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Abstract— The paper presents an application of a fast and 

effective method of modeling a nonuniform interconnect with 

frequency dependent parameters for multiconductor exponential 

transmission line. The model uses the S-parameters. The 

approach is based on the method of successive approximations. 

The approximation of the scattering parameters is calculated. 

For the exponential line in steady state only second order 

approximation is needed. The transient state for trapezoidal 

source is also presented. For that case the fourth order 

approximation is needed. Comparisons of the calculated results 

with the exact calculations are performed for exemplary 

exponential transmission line. 

Keywords—Interconnect, VLSI, Exponential Transmission 

Line, Scattering Parameters, SPICE 

I.  INTRODUCTION  

Simulation and modeling of integrated circuits and/or 
printed boards are ongoing challenge. In this area there is still a 
need for modeling of transmission lines in the time-domain. 

 Nonuniform Transmission Lines have a wide applicability 
in RF and microwave circuits. Exponential lines are an 
important category of NUTLs and there can be find many 
methods and approaches to model them. 

For the nonuniform line there are derived many numerical 
and analytical methods of analysis which are described in a 
very rich literature dating back to the fifties of the last century. 
These methods operate mainly in steady state in frequency 
domain.  Recently, eg. [1,2,3,6,7] appeared papers in which are 
presented approaches to analysis both in harmonic steady and 
transient state. In [1] the author presents the approximate 
analytical solution using chain matrix parameters of NTLs to 
calculate the arbitrary lossy and disperssive NTLs. 
Additionally it is worth mentioning two other works. In the 
first paper [2], the author presents an approach based on dyadic 
Green’s function and vector fitting of per-unit-length 
impedance and admittance of transmission line to obtain a Z 
matrix of transmission line as a two-port. The line impedance 
and admittance are the sums of rational functions of complex 
frequency s, which facilitates the transformation to the time-
domain and modeling in SPICE. The biggest problem is the 
necessity to take into account a large number of terms in every 
entry of the mentioned Z matrix. In [3], the same author has 
extended the above approach to weakly nonuniform 
transmission lines. In that case the author used results obtained 

for uniform case and parametric macromodeling to obtain the 
approximate Z matrix of the line. In both papers, the presented 
approach has been extended to the case of a multiconductor 
line. Quite recently in [7,8] the authors present an iterative and 
adaptive multi-step perturbation technique for the analysis of 
arbitrary NUTLs. In [8] this technique was applied to the 
analysis of the exponential transmission lines and it is shown to 
be accurate, but huge number of iteration has been needed to 
obtain required exactness. 

On the other hand in paper [4] was developed  a method to 
convert of differential telegrapher’s equations into integral 
equations and next to solve them using the method of 
successive approximation. In that approach, we obtain a first 
order approximation of the solution in a simple analytical form 
which is valid for low loss transmission lines. The drawback of 
that approach was not including the skin effect and dielectric 
dispersion.  

Our previous researches [6,9] gave the approximate form 
(by means of the successive approximation) of the scattering 
parameters both in frequency and time domain for uniform and 
nonuniform transmission line. For this purpose, as in [2,3], we 
used the concept of rational approximation of per-unit-length 
parameters of the line in the frequency domain. In this paper 
we generalized our approach to the case of nonuniform 
multiconductor transmission lines. Our solution has been 
applied to the analysis of two coupled exponential transmission 
lines.  

The paper is organized as follows. The next section 
presents the integral equations approach to the nonuniform 
transmission line. In the third section, we employ the method 
of successive approximation to calculate the scattering 
parameters of an exponential transmission line. In the fourth 
section we present the results for the voltage response both for 
steady and transient state. We conclude in the last section. 

II. TELEGRAPHER'S EQUATIONS IN ITEGRAL FORM 

The equations for a multiconductor nonuniform, dispersive 
transmission line are the following: 
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d-length of the line r�z�, g�z�- transmission line taper.   

  In our method we introduce current waves instead of voltage 

and current into the transmission line equations (1). It is done, 

similarly as in [4], by transformations:  
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Further we limit our consideration to the case of the lossles n-

wire nonuniform transmission line. 

Using transformation (2) we can pass to (3): 
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where F = J-KLM-K = MNJ, where matrices X, P are 
introduced for diagonalization of equation (1) as in [4]. 
Similarly as in [4, 6] we pass to the integral form of equations 
(3) as follow: 
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III. SCATTERING PARAMETERS FOR NONUNIFORM 

MUTICONDUCTOR TRANSMISSION LINE 

A. Scattering parameters for muticonductor nonuniform 

transmission line 

The current wave formulation allows us to obtain the 
scattering parameters. From the integral equations (4) similarly 
as in [4,6] we calculate the scattering parameters using the 
method of successive approximations or iterations. Let us 

consider the first order approximation. Then we obtain 
following formulas for the scattering parameters: 
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The similar way we can calculate further order approximations 

[6]. Presented formulas for the scattering parameters (5) are 

for the decoupled transmission lines and can be easily 

transformed to the original lines by the relationships: 

 0KK_ �
� = `-K0KK`,  
0K^_ �
� = `-K0K^`, 
0^^_ �
� = `-K0^^`,  

(6) 

B. Scattering parameters for the exponential transmission 

line 

Assuming the exponential transmission line we obtain some 

simplification in formula (5): 

���� = Oa	, ���� = O-a	, b = c Bd   (7) 

By substituting the above relationships to equations (5) and 
performing integrations we obtain the closed form formulas for 
the first approximation: 
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For  the second approximation we obtain: 
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 We can calculate next successive approximation and 

obtain the closed form formulas. The calculations are simple, 

but for further approximation they are longer so we do not 

show them in this paper. Each iteration improve the formulas 

for S11 and S22 or S12 and S21 respectively. The second 

approximation gives an improvement in S12, so if we want to 

have a next improvement in S12 we need two extra iterations. 



 For the exemplary transmission line

next section, for 1 GHz analysis, the second order 

approximation was good enough. For the transient response of 

our exponential line we derived the fourth order 

approximation for S parameters. The results are shown in 

Fig.1. The lines have identical parameters, so

are the same for both lines. 

Fig.1 The S Parameters for the exponential transmission line

second and fourth order approximation (for the both lines)

 

IV. RESULTS 

As an example we have considered a nonuniform 
exponential coupled interconnect with frequency dependent 
parameters shown in Fig.2.  

 

transmission line, described in 

for 1 GHz analysis, the second order 

For the transient response of 

we derived the fourth order 

The results are shown in 
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The S Parameters for the exponential transmission line of the 

(for the both lines). 

As an example we have considered a nonuniform 
interconnect with frequency dependent 

Fig.2 The considered system  

We consider an example of the coupled two wire 
exponential line from [8]. The parameters of the line are:

L��� = L]Oij
k , N��� = N]O-

L] = 1171.4 18.6518.65 171.42 10-p

N] = 1 65.7 −7.15−7.15 65.7 2 10-

B = 0.2q, rs� = rsg = 50
On the base of scattering parameters one can calculate the 

formulas for the voltage response. The next figures (Fig 
show the results for the considered 
line model.  

For comparison we calculate 
exponential transmission line from the exact formula
be done in this case  analytically

First we considered the steady state for the sine source at 
1GHz. Fig.3 and Fig.4 show the voltage response compared 
with exact one for q=2. We use the second order approxim
to calculate our results. One can see that exactness of our 
second order approximation is very good.

Second example shows the 
voltage pulse source (of the trapezoid shape A=2V, T
=500ps, Ton=2ns).  

Fig.3 Voltage response, magnitude, q=2

Fig.4 Voltage response,  phase, q=2

 
Fig.2 The considered system  with exponential line. 

consider an example of the coupled two wire 
exponential line from [8]. The parameters of the line are: 

-ij
k  

pt/q ,  
2 -�gv/q,  

50Ω, r�� = r�g = 50OxΩ 

On the base of scattering parameters one can calculate the 
formulas for the voltage response. The next figures (Fig 3-10) 
show the results for the considered exponential transmission 

For comparison we calculate scattering parameters of the 
from the exact formula, what can 

analytically. 
First we considered the steady state for the sine source at 

1GHz. Fig.3 and Fig.4 show the voltage response compared 
q=2. We use the second order approximation 

One can see that exactness of our 
second order approximation is very good. 

 circuit on Fig.2 but excited by a 
source (of the trapezoid shape A=2V, Tr =Tf 

 
Voltage response, magnitude, q=2. 

 
Voltage response,  phase, q=2. 



 The near- and far-end voltages of the
transmission line (Fig.5-10) were obtained based
order approximation of scattering parameters
exact scattering parameters was calculated also.
voltages from frequency domain were
transformed (IFFT) to the time domain.  

Fig.5 Far end voltages for trapezoidal source, excited line

Fig.6 Far end voltages for trapezoidal source

Fig.7 Far end voltages for trapezoidal source, excited line, q=1

Fig.8 Far end  voltages for trapezoidal source, crosstalk, q=1

Fig.9 Near end voltages for trapezoidal source, excited line q=2

 

of the exponential 
based on the fourth 

ion of scattering parameters. For comparison 
was calculated also. Next the 

were subsequently 

 
, excited line, q=2. 

 
for trapezoidal source, crosstalk, q=2. 

 
for trapezoidal source, excited line, q=1. 

 
for trapezoidal source, crosstalk, q=1. 

 
for trapezoidal source, excited line q=2. 

Fig.10 Near end voltages for trapezoidal source, crosstalk, q=2

V. CONCLUSIONS

We have shown that it is possible to generalize the 
approach based on the method of successive approximation for 
the case of the multiconductor
with frequency dependent parameters
calculation for exponential transmission line and obtain 
approximate but closed form formulas for the S parameters. 
 The approximation is satisfactory for the considered 
transmission line.  

Compared with the approach based on dyadic Green'
function and parametric macromodeling applied to weakly 
nonuniform transmission lines [2,3] the presented approach is 
simpler. The results obtained in [8] are similar but in our 
approach less approximations (iteration
interested only in terminal voltages of the line the successive 
terms improving S parameters can be calculated numericaly for 
each frequency. Such a calculation are time consuming, but 
should be done once. Hence the presented approach permits the 
implementation of the model in the SPICE program.
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