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ABSTRACT 

In this paper, we propose a fast technique for real-time depth 

estimation that is implementable on mobile devices like 

smartphones and tablets. Moreover, the FPGA-based implemen-

tations of this technique are also reported. The idea of this tech-

nique is to use small-block matching and exploit the recently 

estimated disparity values in order to enhance spatial consistency 

of the output disparity map. Using the Middlebury stereoscopic 

test images, the proposed real-time technique is compared to 

other techniques known from the references. The obtained re-

sults demonstrate high efficiency of the proposed technique im-

plemented both on mobile platforms and FPGA devices.   

Index Terms —depth estimation, mobile application,  

3D imaging on mobile, disparity on mobile, FPGA-based dispar-

ity estimation 

1. INTRODUCTION 

Mobile devices like smartphones and tablets are going to be 

ready for 3D video applications. Some manufacturers have al-

ready started to equip them with autostereoscopic displays and 

two cameras at least. The prospective mobile applications are 

going far beyond acquisition and viewing of stereoscopic pic-

tures, but they include, e.g. embedding virtual objects into real 

scenes or 3D model estimation of real objects. Therefore, the 

adoption of 3D video technology to mobile devices becomes an 

important research area. In particular, for most of 3D video ap-

plications, efficient real-time depth estimation is still a true chal-

lenge, especially when considering implementations on mobile 

devices with their limited complexity and power consumption. 

In order to meet these conditions of limited hardware perfor-

mance and limited power consumption, the respective depth 

estimation techniques must be relatively simple but they still 

have to produce high-fidelity depth. Unfortunately, the existing 

solutions mostly suffer from important limitations.  

Therefore, in this paper, we propose a fast technique for re-

al-time depth estimation that is implementable on mobile devices 

like smartphones and tablets. For the proposed technique, we 

also demonstrate an efficient implementation on FPGA devices 

that may be used either directly or as a prototype for ASIC de-

signs.   

2. STATE OF THE ART 

Disparity estimation on mobile devices was already mentioned 

in the papers dealing with 3D image and video-based applica-

tions (e.g. [1,2]). 

In general, disparity estimation may be considered as mini-

mization of a cost function that may be defined in various ways, 

e.g. in order to provide smoothness of the obtained disparity 

map. The disparity estimation methods [3] may be classified as 

global and local. The global methods exploit various techniques 

of global optimization of the whole disparity maps while the 

local methods provide the disparity maps using local optimiza-

tion of the disparity map around a pixel only.  

The widely used global methods include the graph cuts 

technique [4] and the belief propagation technique [5]. These 

contemporary algorithms provide relatively smooth disparity 

maps. Therefore, the real-time implementations of these methods 

are subject to extensive research. Yang et al [6] proposed an 

efficient real-time implementation of the hierarchical belief 

propagation using Graphics Processing Unit (GPU). Another 

interesting approach [7] uses simpler global reasoning algo-

rithms based on dynamic programming in horizontal scan lines. 

Unfortunately, for the global methods, the complexity is rather 

high – they need both significant processing power and large 

memory volume. These high demands yield significant problems 

in mobile implementations. For example, belief-propagation 

algorithm used for depth estimation with VGA (640×480) reso-

lution and 32 considered levels of disparities, might require as 

much as 80MB of space for message passing cache. This about 

of memory, although not significant from memory capacity point 

of view, has to be read and written-back in each iteration of BP 

algorithm. Memory bandwidth available on mobile devices and 

on FPGA devices, together with frame-rates required in real-

time depth estimation and practical number of iterations of BP 

algorithm, therefore lower the usefulness of such approach. 

Local methods use various types of block matching in order 

to find the disparity for each pixel independently. Large number 

of independent block matchings allow for massive paralleliza-

tion of the local disparity estimation algorithms. This enables the 

usage of even large blocks (e.g. 35×35 pixels) that mostly pro-

vide disparity maps that are better compared to those obtained 

using small blocks. Unfortunately, large blocks are very compu-

tationally expensive. Hence, the local methods with large blocks 

are implementable in real-time using the abovementioned paral-

lelization.   

Therefore, the local depth estimation algorithms can be ef-

ficiently implemented on GPUs even with large windows. Most 

of them employ adaptively estimated weights in order to adjust 

to the image content. For example, in works [8-11] weights in 

the block matching cost are calculated by means of bilateral 

filtering. Unfortunately, bilateral filtering is computationally 

expensive and thus its various approximations are studied in the 

literature. Mattoccia et al [8] divide matching window into small 

regular blocks in which filter coefficients are kept constant. Wei 

et al [9] propose two algorithms which employ separable ap-

proximation of bilateral filtering and iterative calculation of the 



matching cost with exponential step size. Others, like [10,11] try 

to use guided filters for fast computation of the matching cost in 

block-size-independent O(N) time. Even with such mentioned 

optimizations, the memory bandwidth available on GPUs of 

mobile devices is still incomparably lower than those available 

in e.g. mainstream PC GPUs. Therefore, also this approach is 

inadequate for mobile devices considered in this work. 

In this paper, we propose a depth estimation method that 

would have advantages of both local and global methods. 

3. GENERAL IDEA 

In the proposed algorithm, disparity for a given pixel is estimat-

ed using disparities from the previously processed pixels. 

At the beginning, there are no previously processed pixels, 

e.g. in the first column of a picture. Therefore, for the pixels 

processed first, disparity is estimated locally. For each such a 

pixel, the disparity value   is chosen, which minimizes the 

matching cost function  ( ) calculated with the use of neigh-

boring pixels, for displacement values   from a certain search 

range: 
 

                                                
      
 

 , ( )-  (1). 
 

 ( ) can be any matching cost function, e.g. sum of absolute 

differences (SAD) calculated by block matching. 

Such an estimated disparity value   is used to enhance  dis-

parity estimations in subsequent pixels. In context of a subse-

quent pixel, there can be many disparity values estimated for 

previously processed pixels, therefore, such set will be denoted 

further as *                 }.  Calculation of the disparity   

from Eq. 1 is updated with a penalty value   which is added to 

the matching cost of disparities not included in *     + set of 

disparities: 
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Such output disparity value    is fed to the subsequent pixels as 

one of       values. 

The aim of usage of constant value   is to penalize dispari-

ty changes between neighboring pixels, which result solely from 

noise in the input images. Thus, the value of   can  be adjusted 

experimentally accordingly to the level of noise aggregated with-

in  ( ). It depends on the size of blocks used for calculation of  

 ( ), and also on acquisition parameters of the used stereo pair 

(e.g.  sensitivity of the sensor, exposure time etc.). For pictures 

acquired with modern cameras those parameters can be read 

from meta data. Therefore it can be imagined that in a practical 

application, the penalty value   can be calibrated with use of 

reference images for a given set of acquisition parameters and 

then chosen adequately. For the sake of brevity we omit the de-

tails on how to choose   parameter. 

4. DETAILED DESCRIPTION 

We assume the usage of two views, which are used to generate 

dense disparity map for the left view. As for the matching cost 

 ( ) we used SAD of red, green and blue components and their 

horizontal and vertical gradients (9 components in total), calcu-

lated between pixels in the left and in the right view. SAD was 

aggregated over square blocks centered around the processed 

pixel. In the experiments (cf. Section 6), we used the blocks of 

size 1×1 to 9×9 pixels. 

The order in which pixels must be processed in the pro-

posed algorithm is enforced by dependency of disparity estima-

tion on previously estimated                   disparities. Alt-

hough in principle, number   can be different for each pixel, we 

have chosen to use     disparities estimated at previously 

processed pixels:                  , located respectively to the 

right, to the top-right, and to the bottom-right, from the currently 

processed pixel (Fig. 1). Consequently, the disparity map is gen-

erated in columns, in order from right to left. Such a scheme is 

beneficial due to occlusions, because we estimate depth for the 

left view and the right view is used as a reference. 

 

 
 

Figure 1. Processing order of pixels (right-to-left) in the implementation  

of the proposed algorithm and the inference of       disparity values 

 

In the presented scheme (Fig. 1), the disparity for each pixel 

is estimated in Pixel Disparity Estimation (PDE) module, which 

implements the proposed algorithm. It can be noticed, that, in a 

given column, estimation for each pixel is independent from 

each other pixel. This feature is used for parallelization of our 

algorithm. Of course, in practical implementation, the number of 

PDE modules is limited, e.g. to 8 on mobile devices or CPU or 

limited to 20 on FPGA.  

 

 
 

Figure 2. Implementation of the proposed disparity estimation algorithm  

for a single pixel in a Pixel Disparity Estimation (PDE) module 

 

The PDE module (Fig. 2) implements calculation of Eq. 3, 

which is a synonymous formulation of Eq. 2 that employs the 

disparity value   than can be computed with the use of Eq. 1: 
 

               [ ( )     (       )    (       )]      (3). 
 

The minimal value of terms in        ,   -  is found and the 

corresponding function argument (e.g.   or        ) is assigned 

to   . Such formulation allows two implementation optimiza-

tions, which we use for software and hardware. 

In the first one,  (       )    (       ) values are cal-

culated first. If any of them is lesser than penalty    then calcula-

tion of  ( )    is redundant and can be skipped. Therefore, in 

such a case, disparity value   is not needed and further block 

matching for a given pixel can be also skipped. We have used 

this optimization in our software implementation which yielded 

substantial speed-up of computations. 

In the second optimization, which we have employed in 

FPGA, disparities   and their corresponding costs  ( )    are 

computed first, before the actual algorithm starts. Thanks to that, 

block matching needed by  ( ) can be done very efficiently, 

because calculations of components of SAD sums can be shared 

Direction of processing of columns

Row y-1

Row y

Row y+1

PDE

PDE

PDEPDE

PDE

...

...

...
...

...

...

Column x Column x+1

PDE

PDE

PDE

Column x-1

...

...

...

...

...

...

...PDE

PDE

Pixel 

Disparity

Estimation

- dprev 2     disparity value

- dprev 1     disparity value

- dprev 3     disparity value

-

Block 

matching

arg min

d dprev 2

M(∙)

+C

M(∙) M(∙) M(∙)

Disparity 

value

Matching cost 

value

M(∙)
Matching cost 

evaluation

dprev 1

dprev 3

updated

estimated

disparity

d’
dprev 1

dprev 2

or 

dprev 3

in the 

next PDE

PDE
Block 

matching

Finds locally the 

best disparity 

value d



between neighboring pixels. The actual usage of disparity values 

estimated in previously processed pixels, devised in the pro-

posed algorithm, is performed later in an update step, described 

by Eq. 3 and depicted in Fig. 2. 

5. IMPLEMENTATIONS 

The proposed algorithm was implemented in software and in 

hardware (Fig.  3). 

For software platform, we used two Android mobile devices 

equipped with ARM processor: Huawei Ascend P6 and Samsung 

Galaxy Note 3, and a PC equipped with Intel Core i7 as a refer-

ence. The software implementation has been prepared in native 

multithreaded C++ code, without any assembler subroutines. In 

all cases, GPU was not used for any computations. 

The hardware implementation have been prepared using 

Verilog language. It runs on Xilinx Artix-7 device with 

166 MHz clock. The FPGA implementation employs 20 parallel-

ized PDE modules and requires 27 000 LUTs and 38 blocks  

of BRAM (36 kbit each). 

 

     
Figure 3. The proposed disparity estimation algorithm implemented on 

Android mobile devices (Huawei Ascend P6, Samsung Galaxy Note 3)  

and on the processing board developed by the authors equipped with  

Xilinx Artix-7 FPGA 

6. RESULTS 

For the quality evaluation of our algorithm, we have used Mid-

dlebury  stereoscopic images [12]: Tsukuba Venus, Teddy and 

Cones (Fig. 4). A commonly used bad-pixel ratio [13] has been 

used as an objective quality index. Bad-pixel ratio presents the 

percentage of pixels for which disparity is estimated wrongly, in 

comparison to ground-truth disparity maps, with error greater 

than 1 disparity level. As usually, the percentage of bad pixels 

was calculated only for non-occluded regions of the images.  
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Figure 4. Images from Middlebury database [12] used for evaluation 

Table I.  Percentage of bad pixel for various block sizes  
and optimized penalty values C 

Block 

size 

Penalty  

value C 
Tsukuba Venus Teddy Cones Avg. 

1×1 72 17.4 10.8 9.8 25.4 15.8 

3×3 189 10.4 7.9 8.7 17.4 11.1 

5×5 225 8.5 7.6 7.7 16.4 10.1 

7×7 343 6.5 8.1 7.5 16.0 9.5 

9×9 405 6.4 8.7 6.9 16.1 9.5 
 

Quality of the estimated disparity maps was tested using 

matching block of sizes in range of 1×1 to 9×9. For each block 

size we have selected a constant penalty C value that provides 

the lowest average percentage of bad pixels over four used stere-

oscopic images. The overall quality of the disparity maps esti-

mated, attained by our algorithm, can be found in Table I.  

The increasing of the block size results in reduced average 

percentage of bad pixels. The highest gains are observed in 

range between 1×1 to 3×3 and to 5×5. Further increase of the 

matching block size, over 5×5, provides minor improvements 

with a drawback of high complexity increase. Exemplary dispar-

ity maps estimated for Cones and Teddy images with the use of 

5×5 matching block are presented in Fig. 5. 

We have also assessed speed of the proposed algorithm in 

terms of the number of disparity maps estimated per second 

(frames per second - fps). As for the reference, we have chosen 

image of size 320×240 pixels and 32 tested disparity levels. For 

example, in such conditions, our FPGA implementation achieves 

1193 fps (Table II). Of course, the provided numbers can be 

easily scaled to a different resolution, e.g. our FPGA implemen-

tation achieves 11 fps for 1920×1080 resolution with 128 tested 

disparity levels. 

 

  

Cones Teddy 

Figure 5. Disparity maps estimated with matching block size 5×5  

and penalty value C = 225 

 

The proposed algorithm has been compared to other real-

time, state-of-the-art depth estimation techniques (Table II). In 

the first group, the real-time CPU implementations of our algo-

rithm are shown. For those implementation, block size 3×3 has 

been used in order to meet real-time requirements. Unfortunate-

ly, in the literature we did not find any mobile real-time imple-

mentations of disparity estimation algorithms which we could 

compare to, in terms of bad-pixels and speed. What can be 

shown instead, is that our PC implementation is comparable with 

the state-of-the-art disparity estimation algorithms implemented 

on GPU on PC. Results of those methods, both global and local, 

are presented in the second and third group in Table II, respec-

tively. The bad-pixel ratio attained by our algorithm (11.11%) is 

slightly worse, but it must be noted that GPU-implemented algo-

rithms are able to use very big windows (e.g. 33×33). For that, 

GPU implementations employ hundreds of processors running in 

parallel, while our software implementation employs a very lim-

ited number of computing threads (e.g. 8) and still attains very 

comparable frame rate (16.7 fps). 



As for the hardware implementation, the comparison is very 

difficult, because different FPGAs allow for vastly different 

degrees of parallelization etc. We have managed to adjust the 

results available in literature to conditions in which our hardware 

implementation was done. The results, presented in the fourth 

group of algorithms in Table II, show that the proposed algo-

rithm is superficial related to the other presented algorithm in 

terms of attained frame rate, which is 1193 fps. As for bad-pixel 

ratio, the proposed algorithm is placed in-between the competi-

tive algorithms implemented on FPGA.  

 
Table II.  Implementations of real-time depth estimation methods 

Algorithm 

/ parallelization 
Platform 

Block 

size 

Average 

bad pixel 

ratio [%] 

Frames 

per  

second* 

Proposed algorithm - CPU on mobile devices and PCs 

8 threads 
Samsung Galaxy 

Note 3 
3×3 11.11 5 .6 

4 threads Huawei Ascend P6 3×3 11.11 2 .3 

8 threads Intel Core i7 3×3 11.11 16 .7 

GPU on PC: global methods 

RealtimeBP [6] GeForce 7900 GTX unknown 7.69 8  

RealTimeGPU 

[7] 
Radeon XL1800 32×32 9.82 21  

GPU on PC: local methods 

CostFilter [10] GeForce GTX 480 36×36 5.55 24  

FastBilateral [8] Tesla C2070 39×39 7.31 21  

RealtimeBFV 

[15] 
GeForce 8800 GTX 33×33 7.65 46  

ESAW [9] GeForce 8800 GTX 33×33 8.21 79  

DCBGrid [11] Quadro FX 5800 35×35 10.90 10  

FPGA 

Proposed,  

20 threads 
Artix-7 5×5 10.05 1193  

SGM [16] Virtex-5 9×9 8.43 480 ** 

SBASW [17] Virtex-5 13×13 12.27 230  
 

*   - assumed 320x240 images with 32 disparity levels 

** - not directly provided in paper; assumed Virtex-5 XC5LX220T with   
       112.3 MHz clock and design parameters pr = 5, dm = 2 given in the  

       paper 

7. CONCLUSSIONS 

A lightweight depth estimation algorithm has been proposed. It 

employs a novel regularization method that uses the disparity 

values from previously processed pixels. These previously pro-

cessed pixels are located in the neighborhood of the currently 

processed pixel i.e. to the right, right-top and right-bottom. The 

proposed regularization method is very simple but efficient. In 

contrary to e.g. dynamic programming, the cost function values 

from previously processed pixels are not used. Therefore, the 

algorithm is fast and eligible both for software implementation 

on mobile devices with limited processing power and for hard-

ware implementation e.g. on FPGA devices. The results, pre-

sented for both platforms, show that the proposed algorithm 

provides good quality of the estimated depth maps, comparable 

with other state-of-the-art algorithms, while allowing real-time 

operation.  
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