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Abstract— The paper presents a fast and effective method of 
modeling a nonuniform and dispersive interconnect with 
frequency dependent parameters. The model uses the S-
parameters. The approach is based on the method of successive 
approximations. The per-unit-length parameters frequency 
dependence is taken to account by means of the rational 
approximation – vector fitting. Then the first order 
approximation of the scattering parameters is calculated. The 
first order approximation of the S12, S21-parameters is  
corrected by using second order approximation. Comparisons of 
the calculated results with the exact one are performed for the 
Bessel dispersive transmission line. 
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I.  INTRODUCTION  
Modeling of transmission lines in the time-domain is an ongoing challenge in the simulation of integrated circuits and/or printed circuit boards at high frequency. Nonuniform Transmission Lines are used in RF and microwave circuits. There can be find many methods and approaches and it is not possible to discuss all of them. For the nonuniform transmission line there is derived especially many numerical and analytical methods but there can be also find some analytical research for example [1,7]. In [1] the author presents the analytical solution using chain matrix parameters of NTLs to calculate the arbitrary lossy and disperssive NTLs. In [7] nonuniformities are considered as perturbations with respect to a nominal uniform line. The approach yields second-order ordinary distributed differential equations with source terms. Additionally it is worth mentioning two other works. In the first paper [2], the author presents an approach based on dyadic Green’s function and vector fitting of per-unit-length impedance and admittance of transmission line to obtain a Z matrix of transmission line as a two-port. The line impedance and admittance are the sums of rational functions of complex frequency s, which facilitates the transformation to the time-domain and modeling in SPICE. The biggest problem is the necessity to take into account a large number of terms in every entry of the mentioned Z matrix. In [3], the same author has extended the above approach to weakly nonuniform transmission lines. In that case the author used results obtained for uniform case and parametric macromodeling to obtain the approximate Z matrix of the line. In both papers, the presented approach has been extended to the case of a multiconductor 

line. On the other hand in paper [4] was developed  a method to convert of differential telegrapher’s equations into integral equations and next to solve them using the method of successive approximation. In that approach, we obtain a first order approximation of the solution in a simple analytical form which is valid for low loss transmission lines. The drawback of that approach was not including the skin effect and dielectric dispersion.  Our previous research [6] gives the solution of the first approximation of the scattering parameters both in frequency and time domain. Now we extend this solution and take into account the first few samples calculated for the second approximation of scattering parameter S12. The approach base on the method of successive approximations [4], taking into account the line parameter dependence on the frequency and longitudinal coordinate. For this purpose, as in [2,3], we use the concept of rational approximation of per-unit-length parameters of the line in the frequency domain. Our approach is based on scattering parameters of the transmission line.  The paper is organized as follows. The next section presents the integral equations approach to the dispersive transmission line. In the third section, we employ the method of successive approximation to calculate the scattering parameters of a nonuniform transmission line. In the fourth section we present, the calculations for the Bessel frequency dependent transmission line. We conclude in the last section. 
II. TELEGRAPHER'S EQUATIONS IN ITEGRAL FORM 

The equations for a nonuniform, dispersive transmission line are the following: 
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d-length of the line 
r(z), g(z)- transmission line taper. 
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  In (1) Z1 and Y1 have rational form of per-unit-length 
impedance and admittance of the transmission line obtained as 
in [2] by means of the vector fitting technique [5]. The next step 
is introducing current waves instead of voltage and current into 
the transmission line equations (1). It is done, similarly as in [4], 
by transformations:  

ܫିܫା൨ ,ݖ) (ݏ = (ݖ)ࡿ ቂ ܫܸ ቃ ,ݖ) ,(ݏ ࡿ = 1
2 ቈඥ ܻ −ඥܼ

ඥ ܻ ඥܼ
 

ܻ = ට(௭)
(௭) = ݂(ݖ)ିଵ. 

(2) 

Using transformation (2) we can pass to (3): 

− ݀
ݖ݀ ܫିܫା൨ = ቊࡿ ିࡿ݀

ݖ݀ + ࡿ ቂ0 ܼܻ 0ቃ ቋିࡿ ܫିܫା൨. (3) 
Equations (3), after differentiation and simple algebraic operations, take the following scalar form: 

− ܫି݀
ݖ݀ = −൫ ଵܳඥ݃ݎ൯ିܫ + ൫−ܳଶඥ݃ݎ + ܰ൯ܫା, 

− ାܫ݀
ݖ݀ = ൫ܳଶඥ݃ݎ + ܰ൯ିܫ + ൫ ଵܳඥ݃ݎ൯ܫା . 

(4) 

where: 
ܳଵ ଶൗ (ݏ) = ଵ

ଶ ቀܴܻ(ݏ) ± ܴିଵܼ(ݏ)ቁ , ܴ = ܴିଵ = ට
 , 

(ݖ)ܰ = 1
2

݀
ݖ݀ ln൫ ݂(ݖ)൯. 

We simplify equations (4) by removing diagonal terms in (4) in the following way:   
 ݀

ݖ݀ ൫ି݁ିܫொభఈ(௭,௭భ)൯ = ൫ܳଶඥ݃ݎ − ܰ൯݁ିொభఈ(௭,௭భ)ܫା, 
݀
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(5) 

where: 
,ݕ)ߙ (ݔ = න ඥݔ݀ (ݔ)݃(ݔ)ݎ௬

௫
. 

Integrating the first of equations (5) from z to z2 and the second one from z1 to z, after simple but tedious manipulations we obtain the system of integral equations for the nonuniform dispersive transmission line. The appropriate solutions of these integral equations for current waves are presented in [6]. 
III. SCATTERING PARAMETERS FOR DISPERSIVE NONUNIFORM 

TRANSMISSION LINE 
A. Scattering parameters for disspersive nonuniform 

transmission line 
Basing on the results presented in [6] the scattering parameters for nonuniform dispersive transmission line have the following form:  ܾଵ = ଵܵଵܽଵ + ଵܵଶܽଶ , ܾଶ = ܵଶଵܽଵ + ܵଶଶܽଶ, (6) 

where: 

ܽଵ = ,ଵݖ)ାܫ ,(ݏ  ܽଶ(ݏ) = ܫି ,ଶݖ)  ,(ݏ
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(7) 
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௭మ

௭
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௭భ

ሼ∗ሽ݀ߦ.  
The scattering parameters have the form of infinite series (7). Each term in these three series (7) is the integral of its predecessor. The integration of successive terms in these series can be done analytically or for more complex nonuniformities numerically.  The convergence of the proposed series calculation are analysed in [6] 

B. First approximation of scattering parameters for the 
Bessel transmission line 

Let us consider the first order approximation of the series (7). It means that we take terms in (7) for i = 0 only. Then we obtain relationships: 
ଵܵଵ (ݏ) = ൣ− ℑି(ݖଶ, ொభఈ(௭,௭భ)൧௭ୀ௭భି݁(ݖ =

−  ,ߦ)ିܳ ଶொభఈ(క,௭భ)௭మି݁(ݏ
௭భ  (8a) ,ߦ݀

ܵଶଶ (ݏ) = ൣ− ℑା(ݖଵ, ொభఈ(௭మ,௭)൧௭ୀ௭మି݁(ݖ =
−  ܳା(ߦ, ଶொభఈ(௭మ,క)௭మି݁(ݏ

௭భ  (8b) ,ߦ݀
ܵଵଶ(ݏ) = ܵଶଵ(ݏ) = ൣ݁ିொభఈ(௭మ,௭)൧௭ୀ௭భ . (8c) 

The PUL parameters of the Bessel transmission line 
are ܼ(ݏ)ݖఈ  and ܻ(ݏ)ݖఉ. By substituting the above PUL to equations (10) and performing integrations we obtain:  

(ݏ)ଵଵܵ = ொమ(௦)
ଶொభ(௦) ൯ݍ/11ݖ−ݍ/21ݖ൫ݍ(ݏ)2ܳ1−݁ൣ − 1൧ +
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ସ ,൫1݅ܧ൛ݍ/11ݖݍ(ݏ)1ܳ݁ݍ ൯ݍ/11ݖݍ(ݏ)2ܳ1 −

,൫1݅ܧ  ,൯ൟݍ/211ݖݍ(ݏ)2ܳ1
(9a) 
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(9b) 

(ݏ)ଵଶܵ = (ݏ)ଶଵܵ =  ൯, (9c)ݍ/11ݖ−ݍ/21ݖ൫ݍ(ݏ)1ܳି݁
 

where Ei(1,x) is an exponential integral and q=2/(++2). Scattering parameters in the case of the Bessel line can be determined analytically. For comparative purposes, scattering 
parameters were calculated for the Bessel line for  = -1 and =1. The exact parameter S12 for this case is : 



 
ଵܵଶ(ݏ) = (ܽ)ܭܨ) ∙ (ܽ)ܫܨ − (ܽ)ܫܨ ∙ ܭܨ

(ܽ)ܫܨ ∙ (ܾ)ܭܨ − (ܽ)ܭܨ ∙ ܫܨ
 

(ݖ)/ܫܨ = (ܴି ଵܫ(ݖߛ) ± ܻܫଵ(ݖߛ))√ܴݖ
(ݖ)/ܭܨ = (ܴି ଵܭ(ݖߛ) ± ܻܭଵ(ݖߛ) )√ݖ

ߛ = ඥܼ(ݏ)ܻ(ݏ),  ܻ = ට(௦)
(௦) , ଵݖ = ܽ, ଶݖ  =

where In(z) and Kn(z) are modified Bessel functions of the first and second kind respectively. The approximate scattering parameters for the Bessel line easily obtained from equations 
(9), where we need to substitute  = -1,  = 1 and q=1. The results for the first approximation of the very good for the most cases (see [6]) but forcalculate the second order approximation to obtain a better fitting.  

C. Second order approximation of  ܵଵଶ for the Bessel 
transmission line 

The calculation of the second order S12 formula give
analytical solution of the formܵ1ଵଶ(߱) = ܵ1ଶଵ(߱)

= ݁ିொభ(ఠ)భమ൫ܵ1ܽଵଶ+ ܵ1ܾଵଶ(߱) + ܵ1ܿଵଶWhere: 
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భ 
and the function/constants used have the form:

ଵଶܥ = ଶݖ
ଵ − ଵݖ

ଵ , ܳ(߱) = ܳଶ(߱)
2 ଵܳ(߱) , ܤ =

and G(x) is Meijer G function for specified arguments:
(ݔ)ܩ = ,,,ଵ|ݔ ଶ ଷଷ ଵ൫ܩ ൯ 

As one can see in the second order approximation occurs the 
coefficient equal to ܵଵଶ(ݏ) multiplied by some coefficients ܵ1ܽଵଶ(߱, ,ଵݖ ,߱)ଶ),  ܵ1ܾଵଶݖ ,ଵݖ ,߱)ଶ),  ܵ1ܿଵଶestimations of the ܵ1ଵଶݖ ,ଵݖ  ଶ) shows that only the first fewݖ
samples of the second order approximation has important 
impact for the ଵܵଶ parameter (see Fig. 1), than we use the 
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(z) are modified Bessel functions of the second kind respectively. The approximate scattering parameters for the Bessel line easily obtained from equations 
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൯

As one can see in the second order approximation occurs the 
multiplied by some coefficients 

ଵଶ(߱, ,ଵݖ  ଶ). Theݖ
shows that only the first few 

samples of the second order approximation has important 
, than we use the 

second order approximation only for them. We do not use the 
whole second order approximation due to 
formula for 1)݅ܧ, .appropriate for small arguments value (ݔ

Fig.1 The estimated maximal values of the second order 
approximation. 

The formula for the approximate 
frequency takes the following form:ܵଵଶ(߱) = (߱)ଶଵܵ  + ܵ1

ܵଵଶ(߱) = (߱)ଶଵܵ 
where ߱ is as small as possible

IV. RESULTS
As an example we have considered a nonuniform (Bessel)  interconnect with frequency dependent parameters shown in Fig.2.   

 
 
 
 
 
 
 
 
 
 
 
Fig.2 The considered system  inverter

circuit model.
The longitudinal parameters of the interconnect Z(

Y()  depend on the frequency as follows: 
(ݏ)ܼ = ܴ + ܮݏ + ൫0.1 + 10ିସ.ହ
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௦ߝ ஶൗߝ −
1 + ߬

where R=10Ω, L= 2nH, G =102ns, d=10cm. The frequency dependence of the PUL parameters of 
interconnect R(), L(), G(), C(
relationships of longitudinal interconnect as functions of frequency weremeans of rational functions usingvector fitting [5]. The results for the first order approximation of So11 and So22 can be seen in [second order impact for the ଵܵଶ

Rs 

e(t) Z(s)zα,  Y(s)z

0 

on only for them. We do not use the 
whole second order approximation due to using the simplified 

appropriate for small arguments value. 

 Fig.1 The estimated maximal values of the second order 
approximation. 
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is as small as possible.  

ESULTS 
e considered a nonuniform (Bessel)  interconnect with frequency dependent parameters 

The considered system  inverter-interconnect-inverter and its 
circuit model. 
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depend on the frequency as follows: 
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ependence of the PUL parameters of 
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 parameters Z(),Y() of the frequency were approximated by using very efficient algorithm-The results for the first order approximation can be seen in [6] than we show there only the 

ଵܵଶ. Frequency characteristics of 
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the module |S12()|  to compare the exact calculation from with approximated formulas (9c) and (12) are shown in Fig.3To calculate (12) we assume that we take into account first 15 samples in frequency domain, which gives ߱

Fig.3 Dependence of scattering parameters: |S12| app 0 
approximation, |S12| app 15 - first order with 15 first samples of 

second order and |S12|  exact -exact of nonuniform (Bessel) 
transmission line on frequency.

 On the base of scattering parameters one can calculate the formulas for the voltage response. The next figures (Fig show the results for the considered Bessel transmission line model. A circuit consists of voltage pulse sourcetrapezoid shape A=2V, Tr =Tf =500ps, Ton=2ns) with source resistance Rs=150Ω and transmission line loaded by capacitor CL=1pF.  

Fig.4 Near end  voltages u1(t)-approximate and 
of the nonuniform (Bessel) transmission line.

 The voltages at both ends of the Bessel transmission line 
obtained based on the approximate (12) andparameters in the frequency domain and they were subsequently transformed (IFFT) to the time domainend voltages of the considered system (Fig.2Fig.4. The differences visible in a steady state are small and can be explained by the fact, that during the simulation a finite number of terms (first term in our case) contribute to SS21, S22 were used.  

Fig.5 Far end  voltages u2(t)-approximate and 
of the nonuniform (Bessel) transmission line.The time of calculation the voltage for the presented approach due to the analytical form of scattering parameters is much 

calculation from (10) are shown in Fig.3. we assume that we take into account first 15 
 =2.3e10[rad/s] 

 12| app 0 - first order 
first order with 15 first samples of 

exact of nonuniform (Bessel) 
transmission line on frequency. 

scattering parameters one can calculate the the voltage response. The next figures (Fig 4,5) show the results for the considered Bessel transmission line of voltage pulse source (of the =2ns) with source smission line loaded by capacitor 

 approximate and u1(t)-exact 
of the nonuniform (Bessel) transmission line. 

transmission line were 
and exact scattering in the frequency domain and they were subsequently transformed (IFFT) to the time domain. The near of the considered system (Fig.2) are shown in visible in a steady state are small and  explained by the fact, that during the simulation a finite number of terms (first term in our case) contribute to S11, S12, 

 approximate and u2(t)-exact 
of the nonuniform (Bessel) transmission line. he time of calculation the voltage for the presented approach due to the analytical form of scattering parameters is much 

shorter than calculation time of scattering parameters which can be calculated numerically.The percentage error for the far end voltage is relatively small (see Fig 6). The error was calculated as:ߜ = ೠమೣೌషೠమೌ
ೠమೣೌ ଵ%, where ݑ

calculated using exact S12 (10)article. 

Fig.6 The error of the far end voltage calculated using approximated. The solid line is approximation given by (9c) and the dashed one is calculated with (12).
V. CONCLUSIONS

We have shown that it is possible to generalize the approach based on the method of the case of a nonuniform transmission line with frequency dependent parameters. As a result, we obtain a closed form (meaning a first order approximation) of scattering parameters of nonuniform transmission line in frapproximation is satisfactory for the considered transmission line. Equations (10) allow us scattering parameters for nonuniform linesanalytically (such as in the case of thenumerically and applying the functions using a vector fittingapproach based on dyadic Green's function and parametric macromodeling applied to weakly nonuniform transmission lines [2,3] the presented approach approach permits the implementation of the model in the SPICE program.  
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 The error of the far end voltage calculated using S12 . The solid line is approximation given by (9c) and the dashed one is calculated with (12). 
ONCLUSIONS 
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