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ABSTRACT The paper investigates statistical distribution testing-based detection methods in an intermittent
signal detection scenario. The relevance of the research is driven by 5G networks based on packet
transmission, incorporating the concept of cognitive radio and adapting spectrum detection methods from
Long Term Evolution (LTE) Licensed-Assisted Access (LAA). The conducted study refers to the recently
proposed methods based on testing goodness-of-fit (GoF) of statistical distributions, which are compared
with a conventional energy detector. The authors examine the applicability of well-known GoF methods
in intermittent transmission, as they require reconsideration in 5G communication systems, and investigate
the behavior of the innovative energy-based GoF. The experiments are carried out for different transmitter
activity factors, i.e., channel occupancy and signal-to-noise ratio (SNR), demonstrating the superiority of
the GoF-based methods in general and particularly the invented GoF test over other energy-based detectors
for discontinuous signals detection.

INDEX TERMS Gaussianity testing, energy detection, discontinuous transmission.

I. INTRODUCTION
In recent years, many technologies have been developed
for wireless systems based on the IEEE 802.15.4 and IEEE
802.11 standards. These technologies work primarily in the
unlicensed 2.4 GHz and 5.725 GHz Industrial, Scientific, and
Medical (ISM) frequency bands, which are shared among
different networks. In the meantime, the mobile industry has
requested to adapt the unlicensed spectrum, in particular, the
5.725 GHz ISM band, to meet the emerging demand for
additional spectrum for mobile broadband applications. With
the spread of wireless devices and systems, ISM bands are
becoming increasingly crowded, and interference between
the devices is becoming more problematic. Therefore,
operating in the unlicensed band requires careful planning of
coexistence to avoid or minimize interference between users.

A complex solution to this problem is introduced by the
5G network in the concept of New Radio-based access to
Unlicensed spectrum (NR-U), which incorporates cognitive
radio to efficiently utilize unlicensed spectrum bands [1], [2].
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The NR-U introduced in 5G, describes an optional listen-
before-talk procedure preceding an attempt to seize a
random access channel (RACH). However, NR-U has to
be designed in accordance with the regulatory requirements
of the corresponding bands. In the case of the 5 GHz
and 60 GHz bands, the regulation mandates the use of LBT
in Europe [3]. Therefore every user equipment must perform
a LBT operation for transmission over RACH. The operation
of NR in 5 GHz and 6 GHz bands assumes the LBT procedure
defined in Long Term Evolution (LTE) Licensed-Assisted
Access (LAA) as a baseline [4], [5]. Therefore in 5G systems,
the spectrum sensing procedure continues to refer to energy
detection as one of the main measures of assessing radio
channel occupancy [5], [6].

Energy detection is a simple and effective method of
detecting the presence of a signal in which the energy
measured during a detection period is comparedwith a certain
threshold value [7]–[9]. A conventional energy detection
scheme is based on the assumption that the signal is present
throughout the entire duration of the sensing period. Such
detection has limited performance in more realistic scenarios
in which the pulse signal can dynamically switch between
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active and inactive states, e.g., in sporadic data packet
transmissions [10]–[12]. When using energy detection in
intermittent transmission, the instantaneous signal energy is
outstretched in the average energy measured over the entire
detection window. Adaptation for discontinuous transmission
is considered in [12]–[15] by redesigning the energy detection
algorithm. As a result, the correct operation of a modified
energy detector in a dynamic radio channel requires prior
gathering of information on transmitter activity, such as
average and current signal duration, channel occupancy,
and signal and noise parameters, such as noise variance
and signal-to-noise ratio (SNR). In this case, the energy
detector, which was intended as a light and simple solution,
is excessively overloaded with the determination of auxiliary
parameters. Consequently, it cannot be further considered as
a simple, blind detector dedicated to unknown signals.

The solution to the problem of a blind and yet simple
detector that remains sensitive to intermittent transmission is
to use detection techniques based on statistical distribution
analysis also called goodness-of-fit (GoF) testing. The main
principle for this group of methods is the examination of
empirical distribution of the received samples and assessment
of their compliance with the expected distribution. Due to
insufficient distortion of the expected Gaussianity introduced
by signal-with-noise samples filling the entire detection
window, the above solutions have been omitted so far in many
review studies (e.g., [16], [17]). As the sum of two Gaussian
distributions still remains Gaussian [18], the addition of
a Gaussian-distributed signal and noise results in a Gaus-
sian distribution also for signal-with-noise samples, which
precludes the effective use of GoF tests. However, when
considering intermittent transmission, the subject of detection
is a certain proportion of signal-with-noise and noise-only
samples. Thus, the resulting distribution is strongly disturbed
and expected to be no longer Gaussian [19]. Although so far
rejected due to low efficiency, Gaussianity testing methods
can find wide applications in modern telecommunication
networks, i.e. 5G wireless systems based on intermittent
transmission. Moreover, as a group of techniques operating
on a single assumption of the expected noise distribution, they
meet the requirements of unknown signals detection. In such
a case, the use of GoF and in particular Gaussianity and
normality testing methods needs to be reconsidered. To meet
new challenges, the authors introduced the foundations of a
novel, energy-based Gaussian fitting test [20]. The described
solution is based on a weakly dependent, empirical energy
distribution of the received signal, which allows simple
implementation and potentially high efficiency. Although the
proposed test is theoretically refined, it is based on some
assumptions that may not correspond to the actual radio noise
in 5G networks, hence the need for further research using real
experimental data.

In this paper, we examine and compare the effectiveness
of discontinuous signal detection using known statistical
fitting methods in general and the method developed in [20]
in particular. Method described in [21], which uses a

fundamentally different basis of detection, is a benchmark
adopted in the conducted research. The research covers
the most frequently referenced GoF tests, indicated as
those with high efficiency and superiority to other similar,
i.e., Jarque-Bera (JB) [22]–[24] and higher-order statistics
(HoS) [25], [26]. As we evaluate them as an alternative
to solutions based on an energy detector, in a comparative
study we combine the above techniques with the adaptation
of energy detection to intermittent transmission proposed
in [21].

The tests of applicability and usability evaluate the
algorithms in terms of probability of detection (Pd ) with
respect to decreasing SNR, increasing probability of false
alarm (Pf ), and variable transmitter activity. The assessment
is based on a semi-experimental configuration that combines
simulated radio-pulse transmission and environmental back-
ground distortions from radio frequency (RF) noise traces
recorded using software-defined radio (SDR) by National
Instruments, model USRP-2900.

The paper is organized as follows. Section II presents
the system model and describes the detection methods.
Section III presents a simulation and numerical results, which
are followed in Section IV by a discussion on the performance
of the methods. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL AND DETECTION METHODS
A detection system dedicated to unknown signals can be
described as a binary decision model distinguishing between
two states

x(n) =

{
w(n) H0

s(n)+ w(n) H1,
(1)

where x(n) is the received signal, s(n) is an unknown,
deterministic signal and w(n) is additive white Gaussian
noise (AWGN). The main issue of detection when concerning
unknown signals is to define a decision rule 3(x) that
indicates the current state of the radio channel:H0 when only
noise is present orH1 when both signal and noise are present.
The decision rule 3(x) with respect to the adopted decision
threshold γ can be described as{

H0 for 3(x) < γ

H1 for 3(x) ≥ γ .
(2)

In the considered scenario, the receiver collects signal
samples x(n) for n = 1 . . .N , with sampling frequency
fs = N

T in detection intervals of equal duration T . The burst
signal as a subject of detection is assumed to be dynamic,
switching at random moments between active (H1) and
inactive (H0) states. The duration of the signal and following
transmission breaks are assumed to be independent of the
detection intervals and have exponential distributions with
mean values τ and η, respectively [13]. Such a scenario is
illustrated in Figure 1 in the form of a sequence of burst
signals buried in noise.
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FIGURE 1. Illustration of discontinuous transmission with marked
channel states and detector sampling periods.

A. ENERGY-BASED DETECTORS
In a real system, supporting opportunistic access, informa-
tion about the signals and transmission parameters often
remains inaccessible to competing users. Therefore, one of
a few available strategies for the successful execution of
the LBT procedure is energy-based detection. The main
decision criterion is the energy value obtained by direct
measurement in a finite time. The simplicity of the imple-
mentation, low hardware requirements and speed supporting
effortless real-time processing cause a wide application of
the energy-based methods in the detection of unknown
signals.

1) CONVENTIONAL ENERGY DETECTOR
In the most common implementation of energy detection, the
test criterion is the average value of a squared amplitude of
the samplesmeasured during a specified observation window.
For the collected samples x(n), the decision statistics can be
described as

3(x) =
1
N

N∑
n=1

|x(n)|2. (3)

With a large enough number of samples (N ) in the sensing
interval, the distribution of the noise energy test statistic can
be approximated as Gaussian N

(
Nσ 2

w, 2Nσ
4
w
)
. Therefore,

the detection threshold can be formulated as

γ = σ 2
w

(
Q−1

(
Pf
)√

2N + N
)
, (4)

whereQ−1 represents an inverse Q-function for a tail distribu-
tion of the standard normal distribution [7]–[9]. The equation
shows that the proper thresholding of Gaussian-distributed
energy requires a priori knowledge of the mean and
deviation and therefore of the noise variance σ 2

w. Despite the
disadvantage of requiring σ 2

w, energy detection is widely used
and still developed.

2) SHORT WINDOW-BASED ENERGY DETECTION
As an example of recent adaptation, one can refer to [21],
which presents a short window-based energy detection,
adapted to intermittent transmission. The scheme proposed
in [21] divides the sensing interval into shorter windows with
the length of LSW samples each. Thus, the sensing interval is
composed of N/LSW non-overlapping short windows. The
proposed scheme selects the maximum energy of a short
window and compares it with a pre-determined γ . The test
statistic given in [21] is described as

3(x) =
1
Lsw

max


Lsw∑
n=1

|x(n)|2, . . . ,
N∑

n=N−Lsw

|x(n)|2

 . (5)
Since 3(x) is the maximum average energy selected from
N/LSW short windows, to satisfy the assumed Pf , threshold
γ is obtained as

γ =
2σ 2

w

Lsw
0−1

(
Lsw,

(
1−

(
1− Pf

) Lsw
N 0 (Lsw)

))
, (6)

where 0(·) and 0−1(·, ·) denote the complete and inverse
incomplete gamma functions, respectively.

B. GOODNESS-OF-FIT TESTING
Assume noise samples w(n) follow Gaussian distribution
N
(
µw, σ

2
w
)
, while the unknown signal samples s(n) can be

modeled as a random variable with distribution N
(
µs, σ

2
s
)
.

If w(n) and s(n) are independent random variables, their sum
is also Gaussian-distributed, with the mean being the sum
of the two means, and the variance being the sum of the
two variances, i.e., N

(
µw + µs, σ

2
w + σ

2
s
)
, which for clarity

of description will be further indexed as N
(
µw+s, σ

2
w+s

)
.

Continuous transmission therefore precludes the use of
goodness-of-fit tests, as these methods are based on the
assumption that the distribution of mixed signal and noise is
different from the sole distribution of noise [25]. In the case
of intermittent transmission, however, the receiver collects
not only signal-with-noise samples from N

(
µw+s, σ

2
w+s

)
,

but also a certain proportion of noise-only samples from
N
(
µw, σ

2
w
)
. Depending on the activity factor of the transmit-

ter, the LBT evaluation will be held for a mixed distribution
resulting from the combined distribution of signal-with-noise
and noise-only samples, as illustrated in Figure 2.

1) JARQUE-BERA NORMALITY TEST
There are several statistical methods for analyzing the dis-
tribution of measured samples, e.g., Kolmogorov-Smirnov,
Anderson-Darling or Shapiro-Wilk tests. One of the more
commonly used methods, however, is the Jarque-Berra test,
which exhibits superiority over other tests in its sensitivity
to distortions of normal distribution [22]. The method is
based on kurtosis and skewness, therefore it only requires
the determination of the mean value and variance of the
empirical distribution of received samples. JB test statistics
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FIGURE 2. a) Gaussian distributions of signal-only and noise-only
samples; b) Gaussian distribution of signal-with-noise samples for
continuous transmission; c) mixed distribution of noise-only and
signal-with-noise samples for discontinuous transmission.

are defined as

JB =
N
6

(
S2 +

(K − 3)2

4

)
. (7)

where N is the number of samples, S is the sample skewness
and K is the sample kurtosis. The skewness of a data set is a
measure of the degree of asymmetry of its distribution from
the mean value, defined by

S =
1
N

∑N
i=1 (xi − x̄)

3(
1
N

∑n
i=1 xi − x̄

)2)3/2 , (8)

and the kurtosis is a measure of matching the tails of a
distribution, defined as a normalized form of the fourth
central moment

K =
1
N

∑N
i=1 (xi − x̄)

4(
1
N

∑n
i=1 xi − x̄

)2)2 . (9)

In relation to the assumed goal, i.e., testing whether the
empirical distribution function of the received signal is
Gaussian or not, the skewness and kurtosis of AWGN should
be taken as the reference value. If x follows the normal
distribution, for any non-negative integer p, the plain central

moments are defined as

E
(
xp
)
=


σ p(p!)

2
p
2
( p
2 !
) p even

0 p odd.
(10)

Considering the above, for a normal distribution, skewness
as a 3rd-degree moment should be close to 0, and kurtosis as
a 4th-degree moment should be close to 3. To maximize the
information for test statistics of a complex signal, both the
real and imaginary parts are used

S =
S(Re(x))+ S(Im(x))

2
, (11)

K =
K (Re(x))+ K (Im(x))

2
. (12)

When only noise appears in the received signal, the real parts
as well as the imaginary parts, will have Gaussian distri-
bution. Therefore, JB test statistics will have a chi-square
distribution with 2 degrees of freedom. For the threshold
setting, we have to calculate the probability of a false alarm,
as a right tail probability of χ2(2)

Pf = P (JB > λ) =
1
2

∫
∞

λ

exp
(
−
1
2
x
)
dx. (13)

2) HIGHER ORDER STATISTICS NORMALITY TEST
Cumulants-based detection represents statistical signal pro-
cessing originated in pattern recognition for signals of
different structure. The detection scheme proposed in [26]
is based on a specific cumulants - so called joint cumulants
of random variables of the fourth and sixth orders. All six
(for 6-th order cumulants) and four (for 4-th order cumulants)
variables used in the test statistics are considered to be the
same, with the number of conjugate values used for these
variables being three and two for 6-th order and 4-th order
cumulants, respectively. As the authors of [26] point out,
it is not the only possible combination of variables and their
conjugates for higher order joint cumulants.

According to the joint cumulant generating formula, for
a zero-mean random variable x with second-order cumulant
C21,x = cum (x, x∗) = E

(
|x|2

)
, where x∗ denotes the

conjugate of x, the sixth order joint cumulants, labelled as
C63,x = cum (x, x, x, x∗, x∗, x∗), are defined as [26], [27]

C63,x = E
(
|x|6

)
− 9E

(
|x|4

)
E
(
|x|2

)
+12

∣∣∣E (x2)∣∣∣2 E (|x|2)+ 12E3
(
|x|2

)
. (14)

The fourth order joint cumulants, labelled as C42,x =

cum (x, x, x∗, x∗), are defined as [26], [27]

C42,x = E
(
|x|4

)
−

∣∣∣E (x2)∣∣∣2 − 2E2
(
|x|2

)
. (15)

The normalized sixth and fourth order cumulants, Ĉ63,x
and Ĉ42,x , are defined as

Ĉ63,x =
C63,x

E
(
|x|2

)3 , (16)
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Ĉ42,x =
C42,x

E
(
|x|2

)2 . (17)

For noise, modelled as AWGN, all joint cumulants of order
larger than two are equal to zero. However, due to the limited
accuracy of estimation, when considering a finite number of
samples used to determine HOS, the cumulants may not be
exactly zero. Therefore, a certain threshold must be set to
decide if the samples belong to the signal or noise class. The
IEEE 802.22 standard compares the higher-order cumulants
with the power of second-order moment [28].

Let R be the number of moments (Mr ) and cumulants (Cr )
of the order r greater than two. For the evaluation step 0 <
σ < 1, e.g., σ = 0.5/R, and initial metric p = 0.5, the basis
for the evaluation is the test condition{

p+ σ for each |Cr | < γ |M2|
r/2

p− σ for each |Cr | ≥ γ |M2|
r/2.

(18)

where γ is used to make a fine adjustment of Pf if needed,
in most cases kept close to unity. If p ≥ 0.5, then x belongs
to the signal class.

HOS-based detection using 4-th to 6-th order cumulants
has become the recommended sensing method for DTV
signals in the IEEE 802.22 standard [25].

3) ENERGY-BASED GAUSSIANITY TESTING
The solution proposed in [20] uses the N -point fast Fourier
transform (FFT) to obtain the power spectrum of the received
signal after the necessary processing |FFT {x(n)}|2 → Y (n).
The M -point moving average creates a weakly dependent
model, making the distribution of the noise-only power
spectrum close to Gaussian. It is therefore important to select
M � N . The test statistics of the proposed Gaussianity
testing examine the field of tails of the obtained distribution

3(Y ) =
1
N

N∑
n=1

(|Y (n)− Ȳ | ≥ σ ). (19)

The solution performs a Gaussianity test on the empirical
distribution of weakly dependent energy samples obtained
in short, overlapping windows, resulting from the use of a
moving average. The energy analysis is a simple fit test, i.e.,
the spread of samples between the tails and center of the
distribution. In the case of noise, the tails containing samples
exceeding ±σ maintain a fixed ratio of approximately 0.317
of the field under the Gaussian curve. Due to processing
performed on a finite number of samples, the authors provide
an expression describing the fluctuations of the field of
tails with respect to M and N , which follows the Gaussian
distribution with parametersµ = 0.317

σ =
3
8

(
erf

(
1+ C
√
2

)
− erf

(
1− C
√
2

))
,

(20)

where

C = (1−
√
bN/Mc/χ2

[0.8145,|N/M ]−1])
√
t[0.9,M]. (21)

Determining threshold γ for 3(Y ) is limited to a
well-known problem of setting the threshold on the Gaussian
distribution for the assumed Pf . In the above case, the
following formula applies

γ = µ− Q−1
(
Pf
)
σ 2. (22)

The proposed detection method eliminates σ 2
w from the

threshold equation, which by referring to the field and
incorporating C depends only on N and M selected by the
user. It is worth noting that for the assumed M and N , the
threshold is determined only once and does not need to be
updated even if the noise variance changes.

A clear comparison of energy-based and GoF-based
detection methods in terms of information and performance
requirements is presented in Table 1.

III. SIMULATION AND NUMERICAL RESULTS
The basis for further considerations is a comparison of con-
ventional energy detection, short windows-based detection as
its adaptation to packet transmission, Jarque-Bera normality
test, HoS normality test and the Gaussianity test proposed by
the authors as the main subject of the research.

In the implemented semi-experimental simulation frame-
work, the object of analysis for each method are
non-overlapping time frames. Each frame contains N
complex noise samples, collected in an urban area using the
National Instruments USRP-2900 [29]. The measurements
contain RF background noise recorded in an unoccu-
pied 5 kHz ISM band centered at 2.4 GHz with the
average noise power −109.6 dBm. The receiver digitizes
RF samples with sampling frequency fs = 10 kHz using
direct downconversion to baseband. To each noisy frame,
an artificial radio pulse is added. The position of the pulse in
the frame is set randomly, i.e., independently of the beginning
of the detection period. In the simulated transmitter activity
dependencies, the duration of pulses follows an exponential
distribution, with the average value τ being swept from 0.1Nfs
s to 0.9Nfs s in order to obtain the intended average occupancy
rate ranging from 10% to 90%, respectively. In simulated
SNR dependencies, the SNR level is regulated by adjusting
the amplitude of the pulse signal, while maintaining the
power of the recorded noise and constant average occupancy
rate.

In the adopted model, the transmission corresponds to
a random signal with time-varying statistics, which at the
receiver location can be described as

xm(n) = α(m) ·5
(
n− β(m)
e(τ,m)

)
+ w(n) (23)

where xm(n) defines the n-th sample in the m-th observation,
α(m) is the regulated pulse amplitude, 5(n) is a rectangular
pulse function, β(m) is the start of transmission modeled as
a random variable from a uniform distribution in the range
0 . . .N , e(τ,m) is the transmission duration modeled as a
random variable from the exponential distribution with the
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TABLE 1. Comparison of energy-based and normality testing-based detection methods.

FIGURE 3. Pd (SNR) function for the observation window size of N = 1024
samples, average transmitter activity τ = 30%, and type I error probability
Pf = 10%.

FIGURE 4. Pd (Pf ) function for the observation window size of N = 1024
samples, average transmitter activity τ = 30%, and SNR = −6dB.

mean τ and w(n) is a downconverted additive white Gaussian
noise.

The conducted study includes two sets of characteristics
for the short and long observation windows, respectively.
Figures 3–5 show the results of a comparative analysis
for each observation window containing N = 1024
samples. Figures 6–8 show the results for N increased to
16384, recognized as a number of samples large enough to
clearly show the differences in the behavior of the tested
methods, when processing long samples series. Both sets of
characteristics consist of three charts presenting the following
dependencies:

FIGURE 5. Pd (τ ) function for the observation window size of N = 1024
samples, type I error probability Pf = 10%, and SNR = −6dB.

• Probability of detection as a function of average signal
strength – Pd (SNR). Study of the constant false alarm
rate (CFAR) scenario simulated assuming Pf of 10%,
and random transmitter activity resulting in the average
channel occupancy τ of 30% of the observation window.

• Probability of detection as a function of the prob-
ability of false alarm – Pd (Pf ). Evaluation of the
receiver operating characteristic curve (ROC), simulated
assuming random transmitter activity resulting in the
average channel occupancy τ equal to 30% of the
observation window, and arbitrarily selected SNR equal
to −6 dB.

• Detection probability as a function of transmitter activity
– Pd (τ ). Investigation of the effectiveness of detection
methods in intermittent transmission, simulated with
the assumption of random transmitter activity resulting
in the average channel occupancy τ in the range of
10%–90% of the observation window. The simulation
performed while maintaining an arbitrarily selected
SNR of −6 dB and constant Pf of 10 %.

Each comparison point in Figures 3–8 is obtained after
averaging 1000 observations, generated according to point
parameters. Due to the variability of transmitter activity, each
SNR is determined as the average value obtained for all
observations with the assumed constant pulse amplitude set
in relation to the average noise amplitude and average pulse
duration. Moreover, to eliminate inaccuracies in threshold
estimation, for each value of Pf used, a corresponding
threshold is set based on 1000 a priori observations.
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FIGURE 6. Pd (SNR) function for the observation window size of
N = 16384 samples, average transmitter activity τ = 30%, and type I error
probability Pf = 10%.

FIGURE 7. Pd (Pf ) function for the observation window size of N = 16384
samples, average transmitter activity τ = 30%, and SNR = −6dB.

To complete the comparison, it is also tested how the
probability of detection changes in the function of increasing
observation window Pd(N ). Window size N is increased
exponentially as 2i, for i = 10, .., 14. The simulation
assumes constant Pf equal to 10%, SNR equal to −6 dB
and the average occupancy of the channel τ equal to 30%
of the observation window. The simulation results are shown
in Figure 9.

IV. DISCUSSION
The analysis of the Pd (SNR) relationship for a small number
of samples (Figure 3) and strong signals, in the range
of SNR above −3 dB, shows the superiority of methods
based on energy detection over classical GoF solutions.
Particularly interesting is the short windows-based detection,
adopted for intermittent transmission, which provides an
additional 1 dB gain compared to a conventional energy
detector. Normality testing methods provide a detection gain
greater than conventional energy detection only for very weak

FIGURE 8. Pd (τ ) function for the observation window size of N = 16384
samples, type I error probability Pf = 10%, and SNR = −6dB.

FIGURE 9. Pd (N) function for average transmitter activity τ = 30%, type I
error probability Pf = 10%, and SNR = −6dB.

signals, i.e., SNR below −3 dB, and in the case of the short
windows method, below −6 dB. In both cases, however, the
detection probability is already below the usage values, i.e.,
70%. Note that, e.g., for DTV systems, the requiredPd should
be greater than 90% [30].

The relationship between the methods changes as the
number of samples in the observation window increases
(Figure 6). The methods based on normality testing provide
a shift of the 90% Pd threshold even by 1 dB towards
weaker signals, and for the 80% Pd , even by 3 dB
compared to energy-based solutions. Moreover, for longer
observation windows, due to the reduction of uncertainty
in noise measurements, the short windows method becomes
less relevant and behaves similarly to conventional energy
detection.

In the case of both small and large numbers of samples,
the developed Gaussianity test is superior to both groups
of methods. The superiority of the method results from
combining the features of both groups. The distribution test is
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performed on energy samples obtained in short, overlapping
windows, resulting from the use of a moving average.
Although the proposed fit test is simple, i.e., it analyzes
the spread of samples between the tails and the center of
the distribution, it ensures satisfactory results and makes the
test independent of changes in noise variance. The proposed
method provides a profit comparable to the short window
method for small observation windows, and significantly
exceeds the other methods (by 4-5 dB) for long observation
windows, when considering a 90% Pd . A noticeable, negative
feature of the tested method is the observable, rapid decrease
in efficiency for very low SNRs. In the case of the developed
test, simplicity comes at a cost of obtaining the expected
Gaussian distribution by the use of a small moving average.
This results in intended noise averaging but also unfavorable
averaging of very weak signals.

A separate analysis is required for those ROC curves
which, through the slope of the Pd (Pf ) characteristic,
show sensitivity of Pd to inaccuracies in the threshold γ
determining Pf . It is of particular importance in CFAR
scenarios, where, e.g., for DTV systems, the required Pf
should be fixed at 10% [30]. For curves with a greater slope,
error in threshold estimation results in a greater reduction
of Pd . In both cases, the methods based on distribution
analysis (which also include the proposed method) show
lower susceptibility to changes in Pd due to fluctuations or
mismatches of Pf . Although not very noticeable for short
windows (Figure 4), the difference in the flattening of the
curves becomes apparent for longer observation windows
(Figure 7). Moreover, the proposed Gaussianity test appears
to be the solution least prone to threshold mismatch.

A key factor in intermittent transmission is transmitter
activity. In the study of the Pd (τ ) characteristic, all methods
show an increase in detection probability along with an
increase in transmitter activity, and thus greater participation
of signal-with-noise samples in the observation window.
In this case, the proposed solution shows the highest detection
gain for small channel occupancy. As signal participation
increases, the profit over other solutions decreases. On the
other hand, for short observation windows and high channel
occupancy, methods based on classical GoF gain the most
in detection efficiency (Figure 5). With longer observation
windows, the difference between methods based on fit
tests and methods based on energy detection becomes less
noticeable (Figure 8).

The last analyzed characteristic is the probability of
detection as a function of the observation window Pd (N )
(Figure 9). Once more, it can be seen that for short
observation windows, although the differences are small,
the proposed method provides the highest detection per-
formance. The analysis of the shape of the curve slope
shows that as the length of the window increases, the
proposed test obtains an increase similar to the methods
based on energy detection. However, the highest efficiency
gains are recorded for methods based on classical normality
tests.

V. CONCLUSION
The study presented in this paper reveals fundamentally
different behavior of the analyzed groups of methods in
the intermittent signal detection scenario. In the case of
strong signals, the short window method, as low complexity,
energy-based detection, performs at least as well as more
advanced solutions. This predisposes the detection technique
as the main method dedicated to intermittent transmission
in time-critical applications and low-noise environments.
In the case of weaker signals or longer observation windows,
GoF-basedmethods exhibit better detection properties. At the
same time, they show lower susceptibility to fluctua-
tions in detection efficiency with inaccurate thresholding.
The research proves that in modern telecommunications
networks, which combines in discontinuous transmission
noise-only and signal-with-noise samples, normality testing
can be successfully used in detecting mixed distribution of
even weak signals. Moreover, the developed Gaussianity
test, evaluated in a real-data based, semi-experimental
transmission scenario, appears to be a successful compromise
between both groups of methods. Although more complex
than energy-based detectors, provides good detectability
for both strong and weak signals. It yields efficiency
comparable to other methods for small observation windows
and provides detection gain up to 5 dB for longer samples
series. Furthermore, it remains less sensitive to thresholding
errors than other GoF-based solutions and does not require
the estimation of noise variance in changing environmental
conditions.
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