
Fast View Synthesis for Immersive Video Systems

Jakub Stankowski

Institute of Multimedia Telecommunications
Poznań University of Technology

Polanka 3
61-131 Poznań, Poland

 jakub.stankowski@put.poznan.pl

Adrian Dziembowski

Institute of Multimedia Telecommunications
Poznań University of Technology

Polanka 3
61-131 Poznań, Poland

adrian.dziembowski@put.poznan.pl

ABSTRACT
Immersive video has become a popular research topic recently. However, there are no fast immersive video

processing methods, which could be used in practical immersive video systems. In this paper the real-time CPU-

based virtual view synthesis method is presented. The proposed method allows a viewer to freely navigate within

acquired scene without necessity of using dedicated FPGA devices or powerful graphic cards. Presented view

synthesis method can be used in practical immersive video systems, even for ultra-high resolution sequences. In

order to present usefulness of proposed method, several implementations and use cases are discussed in the paper.

Keywords
Virtual view synthesis, immersive video systems, real-time video processing.

1. INTRODUCTION
In this paper we deal with the virtual view synthesis

for immersive video systems. Such kind of systems

allow a viewer to immerse into a scene, i.e. to virtually

navigate within a scene that was captured by a set of

arbitrarily located cameras [Goo12][Sta18][Zit04]

(Fig. 1).

In order to provide the possibility of smooth
navigation of a user, his or her viewpoint cannot be

limited only to images captured by multiple cameras –

a user should be able to watch the scene from any,

arbitrarily chosen position (orange camera in Fig. 1).

In order to generate additional images, the virtual view

synthesis operation should be used [Sun10].

Figure 1. Idea of the immersive video system;

gray – real cameras, orange – virtual camera.

There are numerous virtual view synthesis methods
and algorithms described in literature (e.g.

[Dzi19][Fac18][Nia18][Sen18][Wan19]). However,

they cannot be used in the practical immersive video

system because of the processing time. When a user of

the immersive video system demands a particular

virtual view, the view has to be generated immediately

in order to eliminate delays between user’s action and

viewpoint change. Therefore, all the processing has to

be performed in the real time.

The real-time virtual view synthesis methods are also

known, but they usually require dedicated FPGA

[Aki15][Li19][Wan12] or VLSI [Hua19] devices or

powerful graphic cards [Non18][Yao16][Zha17].

In the practical, consumer immersive video system,

developed for the entire spectrum of final users, it may

disqualify users, as they do not have appropriate
hardware due to cost or compatibility.

In this paper, the real-time virtual view synthesis for

CPU is presented. So far, only one this kind of method

was described in literature [Dzi18]. It was able to

process FullHD sequences in real-time, but only for

reduced output resolution (i.e. qHD), not to mention

higher resolutions (4K). The method presented in this
paper allows synthesis of UltraHD content in the real-

time, what makes it usable also for the most recent

immersive video systems.

2. VIEW SYNTHESIS ALGORITHM
The practical view synthesis method should meet two

main requirements. At first, it has to be fast enough to

be used in the real-time, consumer immersive video
system. Secondly, the quality of synthesized virtual

views should be as high as possible.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Figure 2. Block diagram presenting data flow in proposed algorithm.

In order to obtain good quality of virtual views, we

decided to develop a backward-type synthesis

[Duh13][Shi13]. The major advantage of such

synthesis type is to admit filtering of the reprojected

depth map before texture reprojection. However,

typical backward-type synthesis requires two steps of
reprojection: depth from input view to the virtual view

and texture in the opposite direction, which makes it

slower. In the proposed approach, the backward-type

synthesis was modified in order to reduce the number

of reprojections to one.

The proposed view synthesis algorithm consists of

four main stages (Fig. 2): depth reprojection

(performed separately for both real views), depth
merging, color data reprojection and preprocessing.

The purpose of two first operations is to create a depth

map of the virtual view. Then, this depth map is used

for reprojecting color data to the virtual view. Finally,

the virtual view is postprocessed in order to achieve

the highest quality. All the steps of proposed algorithm

are described in following subsections.

Depth reprojection
In the first stage only input depth maps are analyzed.

Reprojection of each pixel of the input view 𝑖 is

conducted by multiplication of a vector containing

pixel’s position (𝑥𝑖, 𝑦𝑖) and depth (𝑧𝑖) and a

homography matrix 𝐇𝑖,𝑣:

[

𝑥𝑣

𝑦𝑣

𝑧𝑣

1

] = 𝐇𝑖,𝑣 ⋅ [

𝑥𝑖

𝑦𝑖

𝑧𝑖

1

] .

The homography matrix is a 4×4 matrix defined as

multiplication of projection matrix of virtual view 𝑣

and inverted projection matrix of input view 𝑖
[Hey08].

This operation requires 16 multiplications and 12

additions for each processed pixel. In the proposed

algorithm it was optimized, resulting in 4

multiplications and 3 additions per pixel, with

additional 4 multiplications and 3 additions for each

column and each row. However, calculations for

columns and rows are performed once in a

preprocessing step and their results are then stored in

look up tables (LUTs).

Depth merging
In the first stage, both input views are processed

separately. It results in two virtual depth maps, each
containing depth values reprojected from single input

depth map.

In the second stage, both virtual depth maps are

merged. Within the merging operation, three cases are

possible for each pixel.

If the pixel was not reprojected from any input view –

it will become empty in the merged depth map. If it

was reprojected from only one view – the merged

depth map will contain value reprojected from that

view. Finally, if there are two depth candidates for one

pixel, smaller depth (closer to a camera, because it

occludes further one) will be copied into the merged

view.

Color data reprojection and blending
In the third stage, the actual virtual view is created.

Each pixel of the virtual view is calculated by

analyzing values in corresponding pixels in input

views. In the typical backward-type synthesis, it
would require an additional reprojection step. In the

proposed approach, positions of corresponding pixels

within input views are stored in source index cache,

which reduces this operation to memory reading.

If the pixel was visible in only one input view, its color

is copied from that input view. If it was reprojected

from both input views, its color in the virtual view is

calculated as an average of colors in both input views.
If it was not visible in any input view, it remains a

hole.

Postprocessing
The last stage of the proposed algorithm allows

enhancement of the quality of the synthesized virtual

view. It consists of two main steps: filtering and

inpainting.

In the first step, the virtual view and corresponding

depth map are filtered. They are filtered at the same

time, but only depth values are being analyzed in this

step. The virtual view is filtered in order to remove

small artifacts such as object discontinuities or single

pixels with wrong depth caused by blurred edges in

input depth maps.

In order to perform fast filtration, it is checked for each

pixel, whether it is surrounded by pixels with different

depth. In horizontal filtering step, it is checked if the

depth of analyzed pixel is much higher or much lower,

than depth of its left and right. If so, color and depth

of analyzed pixel is replaced by color and depth of its

right. The vertical filtering step is performed based on

top and bottom neighbors and filtered pixel is

eventually replaced by bottom neighbor.

In the second step inpainting of the virtual view is

performed. This step is crucial for the virtual view

synthesis [Ber00][Cri04][Dar10] because it allows

holes (i.e. areas without information reprojected from

input views) filling in the virtual view. In the proposed

approach the fast depth-based 4-way inpainting

method is used. For each empty pixel four closest

pixels in 4 directions (left, right, top and bottom
neighbors) are compared. Color of the pixel with

closest depth is copied to the analyzed one.

3. IMPLEMENTATION AND

OPTIMIZATION DETAILS
The proposed algorithm has been implemented in

portable C++ language, therefore (excluding

vectorized version mentioned further) can be ported to

almost any hardware platform. The single threaded

implementation is based on the one described in

[Dzi18]. Nonetheless, significant improvements have

been developed. The proposed implementation allows

processing high bit-depth sequences (up to 14 bits per

pixel) and high precision depth maps (up to 16 bits per
depth element).

The algorithmic optimization includes following

techniques:

1. memory access optimization by reducing
redundant loads/stores and using prefetch

friendly data layouts,

2. usage of local buffers and pre-calculated LUTs,

3. reduction of the number of required

multiplication and additional operations in

depth reprojection stage.

Moreover, the implementation eliminates projection

related computations from virtual view projection
stage and reduce its computational complexity. During

preceding (depth reprojection) stage, the source

location of depth element is cached and reused in view

reprojection.

Implementation using vector extensions
The majority of modern processors include some sort

of vector processing units, allowing computations on
several values at once. The usage of vector

instructions allows a significant reduction of

computation times, especially for execution bound

algorithms.

In case of virtual view synthesis, depth reprojection is

the most computationally complex. Therefore we

decided to develop vectorized implementation of

depth reprojection stage. We concentrated on AVX2
and AVX512 extensions available in modern x86-64

processors. The AVX2 and AVX512 extensions

[Dem13] enable operating on 256 bit (containing 8

single precision floats) and 512 bit (containing 16

single precision floats) vector respectively. Moreover,

both extensions allow to use FMA instructions

[Qui07] which are very useful in the reprojection

stage.

The AVX512 vector is twice as wide as AVX2 one,

allowing twice as much data at one clock cycle. In

addition, AVX512 instruction set admits mask

registers and per-lane predication, both to write more

efficient code and to reduce register pressure

[Dem13].

Parallel implementation
Another approach to speed up the virtual view

synthesis is to parallelize computation by using multi-

threaded implementation.

Most of the synthesis-related operations, like depth

merging, color data reprojection and merging and

postprocessing, could be easily parallelized by

dividing the picture into arbitrary number of slices and
processing each slice by dedicated thread.

Unfortunately, the most complex operation in the

proposed algorithm, namely the depth reprojection, is

not easy to parallelize. The reason is the risk of data

race caused by unpredictable location of a reprojected

depth element. Therefore, there is no possibility to

simply compute each of input depth slices by separate
thread.

The simplest approach, presented in [Dzi18] is to

perform reprojection of each depth in a separate thread

i.e. the first thread processes the “depth 0”, while the

second processes the “depth 1”, and so on.

Unfortunately, this approach allows parallelization by

factor of 2 only and is insufficient in case of modern

multicore processors.

Independent Projection Targets
In order to improve the parallelization factor for depth

reprojection, the Independent Projection Targets (IPT)

approach has been proposed. The idea of IPT is to use

separate buffers (projection targets) for each of

processing threads (Figure 3). Both reprojected depth

and source index cache are buffered. The usage of IPT

removes the restriction for depth reprojection

parallelization level and allows using all available

processing threads.

Figure 3. Independent Projection Targets.

The drawback of IPT is the necessity of additional
operations to merge results from all projection targets,

as well as the increase of memory footprint due to

excessive buffering. Nonetheless, the additional

complexity of depth merging stage does not offset the

reduced complexity of depth reprojection stage.

4. METHODOLOGY

Test sequences
The test set contained three miscellaneous high-

resolution test sequences (Fig. 4):

1. PoznanFencing, FullHD resolution, sparse arc

arrangement [Dom16],

2. TechnicolorPainter, 2K resolution, dense linear

arrangement [Doy17],
3. PoznanBasketball, FullHD resolution, sparse

linear arrangement [Dom18].

Two of them (1 and 2) are commonly used in the

research and developing immersive video standards.

The third one was placed into the set because of very

different content/characteristics – it contains a

fragment of basketball match, what could be one of

possible use cases of immersive video systems.

In order to simulate virtual view synthesis for UltraHD

(4K) input views, one of the experiments required

UltraHD sequence. Because of lack of such test

material, resolution of TechnicolorPainter sequence

was increased. Remaining samples of input view were

calculated using 1st order interpolation, while samples

of depth maps – using 0th order interpolation (in order

to avoid introducing non-existent depth values at the

objects’ edges – if linear interpolation will be used,

physical edges of the objects will be destroyed, e.g.

between a pixel representing a person and a pixel

representing a wall behind, there would be a pixel with

averaged depth, representing physically non-existing
object).

Figure 4. Input views and corresponding depth

maps for (from top): PoznanFencing,

TechnicolorPainter, PoznanBasketball.

Evaluated implementations
Experiments were performed on 10 implementations.

Implementations were divided into 4 types: R – the

reference implementation, which does not include any

optimizations and is treated as a base for comparison
with others; A – the optimized implementation; B –

optimized and vectorized implementation using

AVX2 instruction set; C – optimized and vectorized

implementation using AVX512 instruction set.

Moreover, each implementation (except for reference

one) was tested in 3 versions: single-threaded (1),

multi-threaded (2) and multi-threaded with IPT (3).

Quality evaluation
In order to evaluate the quality of virtual views

synthesized using presented algorithm, 5 objective
quality metrics were used: PSNR, Multi-Scale SSIM

(MS-SSIM) [Wan03], Visual Information Fidelity

(VIF) [She06], Video Multimethod Assessment

Fusion (VMAF) [Li16] and IVPSNR, which is

ISO/IEC MPEG’s metric for immersive video

[MPEG19].

Implementation

Implementation features Processing time [ms]

Optimized Vectorized
Multi-

threaded

Independent

Projection

Targets

Depth

projection

Depth

merging

View

projection

Post-

processing
Total

VSRS (state-of-the-art view synthesis method) – – – – 2581.12

R – – – – 127.41 0.83 14.19 18.84 161.27

A1 ✓ – – – 39.25 0.82 15.81 19.30 75.18

A2 ✓ – ✓ 35.30 0.32 4.29 6.04 45.95

A3 ✓ – ✓ ✓ 23.42 2.53 4.11 5.63 35.69

B1 ✓ AVX2 – – 15.77 0.79 10.98 18.73 46.26

B2 ✓ AVX2 ✓ – 18.62 0.32 2.62 5.47 27.03

B3 ✓ AVX2 ✓ ✓ 10.16 1.85 2.59 5.66 20.26

C1 ✓ AVX512 – – 10.26 0.80 11.04 19.03 41.13

C2 ✓ AVX512 ✓ – 12.83 0.32 2.62 5.58 21.35

C3 ✓ AVX512 ✓ ✓ 7.62 1.74 2.59 5.41 17.35

Table 1. Comparison of all implementations (TechnicolorPainter sequence, FullHD FullHD scenario)

Test sequence
Implem

entation

Processing time [ms]

Sequence name
Input / output

resolution

Camera

arrangement

Depth

projection

Depth

merging

View

projection

Post-

processing
Total

TechnicolorPainter 2048×1088 dense linear C3 7.62 1.74 2.59 5.41 17.35

PoznanBasketball 1920×1080 sparse linear C3 4.28 1.77 4.04 4.28 14.37

PoznanFencing2 1920×1080 sparse arc C3 4.18 1.78 5.77 5.20 16.94

Table 2. Comparison of all test sequences (FullHD FullHD scenario, C3 implementation)

Test sequence
Implem

entation

Processing time [ms]

Sequence name
Input

resolution

Output

resolution

Depth

projection

Depth

merging

View

projection

Post-

processing
Total

TechnicolorPainter 4096×2176 4096×2176 C3 17.60 6.86 7.92 11.35 43.74

TechnicolorPainter 4096×2176 2048×1088 C3 21.68 1.71 2.72 5.08 31.20

Table 3. UltraHD input sequence (C3 implementation)

Quality metric

Sequence name / View synthesis algorithm

TechnicolorPainter PoznanBasketball PoznanFencing2

VSRS Proposed VSRS Proposed VSRS Proposed

Y-PSNR 35.94 dB 36.69 dB 28.75 dB 29.27 dB 28.26 dB 28.88 dB

CB-PSNR 46.81 dB 47.72 dB 40.13 dB 41.76 dB 44.72 dB 45.42 dB

CR-PSNR 46.78 dB 47.04 dB 39.48 dB 37.08 dB 39.50 dB 44.76 dB

VIF 0.574 0.615 0.456 0.482 0.272 0.270

VMAF 87.48 91.24 59.53 61.75 56.77 57.20

MS-SSIM 0.981 0.984 0.949 0.955 0.936 0.933

IVPSNR 45.94 dB 47.56 dB 36.26 dB 36.60 dB 40.07 dB 40.29 dB

Table 4. Virtual view synthesis quality

The proposed method was compared to commonly

used state-of-the-art method, developed by ISO/IEC

MPEG group, namely View Synthesis Reference

Software (VSRS) [Sen17].

Synthesis time evaluation
The computational complexity of each

implementation was evaluated by measuring

processing time. Moreover, detailed statistics for each

synthesis stage have been gathered.

The calculations were performed on the desktop
computer equipped with 10-core CPU based on the

“Skylake-X” microarchitecture. Time measurements

were made using precision time stamps according to

[MDNL20].

5. EXPERIMENTAL RESULTS
Comparison of all described implementations has

been presented in Table 1. The results are presented

for TechnicolorPainter sequence (as the worst case of

all considered sequences). In the case of reference

implementation, the synthesis of virtual view frame

takes ~160 ms which corresponds to ~6 frames per

second (FPS). This is obviously insufficient for real-

time purposes. The fastest implementation – C3

(optimized, multi-threaded and with AVX512 usage)
requires only 17.35 ms to synthesize one frame

(resulting in 57 FPS).

Usage of vectorized implementation allows reducing

depth reprojection time from ~39 ms to ~16 ms and

~10 ms for AVX2 and AVX512 respectively.

The parallel processing significantly reduces

computation time for view projection and post-

processing stages. In the case of depth projection,

parallel processing without IPT does not seem

beneficial. Usage of IPT significantly speeds up the

projection stage, however it increases the complexity

of depth merging stage. Nevertheless, the IPT reduces

total synthesis time.

The computation time for state-of-the-art technique

(VSRS) oscillate near 2.5 seconds which makes the

proposed technique two orders of magnitude faster

when compared to VSRS.

Table 2 includes results for all test sequences. It is

noticeable that proposed synthesizer retains its
performance regardless of input sequence type.

Moreover, the synthesis time for sequences with

sparse camera arrangement (especially

PoznanBasketball) is even shorter than for previously

analyzed TechnicolorPainter.

Additional results (Table 3) have been gathered for

simulated UltraHD (4K) data and measured as ~23

FPS and ~32 FPS for UltraHD and FullHD target
respectively. The synthesis with UltraHD source and

FullHD target resolution could be considered as

typical use for transmission to mobile devices.

Comparison with state-of-the-art reference technique

(VSRS) shows similar synthesized image quality for

both VSRS and the proposed technique (Table 4, Fig.

5). Therefore, no quality degradation was introduced

during development of fast synthesis algorithm.

Figure 5. Fragments of virtual views synthesized

using VSRS (left) and proposed method (right).

6. CONCLUSIONS
The real-time virtual view synthesis method has been

presented in this paper. The experimental results

show, that CPU-based implementation of the real-time

view synthesis assuring good-quality virtual views is
possible, even for UltraHD sequences. Therefore, it

will be possible to develop cheap, consumer

immersive video systems in the near future.

7. ACKNOWLEDGMENTS
This work was supported by the Ministry of Science

and Higher Education.

8. REFERENCES
[Aki15] Akin, A., Capoccia, R., Narinx, J., Masur, J.,

Schmid, A., and Leblebici, Y. Real-time free

viewpoint synthesis using three-camera disparity

estimation hardware. 2015 IEEE International

Symposium on Circuits and Systems (ISCAS),

Lisbon, pp. 2525-2528, 2015.

[Ber00] Bertalmio, M., Sapiro, G., Caselles, V., and

Ballester, C. Image inpainting. SIGGRAPH 2000,

New Orlean, USA, 2000.

[Cri04] Criminisi, A., Perez, P., and Toyama, K.

Region filling and object removal by exemplar-

based image inpainting. IEEE Transactions on

Image Processing, vol. 13, no. 9, pp. 1200-1212,

2004.

[Dar10] Daribo, I., and Pesquet-Popescu, B. Depth-

aided image inpainting for novel view synthesis.
2010 IEEE International Workshop on Multimedia

Signal Processing, Saint Malo, France, 2010.

[Dem13] Demikhovsky, E. Intel® AVX-512

Architecture. Comprehensive vector extension for

HPC and enterprise, LLVM Developers' Meeting,

San Francisco, USA, 2013.

[Dom16] Domański, M., Dziembowski, A., Grzelka,

A., Łuczak, A., Mieloch, D., Stankiewicz, O., and

Wegner, K. Multiview test video sequences for

free navigation exploration obtained using pairs of

cameras. ISO/IEC JTC1/SC29/WG11 MPEG,

M41994, M38247, Geneva, Switzerland, 2016.

[Dom18] Domański, M., Dziembowski, A., Grajek,

T., Grzelka, A., Klimaszewski, K., Mieloch, D.,

Ratajczak, R., Stankiewicz, O., Siast, J.,

Stankowski, J., and Wegner, K. Free-viewpoint

Television demonstration for sports events.

ISO/IEC JTC1/SC29/WG11 MPEG, M41994,

Gwangju, Korea, 2018.

[Doy17] Doyen, D., Langlois, T., Vandame, B.,

Babon, F., Boisson, G., Sabater, N., Gendrot, R.,

and Schubert, A. Light field content from 16-

camera rig. ISO/IEC JTC1/SC29/WG11 MPEG,

M40010, Geneva, Switzerland, 2017.

[Duh13] Du-Hsiu, L., Hsueh-Ming, H., and Yu-Lun,

L. Virtual view synthesis using backward depth

warping algorithm. Picture Coding Symposium,
PCS 2013, San Jose, USA, 2013.

[Dzi18] Dziembowski, A., and Stankowski, J. Real-

time CPU-based virtual view synthesis. 2018

International Conference on Signals and

Electronic Systems (ICSES), Kraków, Poland,

2018.

[Dzi19] Dziembowski, A., Mieloch, D., Stankiewicz,

O., Domański, M., Lee, G., and Seo, J. Virtual

view synthesis for 3DoF+ video. 2019 Picture

Coding Symposium (PCS), Ningbo, China, 2019.

[Fac18] Fachada, S., Bonatto, D., Schenkel, A., and
Lafruit, G. Depth image based view synthesis with

multiple reference views for virtual reality. 3DTV-

Conference: The True Vision – Capture,

Transmission and Display of 3D Video (3DTV-

CON), Helsinki, Finland, 2018.

[Goo12] Goorts, P., Dumont, M., Rogmans, S., and

Bekaert, P. An end-to-end system for free

viewpoint video for smooth camera transitions.

2012 International Conference on 3D Imaging

(IC3D). Liege, Belgium, 2012.

[Hey08] Heyden, A., and Pollefeys, M. Multiple view

geometry. In: Emerging Topics in Computer

Vision. Prentice Hall, pp. 63-75, 2008.

[Hua19] Huang, H., Wang, Y., Chen, W., Lin, P. and

Huang, C. System and VLSI implementation of

phase-based view synthesis. 2019 IEEE

International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Brighton, United

Kingdom, pp. 1428-1432, 2019.

[Li16] Li, Z., Aaron, A., Katsavounidis, I., Moorthy,

A., and Manohara, M. Toward a practical

perceptual video quality metric. Netflix

Technology Blog, 2016.

[Li19] Li, Y., Claesen, L., Huang, K., and Zhao, M. A

real-time high-quality complete system for depth

image-based rendering on FPGA. IEEE

Transactions on Circuits and Systems for Video
Technology, vol. 29, no. 4, pp. 1179-1193, 2019.

[MDNL20] Microsoft Developer Network Library.

Acquiring high-resolution time stamps.

https://msdn.microsoft.com/enus/library/windows

/desktop/dn553408, 2020.

[MPEG19] Software manual of IV-PSNR for

Immersive Video. ISO/IEC JTC1/SC29/WG11

MPEG, W18709, Göteborg, Sweden, 2019.

[Nia18] Nian, Z., and Jung, C. High-quality virtual

view synthesis for light field cameras using multi-

loss convolutional neural networks. 2018 25th
IEEE International Conference on Image

Processing (ICIP), Athens, Greece, 2018.

[Non18] Nonaka, K., Watanabe, R., Chen, J., Sabirin,

H., and Naito, S. Fast plane-based free-viewpoint

synthesis for real-time live streaming. 2018 IEEE

Visual Communications and Image Processing

(VCIP), Taichung, Taiwan, pp. 1-4, 2018.

[Qui07] Quinnell, E., Swartzlander, E.E., and

Lemonds, C. Floating-point fused multiply-add

architectures. 41 Conference on Signals, Systems

and Computers, Pacific Grove, pp. 331-337, 2007.

[Sen17] Senoh, T., Yamamoto, K., Tetsutani, N.,

Yasuda, H., and Wegner, K. View Synthesis

Reference Software (VSRS) 4.2 with improved

inpainting and hole filing. ISO/IEC

JTC1/SC29/WG11 MPEG, M40657, Hobart,

Australia, 2017.

[Sen18] Senoh, T., Tetsutani, N., and Yasuda, H.

Depth estimation and view synthesis for
immersive media. 2018 International Conference

on 3D Immersion (IC3D), Brussels, Belgium,

2018.

[She06] Sheikh, H.R., and Bovik, A.C. Image

information and visual quality. IEEE Transactions

on Image Processing, vol. 15, no. 2, pp. 430-444,

2006.

[Shi13] Shimizu, S., Sugimoto, S., Kimata, H., and

Kojima, A. Backward view synthesis prediction

using virtual depth map for multiview video plus

depth map coding. 2013 Visual Communications

and Image Processing (VCIP), Kuching, Malaysia,
2013.

[Sta18] Stankiewicz, O., Domański, M.,

Dziembowski, A., Grzelka, A., Mieloch, D.,

Samelak, and J. A Free-viewpoint Television

system for horizontal virtual navigation. IEEE

Transactions on Multimedia, vol. 20, no. 8, pp.

2182-2195, 2018.

[Sun10] Sun, W., Xu, L., Au, O.C., Chui, S.H., and

Kwok, C.W. An overview of free viewpoint

Depth-Image-Based-Rendering (DIBR).

Proceedings of the Second APSIPA Annual

Summit and Conference, Biopolis, Singapore, pp.

1023-1030, 2010.

[Wan03] Wang, Z., Simoncelli, E.P., and Bovik, A.C.

Multiscale structural similarity for image quality

assessment. The Thrity-Seventh Asilomar

Conference on Signals, Systems & Computers,

vol. 2, pp. 1398-1402, 2003.

[Wan12] Wang, J., and Roeningen, L.A. Real time
believable stereo and virtual view synthesis engine

for autostereoscopic display. 2012 International

Conference on 3D Imaging (IC3D). Liege,

Belgium, 2012.

[Wan19] Wang, S., and Wang, R. Robust view

synthesis in wide-baseline complex geometric

environments. 2019 IEEE International

Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brighton, United Kingdom,

2019.

[Yao16] Yao, L., Liu, Y., and Xu, W. Real-time

virtual view synthesis using light field. EURASIP

Journal on Image and Video Processing, vol. 2016,

pp. 1-10, 2016.

[Zit04] Zitnick, C.L., Kang, S.B., Uyttendaele, M.,

Winder, S., and Szeliski, R. High-quality video

view interpolation using a layered representation.

ACM Transactions on Graphics, vol. 3, pp. 600-

608, 2004.

[Zha17] Zhang, L., Li, Y., Zhu, Q., and Li, M.

Generating virtual images for multi-view video.

Chinese Journal of Electronics, vol. 26, no. 4, pp.

810-813, 2017.

