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ABSTRACT The paper presents a new method of depth estimation, dedicated for free-viewpoint televi-
sion (FTV) and virtual navigation (VN). In this method, multiple arbitrarily positioned input views are
simultaneously used to produce depth maps characterized by high inter-view and temporal consistencies.
The estimation is performed for segments and their size is used to control the trade-off between the quality
of depth maps and the processing time of depth estimation. Additionally, an original technique is proposed
for the improvement of temporal consistency of depth maps. This technique uses the temporal prediction
of depth, thus depth is estimated for P-type depth frames. For such depth frames, temporal consistency is
high, whereas estimation complexity is relatively low. Similarly, as for video coding, I-type depth frames
with no temporal depth prediction are used in order to achieve robustness. Moreover, we propose a novel
parallelization technique that significantly reduces the estimation time. The method is implemented in C++
software that is provided together with this paper, so other researchers may use it as a new reference for their
future works. In performed experiments, MPEG methodology was used whenever possible. The provided
results demonstrate the advantages over the Depth Estimation Reference Software (DERS) developed by
MPEG. The fidelity of a depth map, measured by the quality of synthesized views, is higher on average by
2.6 dB. This significant quality improvement is obtained despite a significant reduction of the estimation
time, on average 4.5 times. The application of the proposed temporal consistency enhancement method
increases this reduction to 29 times. Moreover, the proposed parallelization results in the reduction of
the estimation time up to 130 times (using 6 threads). As there is no commonly accepted measure of the
consistency of depth maps, the application of compression efficiency of depth is proposed as a measure of
depth consistency.

INDEX TERMS Depth map estimation, free-viewpoint television, FTV, virtual navigation, multiview stereo,
segmentation.

I. INTRODUCTION
In free-viewpoint television (FTV) and Virtual Navigation
(VN) [29], [41], on which we focus in this paper, a user
can arbitrarily change her/his viewpoint at any time and
is not limited to watch views acquired by cameras located
around a scene. Views presented to the user are synthe-
sized, i.e., rendered using a compact representation of a
3D scene [38].

Nowadays, the most commonly used spatial representation
of 3D scenes are depth maps [39], which are widely used not
only in the context of free-viewpoint television and virtual
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navigation [1], [29], [40], but also in 3D scene modeling [36],
and machine vision applications [37], [50]. In FTV and
VN systems, the fidelity and quality of depth maps deeply
influence the quality of the synthesized video, thus the quality
of experience in the navigation through a 3D scene.

Real-time depth acquisition using depth cameras seems
to be very attractive [4]. Nevertheless, the usage of depth
cameras, or in general depth sensors, is hampered by their
high cost, low resolution, limited measurement range, and
interferences between cameras [5]. Moreover, depth sensors
illuminate a scene by infrared light, which could be unac-
ceptable in many applications. The abovementioned prob-
lems limit the possible applications of depth sensors in FTV
and VN systems, although depth cameras and lidars have
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recently undergone many improvements [58], [59]. Thus, the
considerations of this paper are focused on depth estimation
by multiview video analysis.

In FTV and VN, the estimation of depth maps is not the
final goal, but it is rather an important step in the process
of preparing the virtual views. Therefore, through this paper,
the quality of the depth maps is represented by the quality of
the virtual views synthesized using these depth maps. Such
an approach is common in research on depth map estima-
tion [61], [62], and was also proposed as a part of the 3D
framework of the ISO/IEC MPEG group [60].

As it is discussed in Section II, although the methods
described in the references provide satisfying quality for
many applications, they are not well-matched to the needs
of FTV and VN. In order to provide a very realistic viewing
experience during virtual navigation, a new method of depth
estimation has to meet a set of requirements that result from
the characteristics of FTV and VN.

FTV is characterized by a high number of cameras used
for multiview video acquisition. Moreover, the resolution
of cameras used in multiview systems constantly increases,
especially for new virtual reality systems [30], [57]. At the
same time, depth estimation is already one of the most com-
plex parts of multiview video processing in FTV/VN systems,
therefore, achieving higher quality comes at the cost of a
further increase of complexity.

The characteristics of depth estimation for FTV/VN
require not only to reduce the high complexity of estimation
but also to ensure inter-view and temporal consistencies of
depth maps in order to avoid annoying artifacts in the synthe-
sized video, such as, e.g., flickering and false reconstructions
of objects. Virtual view synthesis uses depth maps and views
from at least two nearest cameras [15], [38], [48]. The inter-
view inconsistency of depth maps is related to independent
depth estimation in neighboring views. Such independent
estimation can cause inconsistency in the position of this
object in a synthesized virtual view, which reduces both the
objective and subjective quality of the synthesized view [3].
The temporal consistency of depth maps, on the other hand,
means that the values of depth in consecutive frames of depth
maps change in accordance with the movement of objects in a
scene, and what follows, the color and position of objects in a
virtual view also change in accordance with their movement.

The variety of hitherto presented FTV systems [42] makes
it difficult to develop a versatile depth map estimation
method that could be successfully utilized in all such systems.
FTV/VN systems vary in the number and type of used cam-
eras (from a few to hundreds), distances between them, and
their positioning. Therefore, summarizing the requirements
for FTV/VN systems, a new method for depth estimation
should be characterized by the following features.

1) High quality of estimated depth maps, with particular
emphasis on inter-view and temporal consistencies.

2) Versatility of estimation process, i.e. no assumptions
about the number and positioning of cameras can

be imposed, and moreover, the method can be used for
different scenes without any modifications.

3) Processing time of estimation that is reduced in
comparison to the state-of-the-art methods that meet
the abovementioned requirements (e.g., for the new
presented method variants of parallel implementations
are studied).

The novelty of the proposed method consists in address-
ing the abovementioned characteristics by joint application
of many ideas, e.g., the use of image segmentation, depth
estimation performed simultaneously for all views, the cost
function for improved inter-view consistency, the enhance-
ment of temporal consistency, and also the utilization of par-
allelization. The details of the proposed method are presented
in Section III. The novelty of this paper consists in:
• original segment-based depth estimation proposed by
the authors – a less efficient version of the method was
briefly described in our previous work [32],

• the novel temporal enhancement that significantly
improves the temporal consistency of depth maps and
decreases the processing time,

• the novel parallelization method for graph-based depth
estimation methods,

• thoughtful experimental analysis and assessment of the
proposed method.

II. STATE-OF-THE-ART- DEPTH ESTIMATION METHODS
The simultaneous fulfillment of requirements concerning the
inter-view and temporal consistencies of depth maps, and at
the same time, achieving a relatively short processing time
of estimation, is difficult without compromising the quality
of the estimated depth [18]. For example, independent esti-
mation of depth maps for each camera can be faster than
simultaneous estimation for all views [2], [26], however,
the lowered number of views used during estimation causes
the loss of inter-view consistency. Depth estimation can also
be performed for input views with reduced resolution, nev-
ertheless, the usage of low-resolution views decreases the
accuracy of estimated depth maps and the resulting virtual
view quality [33]. The loss of quality is especially visible
near the edges or in highly textured regions [3], [19]. Even
if additional depth refinement is applied in post-processing
[34], [54], for depth maps estimated in low resolution,
the quality is still lower than for the estimation for the original
resolution, even if virtual view synthesis methods designed
for low-resolution depth maps are used [35]. Method [70]
consists in an iterative approach to deal with the low resolu-
tion of depth maps using depth refinement by the joint view
synthesis and depth estimation.

Depth estimation based on stereoscopic correspondence
is very time consuming, especially for global estimation
methods that can provide depth maps of sufficient quality
for view synthesis purposes (e.g., [7], [23], [28]). Never-
theless, such methods often require input views to be rec-
tified or are designed for multi-view systems of different
characteristics than FTV systems, e.g. for light-field systems
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[21], [53], [55], or multi-camera arrays [49], which have
much smaller distances between cameras. Inter-view and
temporal consistencies are often also ensured, e.g. in [6]
or [27], nevertheless, only for sequences acquired using a
moving camera rig.

The use of depth estimation methods based on local
estimation can ensure low complexity. Local estimation
methods are very often suitable for real-time applications
[18]. Although depth maps of relatively high quality [2],
or even depth maps that are inter-view and temporally consis-
tent [24] can be estimated using such methods, the majority
of these methods formulate additional requirements about the
number or positioning of cameras. For example, methods [24]
and [26] can be used only for a stereo pair, while [2] and [4]
are strictly adjusted to multiview systems designed by their
authors, reducing the usefulness of these methods in versatile
free-viewpoint television systems.

Depth maps can also be estimated using an epipolar plane
image [8], [31]. These methods force depth to be consis-
tent in all views and are characterized by lower complexity
than global estimation methods, but can be used only for
dense multi-view systems. More recently, a new interesting
type of depth estimation methods was introduced, which
uses convolutional neural networks to support the estimation
process on the basis of a previously prepared database of
depth maps. Such data-driven estimation, although it can
represent the direction of future research in depth estimation,
is still limited to specific applications (e.g., for soccer sta-
diums footage [22]), stereo pairs [16] or multi-view systems
with a very narrow base [17], just like conventional methods
presented earlier.

In order to shorten the processing time of estimation, depth
optimization is often based on segments of input views,
instead of on individual points, like in [63]. In this method,
the inter-view correspondence is based on the matching of
segments and the smoothness of estimated depth maps is
proportional to the length of the boundary between neighbor-
ing segments. The use of image segmentation helps reduce
the complexity of depth estimation and decreases the errors
of estimation that are the result of poor representation of
the edges of objects in point-level estimation. Nevertheless,
the matching of segments in neighboring views is effective
only when cameras are close to each other, because in sparse
FTV systems the segmentation of the same object may be
significantly different in neighboring views.

Other methods that employ image segmentation [23], [69]
use the smoothing cost that is calculated between neighboring
points of an image and the data cost calculated both for points
and segments, and has been shown to achieve very good
results in terms of the quality of depth maps. The method [65]
utilizes graph-based depth estimation performed on the seg-
ments of input views, enhanced with the use of edge detection
and plane matching. Nevertheless, the processing time for
high-resolution stereo pair images for both methods is still
calculated in a fewminutes, moreover, inter-view consistency
is not ensured.

In [26], image segmentation is used only in the correspon-
dence search. The size of the matching window is large but
limited by the boundaries of segments. It merges the advan-
tages of large matching windows (limitation of the influence
of noise) and small windows (possibility of correct depth
estimation for small objects).

The use of segmentation in the depth map estimation pro-
cess is widespread. What distinguishes the depth estimation
method proposed by the authors, is that depth optimization in
the proposed method is based only on segments of an image.
In the presented state-of-the-art methods, optimization is also
sometimes performed on segments, but at some step of esti-
mation, point level optimization or further refinement is still
required.

The temporal consistency of depth maps is often achieved
through the use of additional refinement [62], [66]. Such
refinement methods are usually based on the estimation and
segmentation of the background of a scene. Unfortunately,
the temporal consistency of objects in the foreground is not
increased. The temporal consistency can also be increased
with the denoising of input views used further in depth esti-
mation [64]. The main advantage of such an approach is
that denoising can be performed independently from depth
estimation, therefore, it can be used with all depth estimation
and refinementmethods. On the other hand, an additional step
of estimation increases the overall processing time.

Contrary to the abovementioned methods, the new tem-
poral consistency enhancement of depth maps, presented by
the authors in Section III-F, simultaneously decreases the
complexity of the depth estimation process.

III. PROPOSED GRAPH-BASED MULTIVIEW DEPTH
ESTIMATION METHOD
A. OVERVIEW OF THE PROPOSED METHOD
In the proposed approach, depth estimation is viewed as a
recursive process, where frames from all real views are at the
input. At a time instant, the output consists of depth maps
for a number of views, i.e., using multiple input views, the
number of depth maps are estimated for the consecutive time
instants. The process of depth estimation is recursive in the
sense that depth maps from previous time instants are used
for the estimation of depth maps at the current time instant.

The novelty of the presented method of depth estimation,
and its particular usefulness for free-viewpoint television and
virtual navigation systems, is a result of the joint exploitation
of the ideas mentioned below.

1) Depth is estimated for segments instead of individual
pixels, and thus the size of segments can be used to
control the trade-off between the quality of depth maps
and the processing time of estimation. Larger segments
can be used to attain fast depth estimation, or finer
segments can be used to attain higher quality,

2) Object boundaries are collocatedwith segment borders,
therefore segment-based depth estimation usually does
not reduce depth map resolution.
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FIGURE 1. Views and cost function components used in the proposed
depth estimation.

3) Estimation is performed for all views simultaneously
and produces depths that are inter-view consistent
because of the utilization of the new formulation
of the cost function, dedicated for segment-based
estimation.

4) No assumptions about the positioning of views are
stated: any number of arbitrarily positioned cameras
can be used during the estimation.

5) Although segmentation is used, the estimated depth for
each segment is calculated on a per-pixel basis, because
the correspondence search is not limited to segment
centers; the proposed method does not require the seg-
mentation to be consistent in all views, therefore, it is
performed independently in each view, reducing the
overall complexity.

6) In the proposed temporal consistency enhancement
method, depth maps estimated in previous frames
are utilized in the estimation of depth for the cur-
rent frame, increasing the consistency of depth maps
and simultaneously decreasing the processing time of
estimation.

7) The proposed depth estimation framework uses a novel
parallelization method that significantly reduces the
processing time of graph-based depth estimation.

B. COST FUNCTION FORMULATION
In the proposed method, depth estimation is based on
cost function minimization. The proposed cost function is
described over a set of views V (Fig. 1) for all of which depth
maps are estimated.

There are two cost function components:
1) The intra-view discontinuity cost D, a smoothing,

regularization term, defined inside each individ-
ual/particular view v ∈ V .

2) The inter-view matching cost M , responsible for the
inter-view consistency of depth maps, defined between
view v and each neighboring view v′ ∈Wv, where Wv
is the neighborhood of the view v, e.g., the nearest left
view and the nearest right view of the view v, whenever
available.

FIGURE 2. Visualization of intra-view discontinuity cost and inter-view
matching cost for an exemplary segment s for depth estimation
performed for 2 views.

In our approach, the cost function is defined with the use
of segments, instead of individual pixels. For this, the seg-
mentation is performed at the beginning, so that a set of
segments Sv is attained independently for each view v ∈ V
(more details about the used segmentation technique can be
found in Section IV-C). Therefore, the cost function compo-
nents are defined as follows (Fig. 2):

1) The intra-view discontinuity cost, marked as Ds,t ,
penalizes depth discontinuities between two segments:
s ∈ Sv and segment t in neighborhood Ts of segment s
in the same view v: t ∈ Ts ⊂ Sv.

2) The inter-view matching cost, marked as Ms,s′ , penal-
izes dissimilarities between segments s ∈ Sv and s′ ∈Sv′
that are matched by the currently considered depth map
in views v ∈ V and v′ ∈Wv respectively.

Those two components, which are described in detail in
Sections III-C and III-D, are used in the formulation of the
overall cost function:

E
(
d
)
=

∑
v∈V

∑
s∈Sv
{

∑
v′∈Wv

Ms,s′ (ds)

+

∑
t∈Ts

Ds,t (ds, dt)}, (1)

where d is a vector of depth values for all segments in all
views, ds is the depth of segment s (currently considered in
vector d), v ∈ V are views for which depth is estimated,
v′ ∈Wv are views neighboring to view v, s ∈ Sv are segments
of view v, s′ is a segment in view v′ which corresponds to
segment s in view v for depth ds, Ms,s′ is the inter-view
matching cost between segments s and s′, t ∈ Ts are segments
neighboring to segment s, Ds,t is the intra-view discontinuity
cost between segments s and t , dt is the currently considered
depth of segment t .

It should be noted that the matching of segments between
the views is done using depth ds and can change during the
estimation process (e.g., in consecutive iterations of the graph
cut optimization algorithm). Therefore, for a given segment
s, any depth value ds can be selected, pointing at any pixel
in view v

′

(presented as the orange arrow in Fig. 2), not
necessarily a segment itself (or, e.g., its center, as presented
in Fig. 2 with the dotted arrow).
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C. INTRA-VIEW DISCONTINUITY COST
The intra-view discontinuity cost is calculated between all
adjacent segments within a view (presented as the blue solid
arrows in Fig. 2). The cost is calculated as follows:

Ds,t (ds, dt) = β · |ds − dt | , (2)

where β is a smoothing coefficient, ds and dt are the currently
considered depths of adjacent segments s and t . The smooth-
ing coefficient β is calculated adaptively using β0, which is
the initial smoothing coefficient provided by the user, and the
similarity of segments s and t – the L1 distance (depicted
as ‖·‖1) between vectors [Ŷ ĈbĈr ]s and [Ŷ ĈbĈr ]t of aver-
age Y , Cb and Cr color components of the abovementioned
segments:

β = β0/

∥∥∥[Ŷ ĈbĈr ]s − [Ŷ ĈbĈr ]t
∥∥∥
1
, (3)

therefore, when the similarity of adjacent segments is low,
the smoothing coefficient also adaptively drops in value and
thus the depths of these segments are not penalized for being
discontinuous.

D. INTER-VIEW MATCHING COST
In order to achieve the inter-view consistency of estimated
depthmaps, thematching cost is not calculated independently
for every single view. Instead, the conventional matching
cost is replaced with the inter-view matching cost Ms,s′ (ds),
which is defined between a pair of segments s and s′ that
correspond to one another for the currently considered depth
ds (presented as the dotted arrow in Fig. 2).

The proper matching of whole segments from different
views is a difficult operation. Moreover, for the presented
method no assumptions about the positioning of views are
made. Therefore, the segmentation of the same object in
neighboring views may vary significantly, resulting in differ-
ent shapes and sizes of the corresponding segments. These
differences are especially big when the optical axes of cam-
eras are not parallel, because corresponding parts of a scene
can be visible from different angles in neighboring cam-
eras. Inter-view consistent segmentation would require cor-
rect depth maps, obviously not available at the beginning of
depth estimation.

In order to avoid the abovementioned difficulties, the inter-
view matching cost is calculated in the pixel-domain in a
small window A around the center of a segment and the
corresponding point in a neighboring view. The core of the
inter-view matching cost, denoted as ms,s′ (ds), is:

ms,s′ (ds)=
1

size(A)

∑
a∈A

∥∥[YCbCr ]µs+a−[YCbCr ]T [µs]+a∥∥1 ,
(4)

where A is a set of points in the window of the size specified
by the user, a is a point in window A, ‖·‖1 denotes L1 dis-
tance,µs is the center of segment s, [YCbCr ]µs+a is the vector
of Y, Cb, Cr color components of the center µs of segment s,
T [·] is a 3D transform obtained from intrinsic and extrinsic

parameters of cameras, [YCbCr ]T [µs]+a is the vector of Y ,Cb,
Cr color components of the point in view v′ corresponding to
the center µs of segment s in view v.
In order to achieve inter-view consistent depth maps,

the value of the inter-view matching cost Mp,p′
(
dp
)
is cal-

culated as:

Ms,s′ (ds) =

{
min{0,ms,s′ (ds)− K } if ds = ds′

0 if ds 6= ds′ ,
(5)

where s is a segment in view v, ds is the currently considered
depth of segment s, s′ is a segment in view v′ which corre-
sponds to segment sin view v for the currently considered
depth ds, ds′ is the currently considered depth of segment s′.
Mp,p′

(
dp
)
must decrease the value of the cost function when

the compared segments have low inter-view matching cost,
therefore,K must be a positive constant [44]. In the presented
method, K presents a threshold for ms,s′ (ds), above which
pair of segments s and s′ is considered to be different objects
and have assigned inter-view matching cost Ms,s′ (ds) = 0,
therefore, the overall cost function E

(
d
)
is not decreased.

ms,s′ (ds) is an average difference between pixel values and,
in idealistic case (without non-Lambertian reflections), s and
s′ should differ only by noise. Therefore, K can be assumed
basing on noise existing in the images:

K ≈ Nσ ·
√
N v ·
√
N c · σ (6)

In particular, we have decided to account forNσ = 5 standard
deviations of typical noise resulting from the aggregation
of independent noise sources in the difference of two views
(Nv = 2) and in the sum of three color components (Nc = 3).
σ is a standard deviation of noise distribution existing in a
single source. As it can be found in literature, for natural
sequences σ can be up to 2.5 ( [67], [68]). Basing on this,
we obtained the value of K = 30 for the experiments.
The proposed inter-view matching cost makes the pro-

posed method highly robust to the specular reflections on
surfaces. Often, for sparse camera locations, like in FTV/VN
systems, such specular reflection is visible in only one input
view. For simplicity, assume that this reflection is visible in
view v in segment r . This assumption simplifies notation but
does not restrict the generality of the considerations. Accord-
ing to the abovementioned assumption, specular reflection
highly increases the value of mr,r ′ (dr ) (4), where r

′ is a
segment in view v′ which corresponds to segment r in view v
for depth dr , v′ ∈Wv are views neighboring to view v. In this
case, mr,r ′ (dr ) > K , therefore, the value of Mr,r ′ (dr ) =
0. The value of the cost E(d) (1) for segment r becomes
dependent only on the intra-view discontinuity cost Dr,q:

E (dr ) =
∑

q∈Tr
Dr,q

(
dr , dq

)
, (7)

where dr is the depth of segment r , Tr is the set of segments
that neighbor to segment r , Dr,q is the intra-view discontinu-
ity cost between segments r and q, dr is the currently con-
sidered depth of segment r and dq is the currently considered
depth of segment q.
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Dr,q is calculated using the similarity of adjacent segments
r and q (2), therefore, the value of depth estimated for the
described segment r is implied by the depth values estimated
for similar adjacent segments in the same view. The proposed
cost function decreases the influence of specular reflections
on the final depth map quality. Also, the influence of other
non-Lambertian reflections (i.e., direction-dependent) on the
final quality of depthmaps is limited, as the inter-viewmatch-
ing cost is defined only between the currently processed view
and its closest left view, and the closest right view.

As a result of using the proposed cost function, depth is
estimated also for disoccluded areas. Segments that represent
parts of background objects that are visible only in one view
(i.e., are occluded in other views), will also likely have a
high value of (4), as they do not have the corresponding
segment in another view. Again, because of the proposed
formulation of the inter-view matching cost, the value of the
overall cost (1) for disoccluded segments becomes dependent
only on the intra-view discontinuity cost. Therefore, the value
of depth estimated for the disoccluded segment is implied
by the depth values estimated for similar adjacent segments,
i.e., the depth values of background objects in the neighbor-
hood of the disoccluded segment.

The presented definition of the inter-view matching cost
does not require segmentation that is inter-view consistent in
neighboring views. The center of a segment can correspond
to any point in the neighboring view, not necessarily the
center of a segment. Therefore, the presented pixel-domain
matching lets us estimate the depth with high precision,
simultaneously reducing the processing time of estimation,
as the matching is not performed for all points, but only for
centers of segments.

E. COST FUNCTION APPLICATION DETAILS
In the considered scenario, the optical axes of cameras do
not have to be parallel. Therefore, in order to achieve inter-
view consistency, the depth of a point has to be defined not
as the distance from the plane of the camera that acquired
this point, but as the distance from the plane of the center
camera of the system [43] (for the sake of comprehension:
the plane of a camera is a plane that contains the sensor of
the camera).

A local minimum of the cost function E
(
d
)
(1) is esti-

mated using the graph cut method [9] and the α-expansion
method of minimization for multi-label problems, described
in detail in [10]. At the beginning of the cost function E

(
d
)

minimization, we initially assume that all segments have the
furthest possible value of depth for an actually processed
scene, i.e., an approximate depth of the farthest object in
the scene. In order to calculate the required depth of the
furthest object, its approximate depth in real-world units
(e.g. in meters) has to be converted back to the unit used in
camera parameters. Such conversion can be easily calculated
from camera parameters on the basis of the rough approxi-
mation of a distance between cameras of multi-view system.
Nevertheless, such value is usually provided with multiview

test sequences as zfar parameter (what was a case for all test
sequences used in performed tests).

Unlike in [9], where each node in the constructed graph
represents one point of an input view, in our method, a node
corresponds to one segment. Nodes are connected by two
types of links which correspond to abovementioned intra-
view discontinuity cost and the inter-view matching cost
(Fig. 2).

The proposed segment-based estimation reduces the num-
ber of nodes in a graph in comparison with point-level estima-
tion, making the process significantly faster. Simultaneously,
depth maps in the presented method are still estimated in the
same resolution as the nominal resolution of the input views,
and because of the use of segments, the edges of objects in
depth maps correspond to the edges of objects in input views.

The number of segments, and therefore their size, is one
of the estimation parameters and can be adjusted. The use of
very small segments (i.e., of the size of 20 samples or less)
allows us to estimate high-quality depth significantly faster
than in pixel-based estimation. On the other hand, the use
of larger segments ensures an additional reduction of the
processing time, at the expense of a minor loss of quality (as
proved by the tests of the influence of the number of segments
on the virtual view quality – Section VI-A3).

F. TEMPORAL CONSISTENCY ENHANCEMENT
In natural video sequences, only a small part of an acquired
scene considerably changes in consecutive frames, especially
when cameras are not moving during the acquisition of video.
The idea of the proposed temporal consistency enhancement
of depth estimation is to calculate a new value of depth only
for the segments that changed (in terms of their color) in
comparison with the previous frame.

The proposed temporal consistency enhancement method
allows us to automatically mark segments as unchanged in
consecutive frames. These segments are used in the cal-
culation of the intra-view discontinuity and the inter-view
matching cost for other segments but are not represented by
any node in the structure of the optimized graph. It reduces
the number of nodes in the graph, making the optimization
process significantly faster, and on the other hand, increases
the temporal consistency of estimated depth maps.

In the first frame of a depth map, denoted as an ‘‘I-type’’
depth frame (by analogy to video compression terminology),
the estimation is performed for all segments, as described in
the previous sections. The following frames (‘‘P-type’’ depth
frames) can utilize depth information from the preceding
P-type depth frame and the I-type depth frame.

Segment s is marked by the algorithm as unchanged in
two cases: if all components of the vector [Ŷ ĈbĈr ]s of aver-
age Y, Cb and Cr color components changed less than the
set threshold Tb in comparison with the segment sB, which
is a collocated segment in the previous P-type frame, or,
if all components of the abovementioned vector changed less
than the threshold TI in comparison with the segment sI
(a collocated segment in the I-type frame). If any of these
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two conditions are met, then segment s adopts the depth from
the segment sB or sI (depending on which condition was
fulfilled).

A collocated segment in the previous or the first frame
is simply the segment that contains the central point of the
segment s. Therefore, even if the segmentation in compared
frames is not the same, the algorithm can easily find the
corresponding segment in these frames.

The introduction of two reference depth frames has a
beneficial impact on the visual quality of virtual navi-
gation in free-viewpoint television. First, the adoption of
depth from the previous P-type depth frame allows us to
use the depth of objects that changed their position over
time. On the other hand, the adoption of depth from the
I-type depth frame minimizes the flickering of depth in the
background.

In the presented temporal enhancement, the average colors
of whole segments are compared, therefore the influence of
noise is much lower than in the inter-view matching cost (3),
where points from input views are used. Therefore, the thresh-
old was set to TP = 3. In order to take into account the
possible change in the scene illumination that could occur
from the previous I-type depth frame, TI should be lower than
TP. In all our tests we use TI = 1.

IV. DEPTH ESTIMATION FRAMEWORK
IMPLEMENTATION DETAILS
In this section, we present the methods and solutions used in
our implementation of the proposed depth estimation.

A. PARALLELIZATION METHOD
In order to decrease the overall processing time of depth esti-
mation in the presented method, the estimation is performed
in parallel. In our proposal, each of n threads estimates a depth
map with an n-times lower number of depth levels (depth
levels are planes that are parallel to the plane of the cam-
era). In the presented method, depth levels can be distributed
onto threads in two ways: depth levels can be interleaved or
divided into blocks (Fig. 3).

The distribution of depth levels has an influence on the
processing time and quality of the estimated depth maps.
If objects of an acquired scene are placed more densely
in some ranges of depths, the estimation for corresponding
depth levels is longer. Therefore, if the depth levels are
divided into blocks, the estimation for some threads can
be longer, increasing the overall processing time of depth
estimation. On the other hand, when depth levels are inter-
leaved, the processing time of estimation for all threads
is nearly equal, but the estimated depths tend to be less
smooth. The dependency between the type of paralleliza-
tion and the performance of the depth estimation method
was tested in one of the performed experiments presented
in Section VI.

Depth maps with a reduced number of depth levels that
were calculated by different threads have to be merged into
one depth map. Themerging process is performed in a similar

FIGURE 3. Two examples of different depth level distributions over
threads in the proposed method: a) depth levels are divided into blocks,
b) depth levels are interleaved. Each rectangle represents a different level
of the depth of a scene.

FIGURE 4. Depth map merging process for the 4-thread parallelization.

way as depth estimation [using the cost function (1)], but only
two levels of depth are considered for each segment – i.e., the
depth of a segment from thread t or the depth from thread
t+1 (Fig. 4). Only two depth maps can be merged into one by
one thread during the merging cycle. Therefore, for n threads,
dlog2(n)e of additional cycles are needed to estimate the final
depth map with all depth levels.

Of course, even without the use of parallelization, all
cores of the CPU can also be used for depth estimation,
e.g., each core can perform the estimation of depth for dif-
ferent sets of input views (e.g., for each 5 cameras of the
system), or for different frames of the sequence. Unfortu-
nately, when many standalone depth estimation processes
are performed, it results in the loss of inter-view consis-
tency or temporal consistency of estimated depth maps.
When the proposed parallelization is used, both inter-view
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and temporal consistency of depth maps, which are funda-
mental for the quality of virtual view synthesis, are preserved.

B. OPTIMIZATION METHOD
The proposed method utilizes the graph cuts method to
estimate depth maps [9], [10]. As was proven in [25],
the improvement of problem formulation has a significantly
larger influence on depth estimation performance than the
selection of the optimization method. Additionally, the graph
cuts method, in comparison with belief propagation, the com-
petitive method of global optimization, handles the penalties
between nodes of the graph in a better way [25]. Therefore,
in the proposedmethod of depth estimation, where graph con-
struction is strictly based on dependencies between segments,
the use of the graph cuts method is advisable and favorable.

C. SEGMENTATION
The proposed method of depth estimation can be used with
any superpixel segmentation method. The authors decided to
use the SNIC method (Simple Non-Iterative Clustering [20])
because the properties of SNIC meet the characteristics of
the proposed depth estimation method: segments represent
small regions, not whole objects, and the number of segments
can be freely changed. The SNIC method has also been
shown to have low complexity (which reduces the overall
processing time of depth estimation) and achieve one of the
lowest segmentation errors when compared to state-of-the-art
methods, which positively influences the representation of
edges of objects in depth maps.

In the presented framework of depth estimation, instead
of the CIELAB space, in order to avoid the recalculation
of color space, the segments are calculated using the YCbCr
color space. The parameters of the segmentation used are the
compactness factor m = 5, and 8-connected segments.

V. SOFTWARE IMPLEMENTATION OF THE METHOD
The above-described method is implemented as C++ soft-
ware provided for use in further research. The software
can be downloaded together with a manual, configuration
examples, and license details from the following repository:
https://gitlab.com/dmieloch/depth-map-estimation-for-ftv.

Currently, DERS is available for comparison, but the soft-
ware for newer methods remains unavailable for a broader
research community. Here, complementary software is pro-
vided for the convenience of the research community. The
authors believe that the availability of this new software will
be useful as an additional reference for future developments
in depth estimation.

VI. EXPERIMENTAL RESULTS
A. ASSESSMENT OF THE QUALITY OF DEPTH MAPS
1) DESIGN OF EXPERIMENTS
In the experiments presented in whole SectionVI-A, the qual-
ity of depth maps is measured indirectly, through virtual
view synthesis. For an end user, the quality of virtual views

TABLE 1. Test sequences used in experiments.

FIGURE 5. The scheme of PSNR calculations for the virtual view
synthesized using depth maps estimated in the experiment.

expresses the overall quality of a free-viewpoint television
system. Therefore, virtual views are a good determinant of
the performance of a depth estimation method.

In the experiments, a set of 8 multiview test sequences
of varied character and arrangement of cameras are used.
Sequences, their resolutions, views used in experiments and
their sources are presented in Table 1.

In the conducted experiments not only do we com-
pare our method with the state-of-the-art graph-based depth
estimation method DERS [7] (Section VI-A2), but we also
determine the performance of the presented method for dif-
ferent numbers of segments (SectionVI-A3), and for different
numbers of views used in the estimation (Section VI-A4).
The performance of the presented parallelization meth-
ods and temporal consistency enhancement is also tested
(Sections VI-A5 and VI-A6 respectively).

The scheme of measuring depth map quality is presented
in Fig. 5. The synthesis of a virtual view placed in the posi-
tion of the acquired view 2 is performed using neighboring
views 1 and 3 and corresponding estimated depth maps. The
synthesized virtual view is compared with the acquired view
2 and PSNR of luminance is calculated and averaged for
50 frames for each test sequence. In the experiments, besides
the quality of estimated depth maps, we also measure the
processing time of estimating depth per one frame and view of
a sequence. There are 5 views used during estimation, except
for the analysis of the influence of the number of views on the
quality of virtual views (Section VI-A4). In order to decrease
the overall processing time of the estimation, temporal con-
sistency enhancement is turned on in all experiments (the
number of P-type depth frames between I-type depth frames
is equal to 9).
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It is worth noting that in the case of free navigation,
the virtual views are estimated from two or more nearest
views, e.g., the virtual view between acquired views 1 and
2 is usually synthesized using exactly these two views. The
nearest acquired view is, in the worst possible case, dis-
tant from the virtual view by half of the distance between
cameras. The distance between the position of the virtual
view and the acquired views has a significant impact on
the quality of virtual views [3]. Here, the distance between
views used for view synthesis is larger, therefore the over-
all quality of virtual navigation obtained from estimated
depth maps would be noticeably higher than presented in the
experiments.

All experiments were performed on one thread of Intel
Core i7-5820K CPU (3.3 GHz clock) machines equipped
with 64 GB of operational memory (except for the test of
the parallelization method, where the number of used cores
varied from 1 to 6). The size of a block in the inter-view
matching cost is 3×3, the estimation is performed for 250 lev-
els of depth and the initial smoothing coefficient is the same
for both methods (β0 = 1). The synthesis of virtual views
is performed using the View Synthesis Reference Software
developed by the MPEG community [15].

2) COMPARISON WITH DERS
The presented method is compared with the state-of-the-art
Depth Estimation Reference Software developed by the
MPEG community [7]. DERS is a graph-based method avail-
able for researchers in its entirety and it states no assumptions
about the positioning of cameras. Therefore, DERS is a rea-
sonable reference depth estimation method for the presented
framework.

For HD test sequences (listed in Table 1) the number of
segments used in the proposed method is 100,000, while for
sequences with the lower resolution, in order to ensure a
similar size of segments for all sequences, the number of
segments is 50,000. Other parameters of estimation are the
same for both methods.

Table 2 presents the results of the experiment. For all tested
sequences the quality of virtual views synthesized using depth
maps estimated with the proposed method is higher than for
depth maps from DERS, with the maximum gain in quality
equal to more than 5 dB. The average gain for all sequences
is 2.63 dB. The lowest PSNR of a virtual view for DERS
is below 22 dB, while for the proposed method the lowest
PSNR is 25.5 dB. For the proposed method, only for one
sequence the PSNR is below 27 dB. For DERS there are five
such sequences. The visual comparison of depth maps for
the proposed method and DERS, together with synthesized
virtual views, is shown in Fig. 6 and is available in the video
attached to this paper as supplementary material.

As Table 3 shows, the estimation process is, on aver-
age, more than 4 times faster for the presented method,
even when the temporal enhancement and parallelization
are not used. What is important, the reduction of the pro-
cessing time of estimation is highest for HD sequences,

TABLE 2. Comparison of quality of virtual views synthesized using depth
maps estimated using the proposed method and the reference method
DERS [7].

TABLE 3. Comparison of the processing time of the estimation of depth
maps for the reference method DERS [7] and the proposed method with
proposed enhancements.

therefore, the proposed method can be effectively used with
high-resolution cameras. It is the effect of the use of seg-
mentation in depth estimation – the complexity of estimation
in the proposed method is dependent on the number of seg-
ments, not on the resolution of input views.

3) RESULTS FOR DIFFERENT NUMBERS OF SEGMENTS
In the next experiment, the influence of the number of seg-
ments used in depth estimation on the quality of a virtual
view is tested. The number of segments varied from 1,000 to
150,000.

The results of the experiment, averaged for all sequences,
are presented in Fig. 7. As it can clearly be observed, the
more segments are used in the estimation, the higher quality
of depth maps can be achieved. However, the use of more
than 100,000 segments insignificantly increases the quality
of depth maps, at the cost of a considerable increase of
estimation time.

When only 1,000 segments are used, the quality of depth
maps is equal to the average quality of depth maps esti-
mated using the DERS method, but the time needed for the
estimation process is significantly shorter and equal to only
two seconds.

The highest increase in the quality of depth maps can be
seen between estimations performed for 1,000 and 25,000
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FIGURE 6. Comparison of virtual views synthesized using depth maps estimated using DERS and the proposed method.

segments per view. Despite the number of segments increas-
ing 25-fold, the average processing time of estimation
increases only six-fold. On the other hand, increasing the

number of segments above 100,000 does not change the
quality of depth maps significantly (only by 0.1 dB), but
the mean processing time of estimation is noticeably longer.
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FIGURE 7. The average quality of a virtual view synthesized using depth
maps estimated for different numbers of segments per one view and
processing times of depth estimation.

The visual comparison for the Poznań Fencing2 sequence
of depth maps estimated for different numbers of segments
is presented in Fig. 8, while the virtual views synthesized
using these depth maps are presented in Fig. 9. The compar-
ison clearly shows a much better representation of edges of
objects resulting from using segments instead of point-based
estimation. The reduction of the number of superpixels, at the
expense of a very minor loss of quality, gives a significant
reduction of the required processing time.

The results for individual sequences are presented
in Table 7 in the Appendix. The visual comparison of depth
maps estimated for different numbers of segments, together
with synthesized virtual views, is also available in the video
attached to this paper as supplementary material.

4) RESULTS FOR DIFFERENT NUMBERS OF VIEWS
The influence of the number of views used in the estimation
process on the quality of the estimated depth maps is also
tested. The number of views varies from 3 to 8 and is limited
by the number of views available in test sequences.

The results presented in Fig. 10 show that the use of
more than 5 views changes the measured quality of virtual
views and the processing time of estimation only to a small
extent. However, the use of all available views increases the
inter-view consistency of estimated depth maps, therefore,
we recommend performing the estimation for all views simul-
taneously to ensure the high quality of free navigation. The
results for individual sequences are presented in Table 8 in
the Appendix.

5) RESULTS FOR DIFFERENT TYPES OF PARALLELIZATION
The presented parallelizationmethod is tested in two variants:
blocks of depth levels (Fig. 3a) and interleaved levels of depth
(Fig. 3b). The number of used threads varies from 1 to 6 and
is limited by the number of standalone cores in the used
CPU. The results of the experiment (Fig. 11) confirm that if
the levels of depth are distributed onto threads as blocks of
depth levels, the processing time of the estimation is slightly
longer than for interleaved levels of depth, but the difference
in quality increases with the number of threads used.

Even when 6 threads are used, the quality decrease in
comparison with the estimation without parallelization is
insignificant (around 0.1 dB) but the processing time of
the estimation decreases 4.5-fold. The results for individ-
ual sequences are presented in Table 9 in the Appendix.
The visual comparison of depth maps estimated using the
proposed parallelization method, together with synthesized
virtual views, is also available in the video attached to this
paper as supplementary material.

Moreover, both the inter-view and temporal consistency of
depth maps, which are fundamental for the quality of virtual
view synthesis, are preserved when the proposed paralleliza-
tion is used. The method is fully scalable, so the constantly
increasing number of cores in modern CPUs can be fully
utilized for further reduction of the processing time of depth
estimation.

6) RESULTS FOR DIFFERENT NUMBERS
OF P-TYPE DEPTH FRAMES
Here, we present the performance of the proposed temporal
consistency enhancement of the proposed depth estimation
method. The number of frames is 50, as in all conducted
experiments, and the number of used P-type depth frames
between I-type frames varies from 0 to 49.

Fig. 12 shows the results of the performed experiment.
The temporal consistency enhancement significantly reduces
the processing time of estimation (10 times when only one
I frame is used) with a negligible decrease of the objec-
tive quality (less than 0.3 dB). The results for individ-
ual sequences are presented in Table 10 in the Appendix.
The visual comparison of depth maps estimated using
the proposed temporal consistency enhancement method,
together with synthesized virtual views, is also avail-
able in the video attached to this paper as supplementary
material.

The results presented above only refer to the quality of
virtual views and do not reflect the improvement of temporal
consistency of depth maps. As it was presented earlier [45],
the size of depth maps after encoding is one of the objec-
tive measures of their temporal consistency. In this article,
we focus on the quality of free navigation for a user of the
FTV system, therefore, in order to measure the increase of
the temporal consistency of depth maps, synthesized virtual
views are compressed with the HEVC encoder. The lack of
temporal consistency of depth maps results in the visible
flickering of a virtual view. Therefore, the lower the temporal
consistency of depth maps, the lower the efficiency of the
encoding of virtual views.

The encoder is set in the low-delay mode, so only the
first frame of virtual views is encoded as an intra frame.
Such settings of the encoder increase the influence of tem-
poral consistency of the encoded sequence on the final
bitrate. In the experiments, we use the HM 16.15 frame-
work [46] using MPEG common test conditions (with the
exception of used test sequences) and software reference
configurations.
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FIGURE 8. Comparison of depth maps (view #1 of Poznań Fencing2) estimated using the reference method DERS and the proposed method for
different numbers of segments. The estimation times are given for one view of the sequence, averaged over 50 frames. For the proposed
method the temporal enhancement is turned on and the estimation is calculated using 4 threads of CPU.

FIGURE 9. Comparison of virtual views (view #2 of Poznań Fencing2) synthesized for depth maps estimated using the reference method DERS
and the proposed method for different numbers of segments. The PSNR values are derived with respect to the collocated input view.

Table 4 presents the results of encoding virtual views syn-
thesized using depth maps with different numbers of P-type
depth frames. The results are expressed as average luma
bitrate reductions calculated using the Bjøntegaard [47] met-
ric in comparison to a virtual view synthesized with depth that
was not temporally enhanced. The detailed results for all QPs
that include a bitrate and PSNR after encoding are presented
in Table 11 in the Appendix.

For all tested sequences, the use of the proposed temporal
consistency enhancement of depth maps results in bitrate
reduction for all encoded virtual views. The average reduction

is even higher than 30% when the number of P-type depth
frames is equal to 49 (therefore only one I-type depth
frame is used in the whole sequence). It indicates that the
proposed technique of temporal consistency enhancement
significantly increases the temporal consistency of depth
maps, because the performance of the encoder in low-
delay mode is vastly dependent on temporal prediction. The
results also show another advantage of temporal consis-
tency of depth maps in the FTV system – the reduction
of the bitrate required to send a virtual viewpoint to an
end user.
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FIGURE 10. The average quality of a virtual view synthesized using depth
maps estimated for different numbers of views used in the estimation
process and processing times of depth estimation.

FIGURE 11. The average quality of a virtual view synthesized using depth
maps estimated for different parallelization cases and processing times
of depth estimation.

FIGURE 12. The average quality of a virtual view synthesized using depth
maps estimated for different numbers of P-type depth frames between
I-type depth frames and processing times of depth estimation.

B. ASSESSMENT OF THE ACCURACY
OF DEPTH MAPS
The available databases with ground truth depth maps do
not correspond to the characteristics of free-viewpoint tele-
vision. The newest Middlebury database [51] is widely used
by the research community and allows us to easily evaluate
the performance of a depth estimation method and com-
pare it with other methods. Unfortunately, the comparison
of depth estimation methods in this database is performed
for a set of rectified stereo-pair images acquired using two

TABLE 4. Average luma bitrate reductions of encoded virtual views
synthesized using depth maps estimated for different numbers of P-Type
depth frames between I-Type depth frames.

TABLE 5. The results of the assessment of the accuracy of depth maps
estimated using the proposed method on the available 9 views
high-resolution Middlebury dataset images [73].

TABLE 6. The comparison of the accuracy of depth maps estimated using
the proposed method and other methods tested in Middlebury Stereo
Evaluation Version 3 [52].

cameras with parallel optical axes, while in free-viewpoint
television systems any number of arbitrarily positioned cam-
eras can be used. Moreover, the dataset includes only one
frame for each scene, therefore, the temporal consistency
of depth maps, which is a significant part of the research
presented in this paper, cannot be measured using this
database.

Other databases of ground truth depthmaps (e.g., one of the
newest databases – the ETH3D Benchmark [52]) also focus
on the use of multi-camera systems of different properties
than FTV, e.g., on moving camera rigs, or on the 3D recon-
struction of static scenes.

In order to provide direct evaluation of the accuracy of
depth maps, we use the older Middlebury database [71],
in which more views are available for some of the mul-
tiview images. In particular, we use two high-resolution
(1800×1500) multiview images: Cones and Teddy, for which
9 views are available. Such a scenario to some degree meets
the characteristics of the FTV and VN systems, therefore,
it can provide fair quantitative results for the presented multi-
view depth estimation method.
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FIGURE 13. Input views of Cones and Teddy sequences with ground-truth depth maps, depth maps estimated with the proposed method and images of
bad pixels (ET = 4.0, white color indicates correctly estimated depth).

TABLE 7. The quality of virtual views synthesized using depth maps
estimated for different numbers of segments.

The results are summarized in Table 5. We present the
percentage of bad pixels of the estimated depth maps sum-
marized over for all available pixels of ground-truth depth
maps for the error threshold of ET = 2.0 and ET = 4.0
(i.e., if the absolute error of estimated depth value for a
pixel is larger than ET then this pixel is considered as a
bad pixel), an average error, an average relative error and
RMSE. Fig. 13 shows the estimated depth maps together
with corresponding input view, ground-truth depth maps and
visualizations of bad pixels for ET = 4.0.

The proposed method achieves a very low average error of
estimated depth maps (on average slightly larger than 1 for
256 depth map levels), which indicates a very high accuracy
of estimated depth maps. Current (as of December 2019)
top 10 depth estimation methods tested in Middlebury
Stereo Evaluation Version 3 [51] for the Teddy sequence
achieve the average error smaller than 1.36 and the per-
centage of bad pixels smaller than 5.57% (ET = 4.0)
(e.g. methods described in [72], [73] and [74], see Table 6).
Therefore, the proposedmethod shows state-of-the-art results
in terms of the depth maps accuracy.

TABLE 8. The quality of virtual views synthesized using depth maps
estimated for different numbers of views used in estimation.

TABLE 9. The quality of virtual views synthesized using depth maps
estimated for different parallelization types.

Nevertheless, what should be stressed again, such
evaluation does not measure the inter-view and temporal con-
sistencies of depth maps, crucial for the virtual view synthesis
performed in FTV and VN systems. These important features
of the proposed method are tested in experiments presented
in the previous subsections.
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TABLE 10. The quality of virtual views synthesized using depth maps
estimated for different numbers of P-Type depth frames between I-type
depth frames.

TABLE 11. The bitrate and quality of encoded virtual views. Virtual views
were synthesized using depth maps estimated for different numbers of
P-type depth frames between I-type depth frames.

VII. CONCLUSION
The goal of the work is to provide an efficient depth
estimation method for applications in FTV and VN. As dis-
cussed above, these applications pose specific requirements
in addition to the usual expectation of high fidelity and accu-
racy of depth as well as the pursuit for limited processing
time. The FTV/VN applications also require the estimation
of several depth maps at a time, temporal and inter-view
consistency, and versatility related to arbitrary locations of
source cameras.

The approach considered, i.e., segment-based depth esti-
mation has proved to be able to fulfill the abovementioned
requirements as demonstrated by the experimental results

reported in the paper. The novelty of the approach consists
in:

• an original segment-based technique,
• new techniques for temporal and inter-view consistency
of depth maps,

• a novel parallelization method.

In the paper, the results are provided that demonstrate
the advantages of the proposed method over the Depth Esti-
mation Reference Software (DERS) developed by MPEG.
The quality of a depth map is measured by the quality of
the synthesized views, and it is higher on average by 2.6 dB.
This significant quality improvement with respect to the
state-of-the-art DERS is obtained despite the significant
reduction of the estimation time by about 4.5 times. The
application of the proposed temporal consistency enhance-
ment method increases this reduction to 29 times on average.
Moreover, the proposed parallelization results in the reduc-
tion of the estimation time up to 130 times with respect to
DERS using 6 threads. As there is no commonly accepted
measure of the consistency of depth maps, the application
of compression efficiency of depth is proposed as a measure
of depth consistency. The experimental results are provided
in order to demonstrate the quality of depth as functions of
segment size, the number of input views used and the number
of P-type depth frames.

Although the paper is focused on video, results for still
images are also provided that demonstrate that the accuracy
of the describedmethod is among the state-of-the-art methods
in the Middlebury Stereo Evaluation for multiview static
pictures.

A unique feature of the work is related to the disclosure
of the source code of the implementation that can be used by
other researchers as a new reference for their future works.

The particular usefulness of the presented depth estimation
method was already confirmed by its implementation in an
operational FTV system developed by the authors from the
Chair of Multimedia Telecommunications and Microelec-
tronics of the Poznań University of Technology [56].

APPENDIX
See Tables 7–11.
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