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ABSTRACT 
Immersive video has become a popular research topic recently. However, there are no fast immersive video 

processing methods, which could be used in practical immersive video systems. In this paper the real-time CPU-

based virtual view synthesis method is presented. The proposed method allows a viewer to freely navigate within 

acquired scene without necessity of using dedicated FPGA devices or powerful graphic cards. Presented view 

synthesis method can be used in practical immersive video systems, even for ultra-high resolution sequences. In 

order to present usefulness of proposed method, several implementations and use cases are discussed in the paper. 
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1. INTRODUCTION 
In this paper we deal with the virtual view synthesis 

for immersive video systems. Such kind of systems 

allow a viewer to immerse into a scene, i.e. to virtually 

navigate within a scene that was captured by a set of 

arbitrarily located cameras [Goo12][Sta18][Zit04] 

(Fig. 1). 

In order to provide the possibility of smooth 
navigation of a user, his or her viewpoint cannot be 

limited only to images captured by multiple cameras – 

a user should be able to watch the scene from any, 

arbitrarily chosen position (orange camera in Fig. 1). 

In order to generate additional images, the virtual view 

synthesis operation should be used [Sun10]. 

 

Figure 1. Idea of the immersive video system; 

gray – real cameras, orange – virtual camera. 

 

There are numerous virtual view synthesis methods 
and algorithms described in literature (e.g. 

[Dzi19][Fac18][Nia18][Sen18][Wan19]). However, 

they cannot be used in the practical immersive video 

system because of the processing time. When a user of 

the immersive video system demands a particular 

virtual view, the view has to be generated immediately 

in order to eliminate delays between user’s action and 

viewpoint change. Therefore, all the processing has to 

be performed in the real time. 

The real-time virtual view synthesis methods are also 

known, but they usually require dedicated FPGA 

[Aki15][Li19][Wan12] or VLSI [Hua19] devices or 

powerful graphic cards [Non18][Yao16][Zha17].  

In the practical, consumer immersive video system, 

developed for the entire spectrum of final users, it may 

disqualify users, as they do not have appropriate 
hardware due to cost or compatibility. 

In this paper, the real-time virtual view synthesis for 

CPU is presented. So far, only one this kind of method 

was described in literature [Dzi18]. It was able to 

process FullHD sequences in real-time, but only for 

reduced output resolution (i.e. qHD), not to mention 

higher resolutions (4K). The method presented in this 
paper allows synthesis of UltraHD content in the real-

time, what makes it usable also for the most recent 

immersive video systems. 

2. VIEW SYNTHESIS ALGORITHM 
The practical view synthesis method should meet two 

main requirements. At first, it has to be fast enough to 

be used in the real-time, consumer immersive video 
system. Secondly, the quality of synthesized virtual 

views should be as high as possible. 
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Figure 2. Block diagram presenting data flow in proposed algorithm. 

 

In order to obtain good quality of virtual views, we 

decided to develop a backward-type synthesis 

[Duh13][Shi13]. The major advantage of such 

synthesis type is to admit filtering of the reprojected 

depth map before texture reprojection. However, 

typical backward-type synthesis requires two steps of 
reprojection: depth from input view to the virtual view 

and texture in the opposite direction, which makes it 

slower. In the proposed approach, the backward-type 

synthesis was modified in order to reduce the number 

of reprojections to one. 

The proposed view synthesis algorithm consists of 

four main stages (Fig. 2): depth reprojection 

(performed separately for both real views), depth 
merging, color data reprojection and preprocessing. 

The purpose of two first operations is to create a depth 

map of the virtual view. Then, this depth map is used 

for reprojecting color data to the virtual view. Finally, 

the virtual view is postprocessed in order to achieve 

the highest quality. All the steps of proposed algorithm 

are described in following subsections. 

Depth reprojection 
In the first stage only input depth maps are analyzed. 

Reprojection of each pixel of the input view 𝑖 is 

conducted by multiplication of a vector containing 

pixel’s position (𝑥𝑖, 𝑦𝑖) and depth (𝑧𝑖) and a 

homography matrix 𝐇𝑖,𝑣: 

[

𝑥𝑣

𝑦𝑣

𝑧𝑣

1

] = 𝐇𝑖,𝑣 ⋅ [

𝑥𝑖

𝑦𝑖

𝑧𝑖

1

] . 

The homography matrix is a 4×4 matrix defined as 

multiplication of projection matrix of virtual view 𝑣 

and inverted projection matrix of input view 𝑖 
[Hey08]. 

This operation requires 16 multiplications and 12 

additions for each processed pixel. In the proposed 

algorithm it was optimized, resulting in 4 

multiplications and 3 additions per pixel, with 

additional 4 multiplications and 3 additions for each 

column and each row. However, calculations for 

columns and rows are performed once in a 

preprocessing step and their results are then stored in 

look up tables (LUTs). 

Depth merging 
In the first stage, both input views are processed 

separately. It results in two virtual depth maps, each 
containing depth values reprojected from single input 

depth map.  

In the second stage, both virtual depth maps are 

merged. Within the merging operation, three cases are 

possible for each pixel. 

If the pixel was not reprojected from any input view – 

it will become empty in the merged depth map. If it 

was reprojected from only one view – the merged 

depth map will contain value reprojected from that 

view. Finally, if there are two depth candidates for one 

pixel, smaller depth (closer to a camera, because it 

occludes further one) will be copied into the merged 

view. 

Color data reprojection and blending 
In the third stage, the actual virtual view is created. 

Each pixel of the virtual view is calculated by 

analyzing values in corresponding pixels in input 

views. In the typical backward-type synthesis, it 
would require an additional reprojection step. In the 

proposed approach, positions of corresponding pixels 

within input views are stored in source index cache, 

which reduces this operation to memory reading. 

If the pixel was visible in only one input view, its color 

is copied from that input view. If it was reprojected 

from both input views, its color in the virtual view is 

calculated as an average of colors in both input views. 
If it was not visible in any input view, it remains a 

hole. 



Postprocessing 
The last stage of the proposed algorithm allows 

enhancement of the quality of the synthesized virtual 

view. It consists of two main steps: filtering and 

inpainting. 

In the first step, the virtual view and corresponding 

depth map are filtered. They are filtered at the same 

time, but only depth values are being analyzed in this 

step. The virtual view is filtered in order to remove 

small artifacts such as object discontinuities or single 

pixels with wrong depth caused by blurred edges in 

input depth maps. 

In order to perform fast filtration, it is checked for each 

pixel, whether it is surrounded by pixels with different 

depth. In horizontal filtering step, it is checked if the 

depth of analyzed pixel is much higher or much lower, 

than depth of its left and right. If so, color and depth 

of analyzed pixel is replaced by color and depth of its 

right. The vertical filtering step is performed based on 

top and bottom neighbors and filtered pixel is 

eventually replaced by bottom neighbor.  

In the second step inpainting of the virtual view is 

performed. This step is crucial for the virtual view 

synthesis [Ber00][Cri04][Dar10] because it allows 

holes (i.e. areas without information reprojected from 

input views) filling in the virtual view. In the proposed 

approach the fast depth-based 4-way inpainting 

method is used. For each empty pixel four closest 

pixels in 4 directions (left, right, top and bottom 
neighbors) are compared. Color of the pixel with 

closest depth is copied to the analyzed one. 

3. IMPLEMENTATION AND 

OPTIMIZATION DETAILS 
The proposed algorithm has been implemented in 

portable C++ language, therefore (excluding 

vectorized version mentioned further) can be ported to 

almost any hardware platform. The single threaded 

implementation is based on the one described in 

[Dzi18]. Nonetheless, significant improvements have 

been developed. The proposed implementation allows 

processing high bit-depth sequences (up to 14 bits per 

pixel) and high precision depth maps (up to 16 bits per 
depth element). 

The algorithmic optimization includes following 

techniques: 

1. memory access optimization by reducing 
redundant loads/stores and using prefetch 

friendly data layouts, 

2. usage of local buffers and pre-calculated LUTs, 

3. reduction of the number of required 

multiplication and additional operations in 

depth reprojection stage. 

Moreover, the implementation eliminates projection 

related computations from virtual view projection 
stage and reduce its computational complexity. During 

preceding (depth reprojection) stage, the source 

location of depth element is cached and reused in view 

reprojection. 

Implementation using vector extensions 
The majority of modern processors include some sort 

of vector processing units, allowing computations on 
several values at once. The usage of vector 

instructions allows a significant reduction of 

computation times, especially for execution bound 

algorithms. 

In case of virtual view synthesis, depth reprojection is 

the most computationally complex. Therefore we 

decided to develop vectorized implementation of 

depth reprojection stage. We concentrated on AVX2 
and AVX512 extensions available in modern x86-64 

processors. The AVX2 and AVX512 extensions 

[Dem13] enable operating on 256 bit (containing 8 

single precision floats) and 512 bit (containing 16 

single precision floats) vector respectively. Moreover, 

both extensions allow to use FMA instructions 

[Qui07] which are very useful in the reprojection 

stage. 

The AVX512 vector is twice as wide as AVX2 one, 

allowing twice as much data at one clock cycle. In 

addition, AVX512 instruction set admits mask 

registers and per-lane predication, both to write more 

efficient code and to reduce register pressure 

[Dem13].  

Parallel implementation 
Another approach to speed up the virtual view 

synthesis is to parallelize computation by using multi-

threaded implementation.  

Most of the synthesis-related operations, like depth 

merging, color data reprojection and merging and 

postprocessing, could be easily parallelized by 

dividing the picture into arbitrary number of slices and 
processing each slice by dedicated thread. 

Unfortunately, the most complex operation in the 

proposed algorithm, namely the depth reprojection, is 

not easy to parallelize. The reason is the risk of data 

race caused by unpredictable location of a reprojected 

depth element. Therefore, there is no possibility to 

simply compute each of input depth slices by separate 
thread. 

The simplest approach, presented in [Dzi18] is to 

perform reprojection of each depth in a separate thread 

i.e. the first thread processes the “depth 0”, while the 

second processes the “depth 1”, and so on. 

Unfortunately, this approach allows parallelization by 

factor of 2 only and is insufficient in case of modern 

multicore processors. 

Independent Projection Targets 
In order to improve the parallelization factor for depth 

reprojection, the Independent Projection Targets (IPT) 



approach has been proposed. The idea of IPT is to use 

separate buffers (projection targets) for each of 

processing threads (Figure 3). Both reprojected depth 

and source index cache are buffered. The usage of IPT 

removes the restriction for depth reprojection 

parallelization level and allows using all available 

processing threads. 

 

Figure 3. Independent Projection Targets. 

 

The drawback of IPT is the necessity of additional 
operations to merge results from all projection targets, 

as well as the increase of memory footprint due to 

excessive buffering. Nonetheless, the additional 

complexity of depth merging stage does not offset the 

reduced complexity of depth reprojection stage. 

4. METHODOLOGY 

Test sequences 
The test set contained three miscellaneous high-

resolution test sequences (Fig. 4): 

1. PoznanFencing, FullHD resolution, sparse arc 

arrangement [Dom16], 

2. TechnicolorPainter, 2K resolution, dense linear 

arrangement  [Doy17], 
3. PoznanBasketball, FullHD resolution, sparse 

linear arrangement [Dom18]. 

Two of them (1 and 2) are commonly used in the 

research and developing immersive video standards. 

The third one was placed into the set because of very 

different content/characteristics – it contains a 

fragment of basketball match, what could be one of 

possible use cases of immersive video systems. 

In order to simulate virtual view synthesis for UltraHD 

(4K) input views, one of the experiments required 

UltraHD sequence. Because of lack of such test 

material, resolution of TechnicolorPainter sequence 

was increased. Remaining samples of input view were 

calculated using 1st order interpolation, while samples 

of depth maps – using 0th order interpolation (in order 

to avoid introducing non-existent depth values at the 

objects’ edges – if linear interpolation will be used, 

physical edges of the objects will be destroyed, e.g. 

between a pixel representing a person and a pixel 

representing a wall behind, there would be a pixel with 

averaged depth, representing physically non-existing 
object). 

 

  

  

  

Figure 4. Input views and corresponding depth 

maps for (from top): PoznanFencing, 

TechnicolorPainter, PoznanBasketball. 

 

Evaluated implementations 
Experiments were performed on 10 implementations. 

Implementations were divided into 4 types: R – the 

reference implementation, which does not include any 

optimizations and is treated as a base for comparison 
with others; A – the optimized implementation; B – 

optimized and vectorized implementation using 

AVX2 instruction set; C – optimized and vectorized 

implementation using AVX512 instruction set. 

Moreover, each implementation (except for reference 

one) was tested in 3 versions: single-threaded (1), 

multi-threaded (2) and multi-threaded with IPT (3).  

Quality evaluation 
In order to evaluate the quality of virtual views 

synthesized using presented algorithm, 5 objective 
quality metrics were used: PSNR, Multi-Scale SSIM 

(MS-SSIM) [Wan03], Visual Information Fidelity 

(VIF) [She06], Video Multimethod Assessment 

Fusion (VMAF) [Li16] and IVPSNR, which is 

ISO/IEC MPEG’s metric for immersive video 

[MPEG19]. 



Implementation 

Implementation features Processing time [ms] 

Optimized Vectorized 
Multi-

threaded 

Independent 

Projection 

Targets 

Depth 

projection 

Depth 

merging 

View 

projection 

Post-

processing 
Total 

VSRS (state-of-the-art view synthesis method) – – – – 2581.12 

R – – – – 127.41 0.83 14.19 18.84 161.27 

A1 ✓ – – – 39.25 0.82 15.81 19.30 75.18 

A2 ✓ – ✓  35.30 0.32 4.29 6.04 45.95 

A3 ✓ – ✓ ✓ 23.42 2.53 4.11 5.63 35.69 

B1 ✓ AVX2 – – 15.77 0.79 10.98 18.73 46.26 

B2 ✓ AVX2 ✓ – 18.62 0.32 2.62 5.47 27.03 

B3 ✓ AVX2 ✓ ✓ 10.16 1.85 2.59 5.66 20.26 

C1 ✓ AVX512 – – 10.26 0.80 11.04 19.03 41.13 

C2 ✓ AVX512 ✓ – 12.83 0.32 2.62 5.58 21.35 

C3 ✓ AVX512 ✓ ✓ 7.62 1.74 2.59 5.41 17.35 

Table 1. Comparison of all implementations (TechnicolorPainter sequence, FullHD  FullHD scenario) 

 

Test sequence 
Implem

entation 

Processing time [ms] 

Sequence name 
Input / output 

resolution 

Camera  

arrangement 

Depth 

projection 

Depth 

merging 

View 

projection 

Post-

processing 
Total 

TechnicolorPainter 2048×1088 dense linear C3 7.62 1.74 2.59 5.41 17.35 

PoznanBasketball 1920×1080 sparse linear C3 4.28 1.77 4.04 4.28 14.37 

PoznanFencing2 1920×1080 sparse arc C3 4.18 1.78 5.77 5.20 16.94 

Table 2. Comparison of all test sequences (FullHD  FullHD scenario, C3 implementation) 

 

Test sequence 
Implem 

entation 

Processing time [ms] 

Sequence name 
Input 

resolution 

Output 

resolution 

Depth 

projection 

Depth 

merging 

View 

projection 

Post- 

processing 
Total 

TechnicolorPainter 4096×2176 4096×2176 C3 17.60 6.86 7.92 11.35 43.74 

TechnicolorPainter 4096×2176 2048×1088 C3 21.68 1.71 2.72 5.08 31.20 

Table 3. UltraHD input sequence (C3 implementation) 

 

Quality metric 

Sequence name / View synthesis algorithm 

TechnicolorPainter PoznanBasketball PoznanFencing2 

VSRS Proposed VSRS Proposed VSRS Proposed 

Y-PSNR 35.94 dB 36.69 dB 28.75 dB 29.27 dB 28.26 dB 28.88 dB 

CB-PSNR 46.81 dB 47.72 dB 40.13 dB 41.76 dB 44.72 dB 45.42 dB 

CR-PSNR 46.78 dB 47.04 dB 39.48 dB 37.08 dB 39.50 dB 44.76 dB 

VIF 0.574 0.615 0.456 0.482 0.272 0.270 

VMAF 87.48 91.24 59.53 61.75 56.77 57.20 

MS-SSIM 0.981 0.984 0.949 0.955 0.936 0.933 

IVPSNR 45.94 dB 47.56 dB 36.26 dB 36.60 dB 40.07 dB 40.29 dB 

Table 4. Virtual view synthesis quality



The proposed method was compared to commonly 

used state-of-the-art method, developed by ISO/IEC 

MPEG group, namely View Synthesis Reference 

Software (VSRS) [Sen17]. 

Synthesis time evaluation 
The computational complexity of each 

implementation was evaluated by measuring 

processing time. Moreover, detailed statistics for each 

synthesis stage have been gathered. 

The calculations were performed on the desktop 
computer equipped with 10-core CPU based on the 

“Skylake-X” microarchitecture. Time measurements 

were made using precision time stamps according to 

[MDNL20]. 

5. EXPERIMENTAL RESULTS 
Comparison of all described implementations has 

been presented in Table 1. The results are presented 

for TechnicolorPainter sequence (as the worst case of 

all considered sequences). In the case of reference 

implementation, the synthesis of virtual view frame 

takes ~160 ms which corresponds to ~6 frames per 

second (FPS). This is obviously insufficient for real-

time purposes. The fastest implementation – C3 

(optimized, multi-threaded and with AVX512 usage) 
requires only 17.35 ms to synthesize one frame 

(resulting in 57 FPS). 

Usage of vectorized implementation allows reducing 

depth reprojection time from ~39 ms to ~16 ms and 

~10 ms for AVX2 and AVX512 respectively.  

The parallel processing significantly reduces 

computation time for view projection and post-

processing stages. In the case of depth projection, 

parallel processing without IPT does not seem 

beneficial. Usage of IPT significantly speeds up the 

projection stage, however it increases the complexity 

of depth merging stage.  Nevertheless, the IPT reduces 

total synthesis time. 

The computation time for state-of-the-art technique 

(VSRS) oscillate near 2.5 seconds which makes the 

proposed technique two orders of magnitude faster 

when compared to VSRS.  

Table 2 includes results for all test sequences. It is 

noticeable that proposed synthesizer retains its 
performance regardless of input sequence type. 

Moreover, the synthesis time for sequences with 

sparse camera arrangement (especially 

PoznanBasketball) is even shorter than for previously 

analyzed TechnicolorPainter. 

Additional results (Table 3) have been gathered for 

simulated UltraHD (4K) data and measured as ~23 

FPS and ~32 FPS for UltraHD and FullHD target 
respectively. The synthesis with UltraHD source and 

FullHD target resolution could be considered as 

typical use for transmission to mobile devices.  

Comparison with state-of-the-art reference technique 

(VSRS) shows similar synthesized image quality for 

both VSRS and the proposed technique (Table 4, Fig. 

5). Therefore, no quality degradation was introduced 

during development of fast synthesis algorithm. 

 

  

  

  

Figure 5. Fragments of virtual views synthesized 

using VSRS (left) and proposed method (right). 

 

6. CONCLUSIONS 
The real-time virtual view synthesis method has been 

presented in this paper. The experimental results 

show, that CPU-based implementation of the real-time 

view synthesis assuring good-quality virtual views is 
possible, even for UltraHD sequences. Therefore, it 

will be possible to develop cheap, consumer 

immersive video systems in the near future. 
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