Ph.D. degrees from Poznan Univer-
sity of Technology in 2004 and 2010 respectively.
He has been leading several projects for indus-
trial research and development. At present he is
an assistant professor at the Institute of Multi-
media Telecommunications. He is an author and
co-author of over eighty papers (journals, pro-
ceedings of international conferences, and also
MPEG/JPEG databases) on digital video compres-

sion, entropy coding and modeling of advanced video encoders. He holds ten
patents (EPO and US) as well as several patent applications. He is a Senior
Member of Institute of Electrical and Electronics Engineers (IEEE) and
Member of Polish Society for Theoretical andApplied Electrical Engineering
(PTETiS).

KRZYSZTOF KLIMASZEWSKI (M’87) received
M.S. degree in telecommunications in 2005 and
Ph.D. degree in telecommunications in 2012 from
the Poznan University of Technology, Poznan,
Poland. He took part in several projects, both aca-
demic and industrial, where he worked as a im-
age and video processing engineer. He is an As-
sistant Professor with the Institute of Multimedia
Telecommunications, Poznan University of Tech-
nology, Poznan, Poland. His research interests in-

clude image and video processing and embedded systems. He is an author
and co-author of more than 60 publications, mostly in the image and video
processing fields. He is a co-author of 11 patents.

VOLUME 11, 2023 11

