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 Abstract—This paper presents a new objective quality metric 

that was adapted to the complex characteristics of immersive video 

(IV) which is prone to errors caused by processing and 

compression of multiple input views and virtual view synthesis. 

The proposed metric, IV-PSNR, contains two techniques that 

allow for the evaluation of quality loss for typical immersive video 

distortions: corresponding pixel shift and global component 

difference. The performed experiments compared the proposal 

with 31 state-of-the-art quality metrics, showing their 

performance in the assessment of quality in immersive video 

coding and processing, and in other applications, using commonly 

used image quality assessment databases – TID2013 and CVIQ. As 

presented, IV-PSNR outperforms other metrics in immersive 

video applications and still can be efficiently used in the evaluation 

of different images and videos. Moreover, basing the metric on the 

calculation of PSNR allowed the computational complexity to 

remain low. Publicly available, efficient implementation of IV-

PSNR software was provided by the authors of this paper and is 

used by ISO/IEC MPEG for evaluation and research on the 

upcoming MPEG Immersive video (MIV) coding standard. 

 
Index Terms—image quality, immersive video, video 

compression, view synthesis 

I. INTRODUCTION 

he subject of measuring the objective quality of videos is 

one of the widest in the area of image and video processing. 

In this paper, the focus is put on the performance of available 

metrics in evaluating the quality of immersive video. The 

purpose of immersive video is to allow the viewer to freely 

navigate in the entire scene by changing her/his position and 

direction of viewing, e.g., in a whole room in 6DoF applications 

[1], or its part, allowing free navigation in a limited range in 

3DoF+ systems [2].  

Regardless of the type of the immersive video system, the 

virtual navigation of the viewer is provided by synthesizing 

virtual views between views captured by the cameras [3], [4], 

using the information about the three-dimensional geometry of 

a scene represented usually in a form of depth maps. Although 

this process is not required in systems based on the use of a 

single omnidirectional 360 video, unfortunately, these systems 
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do not provide a fully immersive experience, as the navigation 

is limited to the change of the direction of viewing the scene by 

a user. Therefore, 360 videos, as well as stereopairs used for 

stereovision, are not in the scope of this paper. Relevant image 

quality assessment techniques for 360 videos can be found, e.g., 

in [108], [110], [111], [114]. Fig. 1 provides an overview of the 

visual systems described above. In further considerations, we 

focus entirely on the 6DoF (immersive video [1]) systems. 

 

Fig. 1. An overview of the visual systems. Immersive video (bottom) utilizes 

virtual view synthesis performed using several input views and corresponding 
depth maps to provide a possibility of six-degrees-of-freedom movement for a 

viewer. 360o video (top right) enables only the change of orientation of viewing. 

Previous reviews and benchmarks of metrics that measure 

the synthesized view quality indicate the need for new objective 

metrics that will provide a better correlation with subjective 

scores [5], as the characteristics of synthesis-induced errors in 

videos are very specific. The available models of such 

distortions (e.g., [6], [7], [8]) list possible sources of errors, 

which include not only typical errors in the texture of scene 

objects (present also in traditional single-camera videos, e.g., 

blur, noise, color distortions) but also errors in their position, 

caused by faulty three-dimensional reprojection [117].  

One of the main sources of texture errors in immersive video 

is color inconsistency [9], as, in order to allow a user to virtually 

navigate within a scene, the scene has to be captured by a 
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multicamera system. In general, each camera can acquire data 

differently due to non-Lambertian reflections, different 

characteristics of camera sensors, and camera automatics (e.g., 

automatic exposure time or white balance). 

As it was presented in the review of related works, included 

in Section III, many metrics that measure the quality of 

synthesized view do not assume that the synthesis process in 

practical systems can be performed after lossy compression of 

input views [10]. A quality metric which is to be used in 

immersive video applications should also take into account 

distortions caused by the encoding, which is especially 

important as the emergence of relevant video codecs can be 

seen [1] (a summary of state-of-the-art techniques in immersive 

video compression is presented in Section VII-C).  

In this paper, we focus on immersive video, which is a subset 

of visual immersive media. Relevant quality metrics that 

measure the quality of other media closely related to immersive 

video have been proposed e.g., for point-cloud-based systems 

[11], [12]. Their authors also indicate that, though the use case 

of these systems is different, compression-induced errors and 

distortion of geometry of encoded three-dimensional points are 

among the main problems which relevant quality metrics have 

to focus on. Moreover, in immersive video, the view presented 

to the final user cannot be directly compared to any reference 

view as free navigation is not limited to input views. It makes 

image quality assessment much more complex and 

unpredictable.  

Given the significance of immersive media and the need for 

objective evaluation of immersive videos, this paper proposes a 

new metric called IV-PSNR. This metric introduces two novel 

techniques that allow for dealing with typical immersive video 

distortions: corresponding pixel shift (described in detail in 

Section IV-A), which adapts the traditional PSNR metric to be 

less sensitive to small, unnoticeable for the viewer, synthesis-

induced errors, and global component difference (Section IV-

B), which measures color inconsistencies in virtual views. The 

proposal was shown to be adapted to the complex 

characteristics of immersive video described above (as 

indicated by correlation with an independent subjective viewing 

experiment described in Section VII), while its computational 

complexity remained low (see Section X) due to being based on 

the calculation of PSNR. 

II. TYPICAL DISTORTIONS IN IMMERSIVE VIDEOS 

As mentioned in Section I, an objective quality metric 

adapted for immersive video applications should properly 

mimic HVS for typical distortions introduced simultaneously 

by virtual view synthesis, immersive video processing, and 

compression.  

While other factors also highly influence the quality of the 

final image presented to a viewer, e.g., the accuracy of camera 

parameters, lens distortions, or insufficient synchronization of 

cameras in the multiview systems, these factors influence most 

of all the depth estimation process, not the quality of the 

acquired video. Errors in estimated depth, as it is presented in 

the following Section II-A, directly influence the synthesis 

process, therefore, the factors listed above can be discussed 

jointly as errors in the synthesized virtual view. 

A. Corresponding Pixel Shift Error 

Virtual view synthesis is performed by reprojecting pixels 

from input views to the virtual views. For perspective views, 

the reprojection of a pixel can be defined as [57]:  

[

𝑥𝑣

𝑦𝑣
𝑧𝑣

1

] = 𝑯𝑖,𝑣 ⋅ [

𝑥𝑖

𝑦𝑖
𝑧𝑖

1

] , (1) 

where (𝑥𝑖 , 𝑦𝑖) is the position of the pixel in the input view, 𝑧𝑖 – 

its depth, 𝐇𝑖,𝑣 is the homography matrix acquired from the 

multiplication of the projection matrix of the virtual view and 

the inverted projection matrix of the input view, (𝑥𝑣 , 𝑦𝑣) is the 

position of the reprojected pixel in the virtual view and 𝑧𝑣 – 

depth of the reprojected pixel. 

While 𝑥𝑖 and 𝑦𝑖  are aligned with the pixel grid of the input 

view, 𝑥𝑣 and 𝑦𝑣 have to be rounded in order to fit the finite 

resolution of the virtual view. Therefore, each pixel of the 

virtual view may be slightly shifted. For omnidirectional video, 

the reprojection equation is different, but the problem remains. 

Moreover, also the depth resolution is finite, as in practical 

systems, where video information is being compressed, the 

depth maps are stored as integers (e.g., 10 or 16-bps videos). In 

such a case, the 𝑧𝑖 value is rounded which implies worse 

projection accuracy and thus an even bigger shift of the 

reprojected pixel. 

 

Fig. 2. Calculation of IV-MSE, Eq. (5) vs. typical MSE, Eq. (3). MSE: orange 

pixel in image 𝑰 is compared to the colocated opaque blue pixel in image 𝑱; IV-

MSE: orange pixel in image 𝑰 is compared to all blue pixels in image 𝑱 (5×5 

neighborhood of the colocated pixel), the difference is calculated between the 

value of the orange pixel and the most similar pixel within the blue block. 
 

This problem can be noticed especially on the edges of 

objects. For example, in the left part of Fig. 2, a small, 

significantly magnified fragment of the input view (Museum 

sequence [58]) is presented. The fragment contains pixels 

representing the background (floor, brighter fragment) and a 

person in the foreground (dark part). The right part of Fig. 2 

contains a co-located fragment of the virtual view synthesized 

at the same position. Despite the Museum being a CG sequence, 

so its depth maps do not contain any artifacts, the reprojection 

caused the edge between the floor and the person to be shifted 

by more than one pixel. However, although edge shifting 

decreases the quality of pixel-wise quality metrics (e.g., PSNR), 
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it is practically unnoticeable by the viewer, because the viewer 

is not aware of the exact position of each object. Therefore, the 

quality metric for immersive video should be not sensitive to 

these small, unnoticeable for the viewer, reprojection-induced 

errors [117]. Naturally, a large shift in the position of an object 

in the virtual view can be easily recognized as an error (e.g., an 

object significantly shifted because of wrong depth, Fig. 3). 

I.

 

A.

 
B.

 

C.

 
Fig. 3. Noticeability of pixel shift; (I) input view, (A – C) synthesized view: (A) 

correct position of the knight, (B) knight shifted by 2 pixels to the right, (C) 

knight shifted significantly, Chess sequence [115]. 
 

B. Global Color Offset Error 

In order to provide a better experience for the viewer, inter-

view inconsistencies should be reduced using color correction 

methods (e.g., [9], [61]). Using the color correction causes the 

virtual views to contain fewer color artifacts (Fig. 4), having 

better subjective quality.  

I.  A. B. 

   
Fig. 4. Virtual view synthesized using views captured by cameras with different 
color characteristics (A) and color-corrected views (B), vs. input view (I), 

SoccerArc sequence.  
 

Color correction may cause the global color characteristics 

of the view (e.g., its overall brightness) to be wrong. On the 

other hand, a slight change of colors of the entire view is barely 

noticeable by the viewer, but significantly changes the values 

of some metrics, which simply calculate the difference between 

values of pixels with two images.  

III. RELATED WORKS 

This section provides an overview of related works on image 

quality assessment. A particular emphasis is put on the 

usefulness of presented methods in immersive video 

applications, expressed as their adaptation to the typical 

distortions described in the previous section. 

A. PSNR-based Methods 

The widest group of available image quality assessment 

methods are based on the calculation of PSNR. Such methods 

have a very great advantage over other metrics, as they are 

commonly used in a broad spectrum of image-related research 

(e.g., compression), making them very intuitive to use for 

researchers. Some PSNR-based methods were enhanced to be 

more useful in immersive video, e.g., WS-PSNR [13], CPP-

PSNR [14], and OV-PSNR [15]. These methods take into 

account the possibility of tested images being omnidirectional, 

enabling a better direct comparison of ERP videos in immersive 

media coding. However, such a comparison is not very 

practical, as such final video generated to the viewer after 

decoding is a regular, perspective video. 

PSNR-HVS [16] is based on the assumption that the human 

visual system (HVS) is more sensitive to low-frequency 

distortions. Calculations are performed using DCT coefficients 

that were modified using quantization tables from the JPEG 

encoder. However, the correlation with MOS for compression-

induced errors is the same as in PSNR. Adding the contrast 

sensitivity function into account in PSNR-HVS-M [17] 

increased the correlation with MOS when Gaussian noise and 

spatially correlated additive Gaussian noise were present in 

tested images. Further modifications of the abovementioned 

methods, that were implemented in PSNR-HA [18] and PSNR-

HMA [18], also include mean level shift compensation and 

contrast stretching. CS-PSNR [19] uses new weighting 

coefficients derived from extensive subjective tests in order to 

measure the final quality considering the characteristics of color 

sensitivity of HVS. 

Similar methods are often based on SNR calculation, e.g., 

SRE (signal to reconstruction error ratio [20]), which measures 

the error relative to the power of the signal, not the constant 

peak intensity, which better mimics the subjective quality 

assessment for images with different brightness. The usability 

of SNR-based methods is dependent on the desired application. 

In the case of immersive media, large differences in brightness 

should be considered as an error that influences the subjective 

quality of the image. Other SNR-based methods are, e.g., 

WSNR [21] (SNR calculated in the frequency domain is 

additionally weighted, reducing the influence of frequencies 

less important for HVS), or VSNR [22] – wavelet-based SNR. 

B. SSIM-based and Related Methods 

Another important group of metrics, based on SSIM 

(structural similarity image assessment [23]), focuses on the 

extraction of structural information from compared images, 

which follows the hypothesis that the human visual system is 

highly adapted to changes in this domain. These methods, 

which expand the previous UIQ method [24], provide relatively 

good performance when compared to PSNR.  
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During the calculation of SSIM, 3 types of information are 

considered, i.e., the luminance of compared images, their 

contrast, and structure. MS-SSIM [25] additionally performs a 

comparison of contrast and structure on multiple scales of tested 

images. Unfortunately, the usefulness of these methods is 

limited in the evaluation of synthesized videos. In such videos, 

possible small shifts can be introduced by the synthesis process. 

While such small distortions are not significant for the viewer 

of the video, they can still strongly influence the SSIM score 

(as well as other methods based on the comparison of structure, 

e.g., the method [26] based on gradient similarity). Other 

relevant SSIM-based metrics are, e.g., FSIM [27], which 

focuses on low-level features of images [28], [29], or SSRM 

[30], which performs the comparison in the frequency domain. 

Frequency-domain-based assessment is also performed in 

SAM [31]. This metric is calculated from the angle between the 

spectra of two images. While being independent of different 

brightness of compared images, even unnoticeable spatial shifts 

between them highly decrease the final estimated score. 

C. Methods Based on Trained Models 

Examples of full-reference metrics focused on deriving 

models from natural scene statistics are VIF [32], in which 

images are decomposed in different subbands to separate the 

information of the source image from its distortions, and SFF 

[33], which is based on a comparison of sparse features derived 

from detectors trained on samples of natural images. While 

such an approach is designed to simulate the properties of HVS 

[34], the evaluation of the quality of CGI-based sequences, 

commonly used in immersive video research, can be disturbed 

because of their different visual characteristics. 

VIF, together with DLM [35] (also a wavelet-based metric), 

was combined in the SVM-regression-based [36] VMAF 

method [37] (and its expansion for omnidirectional images 

[38]). It also introduces a simple temporal difference analysis 

that increases the correlation with the subjective quality of 

videos. Similarly to other machine-learning-based methods 

(e.g., LPIPS [39]), the performance of this metric is directly 

dependent on the pre-trained model, which should be different 

for various applications.  

The abovementioned metrics were intended to be versatile, 

and thus were not designed to measure distortions caused only 

by specific types of errors. However, the characteristics of 

distortions present in virtual views generated through the 

synthesis process, as described in Sections II-A and II-B, differ 

from distortions induced by other processing.  

The method presented in [113] had been shown to be not 

sensitive to offset present in a tested image, also for compressed 

images. However, especially for highly compressed images, the 

large offsets do not change the measured distortion (what 

should not be a case in immersive video, as discussed in Section 

II-A). Moreover, the offset is added to a whole image, in 

contrast to the reprojection-related offset (error), which changes 

the position of all points of the image independently. 

D. Metrics for Synthesized Video 

Many methods focus mainly on the correct evaluation of the 

quality of synthesized video. For example, the method 

described in [40] assesses the quality by penalizing pixels that 

belong to non-consistent contours. It allows the edges to not be 

exactly in the same places in both compared images, so small 

shifts of contours induced by depth-image-based rendering 

(DIBR) do not influence the final score. 

Method [41] performs an additional exhaustive search 

between blocks of evaluated images, so the further DWT-based 

comparison is resilient to DIBR-induced shifts. However, the 

search heavily increases the computational complexity of the 

metric. The relatively high complexity can also be seen in the 

LOGS metric [42], which uses SIFT to find disoccluded areas 

in the synthesized view. PSNR-based methods are much more 

efficient in terms of complexity, e.g., MP-PSNR and MW-

PSNR [43]. These methods introduce a multiscale comparison 

that uses morphological filters to focus on the geometrical 

distortions of the synthesized video. 

E. No-reference Quality Metrics 

A very interesting class of metrics does not require any 

reference image to assess the quality. Such no-reference metrics 

seem to be very useful for evaluating the quality of the virtual 

view, as such view does not have to be placed in the same 

position as any available input view. Unfortunately, such 

methods often focus on the quality of stereoscopic video only 

(e.g., [44], [45], [116]), or monoscopic and stereoscopic 

omnidirectional systems (e.g., [46], [47], [108]), which are very 

specific types of non-fully immersive video. Other very 

application-specific metrics are described in [48], [49], as they 

are intended to be used for light-field images only.  

Other methods do not state any assumption on the type of 

tested video [50], [51], but do not take into account 

compression-induced distortions. Method [52] measures errors 

caused by both compression and the virtual view, so it is well 

adjusted to the characteristics of immersive video. 

Unfortunately, evaluating the quality of video also requires a 

depth map to be present. It highly decreases the versatility of 

such methods, as the evaluation has to be performed before the 

virtual view synthesis is performed. A similar requirement is 

also stated in other methods, e.g., [53], [54]. A no-reference 

method that is versatile and adapted to the characteristics of 

immersive video is NR-MWT [55], however, it performs best 

when the input data for view synthesis is uncompressed. 

Similarly, an interesting no-reference method [56] cannot be 

efficiently used when input views are compressed, as it would 

highly influence the results of its internal JPEG compressor 

which is used to estimate the complexity of the input frame. The 

recent method DoC-DoG-GRNN [118] is based on a series of 

defined morphological operators which are used to extract 

features that are fed into a trained neural network. It shows 
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a high correlation with subjective quality for datasets which 

include both synthesis and compression-induced errors. 

However, re-training of a GRNN is required for each dataset, 

as the proposed model can fail without re-training, especially in 

the evaluation of high-quality synthesized views. 

IV. IV-PSNR 

The proposed IV-PSNR metric contains two techniques that 

allow for dealing with typical immersive video distortions: the 

corresponding pixel shift (Section IV-A), and global 

component difference (Section IV-B). Finally, the full 

description of IV-PSNR calculation, which implements these 

two techniques, is included in Section IV-C. 

A. Proposed Solution for Corresponding Pixel Shift 

As IV-PSNR tries to simulate the perceived quality of 

immersive video, it is insensitive to slight shifts of the edges 

due to the modified mean square error calculation, Eq. (5). For 

each analyzed pixel of image 𝐼, the error is estimated as the 

difference between that pixel and the most similar pixel within 

a colocated block in image 𝐽. 

For example, the error for the orange pixel in Fig. 2 will be 

estimated as a difference between the orange pixel 

(representing the person in the foreground) and the most similar 

of the semi-transparent blue pixels on the right side of the 5×5 

block. When calculating PSNR or another pixel-wise metric it 

would be compared to the opaque blue pixel, which represents 

the background in this example. 

As presented in Table I, IV-PSNR allows to properly assess 

that the subjective similarity between images I and C is much 

lower than between I and A. On the other hand, a slight shift of 

the knight in image B, which is unnoticeable to the viewer, does 

not negatively impact the IV-PSNR value (compare 

IV˗PSNR(𝐼, 𝐴) and IV˗PSNR(𝐼, 𝐵) in Table I). 

TABLE I OBJECTIVE QUALITY OF FRAGMENTS PRESENTED IN FIG. 3. 

Compared images, Fig. 3 I, A I, B I, C 

PSNRY 41.78 dB 39.41 dB 29.90 dB 

IV-PSNR 47.23 dB 47.22 dB 37.61 dB 
 

The size of the block was set to 5×5 to handle shifts smaller 

than 2 pixels, which is less than 0.1% of the image width in HD 

video. As presented in Table II, such a size provides a high 

correlation with MOS while preserving reasonable 

computational time. 

TABLE II CORRELATION BETWEEN IV-PSNR AND MOS, AND COMPUTATIONAL 

TIME FOR DIFFERENT BLOCK SIZES; RESULTS OBTAINED USING METHODOLOGIES 

DESCRIBED IN SECTIONS VII AND VIII; COMPUTATIONAL TIME ESTIMATED 

USING THE METHODOLOGY DESCRIBED IN SECTION X, SINGLE-THREADED 

IMPLEMENTATION. 

Max shift 0 1 2 3 4 5 6 7 

Block size 1×1 3×3 5×5 7×7 9×9 11×11 13×13 15×15 

SROCC 
VII 0.585 0.718 0.729 0.730 0.732 0.728 0.727 0.722 

VIII 0.502 0.558 0.565 0.495 0.469 0.458 0.456 0.448 

Time [s] 0.19 0.65 1.40 2.56 4.01 5.65 7.68 9.84 

Moreover, the described pixel shift compensation is also 

beneficial in the assessment of compression-induced errors. 

Compression can lead to blurring or even an edge shift in the 

image, especially in highly compressed videos because of the 

high share of temporally predicted parts of videos [59]. As it 

was proven in [60], the proposed modification of MSE is useful 

in the assessment of similarity between compressed views. 

B. Proposed Solution for Global Component Difference 

IV-PSNR takes the abovementioned phenomenon into 

account by excluding the influence of slight changes in the 

global characteristics of the image. For each component, the 

average difference between colocated pixels of two images is 

calculated – Eq. (6). Then, this difference is considered when 

calculating the square error for every pixel of the image, Eq. (5). 

In Fig. 4, the comparison of two synthesized images (A and 

B) is presented. Image A was synthesized using inconsistent 

input views, image B – using views corrected by [62]. 

Subjectively, image B is better because of fewer color artifacts. 

However, as the image is slightly brighter than the input view, 

the degradation of the PSNRY value can be observed. On the 

other hand, sharp-edged fragments of the pitch visible in image 

A have a color more similar to the fragments of the input view 

I, causing a higher value of PSNRY. As presented in Table III, 

IV-PSNR mimics the subjective perception of the quality much 

better than PSNRY. 

TABLE III OBJECTIVE QUALITY OF FRAGMENTS PRESENTED IN FIG. 4. 

Compared images, Fig. 4 I, A I, B difference 

PSNRY 26.76 dB 26.62 dB –0.14 dB  

IV-PSNR 32.22 dB 32.93 dB +0.71 dB 

C. Calculation of IV-PSNR 

The proposed IV-PSNR metric is based on the Peak Signal-

to-Noise Ratio (PSNR), which is the most widespread and 

commonly used metric in all image or video processing 

applications and can be described as fast, robust, easily 

implementable, and interpretable. PSNR for component 𝑐 of an 

image is calculated as: 

𝑃𝑆𝑁𝑅𝑐 = 10 ⋅ 𝑙𝑜𝑔10 (
(2𝑏 − 1)2

𝑀𝑆𝐸𝑐
) , (2) 

where 𝑏 is the bit-depth of the image and MSEc is the mean 

square error between component 𝑐 of images 𝐼 and 𝐽: 

MSE𝑐 =  
1

𝑊 ⋅ 𝐻
∑ ∑ (𝐼𝑐

𝑥,𝑦
− 𝐽𝑐

𝑥,𝑦
)

2
𝑊−1

𝑥=0

 ,

𝐻−1

𝑦=0

   (3) 

where 𝐻 is the height of both images being compared, and 𝑊 

is their width (in pixels). 

When compared to PSNR, the proposal includes two major 

modifications to adapt to two major distortions typical for 

immersive video: corresponding pixel shift (Section IV-A), and 

global component difference (Section IV-B). 

The calculation of quality (or, more precisely, similarity) is 

performed independently for each component 𝑐, using the 

equation analogous to (2): 

𝐼𝑉˗𝑃𝑆𝑁𝑅𝑐
𝐼→𝐽

= 10 ⋅ 𝑙𝑜𝑔10 (
(2𝑏 − 1)2

𝐼𝑉˗𝑀𝑆𝐸𝑐
𝐼→𝐽) . (4) 
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While the idea of calculation of quality as a logarithm of 

mean square error is the same, the mean square error evaluation 

itself is different, and the value of IV˗MSE𝑐
𝐼→𝐽

 is calculated in a 

pixel-to-most-similar-pixel-within-a-block manner, taking into 

account the corresponding pixel shift (cf. Section IV-A): 

𝐼𝑉˗𝑀𝑆𝐸𝑐
𝐼→𝐽

=
1

𝑊 ⋅ 𝐻
∑ ∑ 𝑚𝑖𝑛

𝑤∈[𝑥−𝐵, 𝑥+𝐵]

ℎ∈[𝑦−𝐵, 𝑦+𝐵]

(𝐼𝑐
𝑥,𝑦

− 𝐽𝑐
𝑤,ℎ + 𝐺𝐶𝐷𝑐

𝐼→𝐽)
2

𝑊−1

𝑥=0

𝐻−1

𝑦=0

, (5) 

where 𝐵 is the maximum considered shift of the corresponding 

pixel, by default set to 2 (thus the most similar pixel within a 

5×5 block is being searched, cf. Fig. 2), and GCD𝑐
𝐼→𝐽

 is the 

global component difference (cf. Section IV-B) between 

component 𝑐 of images 𝐼 and 𝐽 (averaged over entire image): 

𝐺𝐶𝐷𝑐
𝐼→𝐽

=
1

𝑊 ⋅ 𝐻
∑ ∑ (𝐼𝑐

𝑥,𝑦
− 𝐽𝑐

𝑥,𝑦
)

𝑊−1

𝑥=0

𝐻−1

𝑦=0

 , (6) 

As stated in [13], for omnidirectional images, where a 3D 

sphere is projected onto a 2D image (e.g., by ERP projection 

[63]), the latitude of each pixel should be considered when 

evaluating the quality in order to simulate the quality perceived 

by a viewer watching the scene, e.g., using a head-mounted 

display [64]. Therefore, for ERP video, the square error 

calculated for each pixel is additionally weighted similarly as 

in [13]: 

 

𝐼𝑉˗𝑀𝑆𝐸𝑐
𝐼→𝐽

= 

∑ ∑ 𝑚𝑖𝑛
𝑤∈[𝑥−𝐵, 𝑥+𝐵]

ℎ∈[𝑦−𝐵, 𝑦+𝐵]

(𝐼𝑐
𝑥,𝑦

− 𝐽𝑐
𝑤,ℎ + 𝐺𝐶𝐷𝑐

𝐼→𝐽)
2

⋅ 𝑤𝑥,𝑦

𝑊−1

𝑥=0

𝐻−1

𝑦=0

 
 

, (7) 

∑ ∑ 𝑤𝑥,𝑦

𝑊−1

𝑥=0

𝐻−1

𝑦=0

 

where 𝑤𝑥,𝑦 is the weight (different for each row of the images): 

𝑤𝑥,𝑦 = 𝑐𝑜𝑠
(𝑦 + 0.5 −

𝐻
2

) ⋅ 𝜋

𝐻
⋅

𝐴𝑂𝑉𝑉

180°
  , 

(8) 

where AOV𝑉 is the vertical angle of view of the ERP camera 

(for a fully spherical camera, it is equal to 180°). 

In order to produce one value, comprising the quality of all 

the components, IV-PSNR values calculated for all components 

are combined using the weighted average: 

𝐼𝑉˗𝑃𝑆𝑁𝑅𝑌𝑈𝑉
𝐼→𝐽

= 

=
IV˗PSNR𝑌

𝐼→𝐽 ⋅ 𝑤𝑌 + IV˗PSNR𝑈
𝐼−𝐽 ⋅ 𝑤𝑈 + IV˗PSNR𝑉

𝐼→𝐽 ⋅ 𝑤𝑉

𝑤𝑌 + 𝑤𝑈 + 𝑤𝑉
 . 
(9) 

By default, the weight for the luma component (𝑤𝑌) is set to 

4, while the weights for both chroma components (𝑤𝑈 and 𝑤𝑉) 

are set to 1, as in the most commonly used chroma subsampling 

format (4:2:0 [65]) there are four luma samples for a sample of 

each chroma. 

D. Symmetricity of IV-PSNR 

It should be emphasized, that the proposed definition of IV-

MSE is asymmetrical, thus: 

𝐼𝑉˗𝑀𝑆𝐸𝑐
𝐼→𝐽

≠  𝐼𝑉˗𝑀𝑆𝐸𝑐
𝐽→𝐼

  . (10) 

However, a robust objective quality metric has to be 

symmetrical. Therefore, to provide symmetricity, the final 

value of the IV-PSNR between images I and J is calculated as: 

𝐼𝑉˗𝑃𝑆𝑁𝑅(𝐼, 𝐽) = 𝑚𝑖𝑛(𝐼𝑉˗𝑃𝑆𝑁𝑅𝑌𝑈𝑉
𝐼→𝐽

 , 𝐼𝑉˗𝑃𝑆𝑁𝑅𝑌𝑈𝑉
𝐽→𝐼

). (11) 

Such an approach allows us to properly assess the quality, 

even if one of the compared images contains small but 

noticeable artifacts, e.g., heavy salt-and-pepper impulse noise 

[66] presented in Fig. 5.  

For example, if image J has such noise, the noised pixels 

would be never used when calculating the IV˗MSE𝑐
𝐼→𝐽

 (for each 

component 𝑐 they would be skipped because more similar 

pixels are available within a 5×5 block) affecting the too high 

value of IV˗PSNR𝑌𝑈𝑉
𝐼→𝐽

, but IV˗MSE𝑐
𝐽→𝐼

 and thus IV˗PSNR𝑌𝑈𝑉
𝐽→𝐼

 

will be much lower, indicating a lower similarity between the 

compared images (cf. Fig. 5 and Table IV). 

I A B C D 

     
Fig. 5. I: Fragment of input video (sequence Frog [83]), A: fragment I 

compressed by VVC [112] with QP = 43, B: the same fragment of the 

synthesized view, C: fragment A with heavy salt-and-pepper impulse noise, D: 
fragment B with heavy salt-and-pepper impulse noise. 
 

TABLE IV OBJECTIVE QUALITY OF FRAGMENTS PRESENTED IN FIG. 5. 

Distortion type PSNR𝑌 IV˗PSNR𝑌𝑈𝑉
𝐼→𝐽

 IV˗PSNR𝑌𝑈𝑉
𝐽→𝐼

 𝐈𝐕˗𝐏𝐒𝐍𝐑 

A Compression 28.83 37.57 41.62 37.57 

B View synthesis 29.20 39.99 42.32 39.99 

C Comp. + noise 15.43 37.46 24.77 24.77 

D Synthesis + noise 15.45 39.82 25.40 25.40 
 

As presented in Table IV, the IV-PSNR metric allows us to 

properly assess the quality of the synthesized or compressed 

video, even if the video contains a high amount of noticeable 

artifacts. 

V. SOFTWARE IMPLEMENTATION 

A. Overall 

The reference implementation of the IV-PSNR algorithm is 

available as free and open-source software [67] (under the 

3-clause BSD license) called “IV-PSNR software”. 

The software has been written in modern C++17 language 

[68] and is designed to be fast and reliable. We have put 

significant effort into algorithmic optimization and 

parallelization, including data-level parallelism (SIMD) and 

multithreading. 

The IV-PSNR software was implemented by the authors of 

this paper and is publicly available in the public git repository 
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of the MPEG Immersive video group: https://gitlab.com/mpeg-

i-visual/ivpsnr. 

The software is designed to work with a simple lossless raw 

format called “yuv” commonly used in research on video 

compression [6]. The “yuv” format is mostly used to store video 

sequences in the YCbCr or RGB color space which allows for 

different chroma formats (4:4:4, 4:2:2, and 4:2:0) and bit depths 

up to 16 bit/sample. The software can process planar “yuv” files 

without any limitation to the size and number of frames. All 

common chroma formats (4:4:4, 4:2:2, and 4:2:0) are accepted 

and bit depth in the range 8-14 is supported. 

The software processes each frame independently and 

calculates its IV-PSNR metric value. For video sequences, the 

IV-PSNR metric calculated for each frame is stored and the 

averaged IV-PSNR value for the entire sequence is calculated. 

In addition to the IV-PSNR metric, the software calculates 

PSNR and WS-PSNR [13] metrics. 

B. Chroma Subsampling Issues 

The IV-PSNR corresponding pixel shift (see Section IV-A) 

requires per-pixel access to all components. Unfortunately, 

some of the formats used in video compression (and video 

transmission) use decimated chroma components. This 

approach leads to chroma sampling schemes such as 4:4:4, 

4:2:2, and 4:2:0. The 4:2:2 and 4:2:0 introduce chroma 

subsampling and result in a single chroma sample covering two 

or four luma samples respectively [69]. This makes the 

corresponding pixel shift calculation difficult.  

To avoid the abovementioned issues, the 4:4:4 format is used 

internally to uniform the sizes of all components in all 

calculations. Therefore, input data in the 4:2:2 and 4:2:0 

formats must be converted (interpolated) to the 4:4:4 format. 

This leads to a question if the calculation of PSNR-based 

quality metrics on an interpolated picture alters the metric 

value. We investigated this problem by performing a detailed 

analysis of the PSNR metric with the assumption that the 0-

order (nearest neighbor) interpolation is used. The 0-order 

interpolation is the simplest approach for upscaling a picture by 

integer factor (applied for chroma upsampling). Moreover, this 

technique does not produce nonexistent pixel values and is very 

fast to compute. 

As described in (2), the derivation of the PSNR metric 

requires the calculation of the mean square error (MSE). The 

equation describing the MSE metric (3) could be directly used 

to calculate luma MSE (MSE𝑌). 

In the case of MSE for chroma components (MSE𝐶) the width 

and/or height can be different depending on the selected chroma 

subsampling scheme [65]. Therefore, chroma (both U/Cb and 

V/Cr) can be calculated as follows: 

𝑀𝑆𝐸𝐶 =
1

𝑊𝐶 ⋅ 𝐻𝐶
∑ ∑ (𝐼𝐶

𝑥,𝑦
− 𝐽𝐶

𝑥,𝑦
)

2
 ,

𝑊𝐶−1

𝑥=0

𝐻𝐶−1

𝑦=0

 (12) 

where, 𝐻𝐶 , 𝑊𝐶 are chroma height and width, respectively. 

Let us consider 4:2:0 chroma subsampling. In such a case 

both chroma components are subsampled by a factor of 2 

leading to 𝑊𝐶 = 𝑊𝑌 2⁄  and 𝐻𝐶 = 𝐻𝑌 2⁄ . As mentioned above 

this results in difficulties in the corresponding pixel shift step 

of IV-PSNR calculation. To make IV-PSNR calculation 

possible, we decided to apply 0-order interpolation to all 

chroma components and investigate if the PSNR-like metric 

can be calculated on interpolated components without result 

altering. 

The interpolated chroma component has the same size as the 

luma component, therefore, the equation describing MSE𝐶  

calculation has to be modified in a way, that MSE is calculated 

for even rows and even samples (in a row) only. The following 

equation describes the calculation of chroma MSE using an 

interpolated image (MSE𝐶𝐼):  

MSE𝐶𝐼 =
1

𝑊𝑌
2

⋅
𝐻𝑌
2

∑ ∑ (𝐼𝐶𝐼
2⋅𝑥,2⋅𝑦

− 𝐽𝐶𝐼
2⋅𝑥,2⋅𝑦

)
2

 .

𝑊𝑌
2

−1

𝑥=0

𝐻𝑌
2

−1

𝑦=0

 (13) 

Since the 0-order interpolation was used, the interpolated 

chroma component contains quads of pixels with the same 

value. Therefore, the following relation is true for every quad 

of pixels: 

(𝐼𝐶𝐼
2⋅𝑥,2⋅𝑦

− 𝐽𝐶𝐼
2⋅𝑥,2⋅𝑦

)
2

= ∑ ∑
(𝐼𝐶𝐼

2⋅𝑥+𝑗,2⋅𝑦+𝑖
− 𝐽𝐶𝐼

2⋅𝑥+𝑗,2⋅𝑦+𝑖
)

2

4

1

𝑗=0

1

𝑖=0

 , (14) 

Equation (13) can be modified by replacing the sum term by the 

formula from (14) and simplified: 

MSE𝐶𝐼 =
1

𝑊𝑌 ⋅ 𝐻𝑌
∑ ∑ ∑ ∑(I𝐶𝐼

2⋅x+j,2⋅y+i
− J𝐶𝐼

2⋅x+j,2⋅y+i
)

2
1

𝑗=0

1

𝑖=0

𝑊𝑌
2 −1

𝑥=0

.

𝐻𝑌
2 −1

𝑦=0

 
(15) 

Equation (15) contains two groups of nested sums. The outer 

group (over 𝑦 and 𝑥) corresponds to the loop over all pixel 

quads. The inner group (over 𝑖 and 𝑗) corresponds to a loop over 

all pixels within a quad. The nested sum in (15) describes the 

processing of all chroma pixels and can be further simplified: 

MSE𝐶𝐼 =
1

𝑊𝑌 ⋅ 𝐻𝑌
∑ ∑ (𝐼𝐶𝐼

𝑥,𝑦
− 𝐽𝐶𝐼

𝑥,𝑦
)

2

𝑊𝑌−1

𝑥=0

𝐻𝑌−1

𝑦=0

 (16) 

The resulting equation (16) for the calculation of MSE𝐶𝐼  for 

0-order interpolated chroma component corresponds to MSE𝐶  

(12). Therefore, chroma components can be interpolated 

(assuming 0-order interpolation) and PSNR for 4:2:0 (and 

4:2:2) can be calculated in the 4:4:4 internal representation 

without any influence on the final result. 

C. Rounding Error Reduction 

The aim of IV-PSNR (both metric and software) is to 

measure image quality. Therefore, as a measurement tool, the 

software implementing the IV-PSNR metric has to be precise 

and produce reproducible results. Consequently, significant 

effort has been made to avoid (or at least reduce) any errors 

related to floating-point computations, while preserving high 

performance and low computational complexity. 

https://gitlab.com/mpeg-i-visual/ivpsnr
https://gitlab.com/mpeg-i-visual/ivpsnr
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Since the IV-PSNR software operates on input images with 

pixels represented as integer values, a significant part of 

computations is performed in the integer numbers domain, 

effectively eliminating rounding and accumulation errors. 

The calculation (6) of the global component difference 

(GCD𝑐) can be separated into two steps. The first step is the 

calculation of the cumulative component difference (CCD𝑐
𝐼→𝐽

). 

This step can be performed in the integer numbers domain to 

avoid accumulation errors: 

𝐶𝐶𝐷𝑐
𝐼→𝐽

= ∑ ∑ (𝐼𝑐
𝑥,𝑦

− 𝐽𝑐
𝑥,𝑦

)

𝑊−1

𝑥=0

𝐻−1

𝑦=0

 . (17) 

The second step is processed in the floating-point domain: 

𝐺𝐶𝐷𝑐
𝐼→𝐽

=
𝐶𝐶𝐷𝑐

𝐼→𝐽

𝑊 ⋅ 𝐻
 . (18) 

Moreover, the row-level error is also calculated in the integer 

domain. The IV˗MSE𝐼→𝐽
𝑐  the calculation presented in (7) can be 

divided into three steps presented as follows: 

𝑅𝑜𝑤𝐼𝑉˗𝑆𝑆𝐷𝑐
𝐼→𝐽

(𝑦) = ∑ 𝑚𝑖𝑛
𝑤∈[𝑥−𝐵, 𝑥+𝐵]

ℎ∈[𝑦−𝐵, 𝑦+𝐵]

(𝐼𝑐
𝑥,𝑦

− 𝐽𝑐
𝑤,ℎ

𝑊−1

𝑥=0

+ 𝐺𝐶𝐷𝑐
𝐼→𝐽

)
2

, 

(19) 

𝐼𝑉˗𝑆𝑆𝐷𝑐
𝐼→𝐽

= ∑ 𝑅𝑜𝑤𝐼𝑉˗𝑆𝑆𝐷𝑐
𝐼→𝐽

(𝑦) ⋅ 𝑤𝑥,𝑦

𝐻−1

𝑦=0

 ,   (20) 

 

𝐼𝑉˗𝑀𝑆𝐸𝑐
𝐼→𝐽

=  
𝐼𝑉˗𝑆𝑆𝐷𝑐

𝐼→𝐽
 

 

 . 

 

(21) 

𝑊 ⋅ 𝐻 ⋅ ∑ ∑ 𝑤𝑥,𝑦

𝑊−1

𝑥=0

𝐻−1

𝑦=0

 

RowIV˗SSD𝑐
𝐼→𝐽(𝑦) (corresponding to the sum of squared 

differences calculated for image row) is calculated entirely in 

the integer numbers domain. The 𝑤𝑥,𝑦 weight is not an integer 

value, therefore, the remaining calculations have to be 

performed in the floating-point domain. To reduce floating-

point accumulation related errors, the calculation of IV˗SSD𝑐
𝐼→𝐽

 

is performed in two steps. First, each intermediate 

RowIV˗SSD𝑐
𝐼→𝐽(𝑦) ⋅ 𝑤𝑥,𝑦 value is stored in a dedicated buffer. 

Second, after processing all rows, the buffered values are 

accumulated with the use of the Kahan-Babuška-Neumaier 

Summation (KBNS) [70] algorithm. 

The same approach is used to calculate the average IV-PSNR 

for the entire sequence. IV-PSNR metrics for each picture are 

stored in the buffer and accumulated using KBNS. 

The abovementioned approach results in IV-PSNR software 

increased robustness against accumulation errors in the case of 

very long sequences.  

D. Implementation Details and Performance Optimization 

Besides internal use of the 4:4:4 format (regardless of chroma 

format of input data), planar data read from “yuv” are converted 

to interleaved format, which improves memory locality and 

cache consistency. Some of the data processing routines are 

implemented in the standard C++ language and using SSE4.1 

and AVX2 SIMD instructions. The SIMD optimized routines 

are automatically used if the software is built for compatible 

architecture (x86-64-v2 or higher level) [71]. 

IV-PSNR implementation includes thread-level parallelism 

with the use of dedicated, low overhead thread pool 

implementation. Computations are parallelized at the image 

row level, therefore a high level of parallelism is achievable. 

VI. OVERVIEW OF EXPERIMENTS 

The IV-PSNR metric was compared with 31 state-of-the-art 

quality metrics with publicly available implementations. 

Among all tested metrics there were typical (2D) image and 

video quality metrics: 4 metrics implemented together with 

proposed IV-PSNR in [72]: PSNRY (PSNR for luma 

component), PSNRYUV (weighted average of PSNR for 3 

components with luma weight 6 times higher than the weights 

for both chroma components, as described in [73]), WS-PSNRY 

[13], and WS-PSNRYUV (weighted in the same way as 

PSNRYUV); CS-PSNR [19]; VMAF [37]; SSIM [23] and a 

multiscale version of SSIM – MS-SSIM [25]; a pixel-based 

version of VIF (VIF-P) [32]; PSNR-HVS [16]; PSNR-HVS-M 

[17]; SFF [33]; PSNR-HA and PSNR-HMA [18]; VSNR [21]; 

WSNR [22]; 4 metrics implemented in [74]: SAM [31], SRE 

[20], FSIM [27], and UIQ [24]. 

Moreover, we have compared several metrics designed for 

3D video: MP-PSNR in two variants, full – MP-PSNR-F [75] 

and reduced – MP-PSNR-R [76]; 2 variants of MW-PSNR: 

full – MW-PSNR-F [77] and reduced – MW-PSNR-R [43]; 

3DSwIM [41]; CPP-PSNR [14]; LPIPS [39]; and 3 variants of 

OV-PSNR [15]: based on PSNR, CPP-PSNR, and WS-PSNR. 

Besides the above full-reference metrics, also the no-reference 

metric created for the assessment of synthesized video – 

NR-MWT [55] was compared. 

In order to provide a valid comparison of all considered 

metrics, three experiments were performed. In the first one 

(Section VII), the influence of different artifacts induced by 

immersive video encoding was assessed, including both the 

artifacts introduced by conventional HEVC video compression 

and by compression based on inter-view redundancy removal.  

In the second experiment (Section VIII), the metrics were 

evaluated on several aspects of immersive video processing, 

including color correction, depth map filtering, and the 

influence of different synthesizers.  

In the third experiment (Section IX), all metrics were 

evaluated against the commonly-used IQA databases – 

TID2013 [78] and CVIQ [108]. In this experiment, the 

effectiveness of IV-PSNR in assessing the quality in non-

immersive-video applications was evaluated. 

In each experiment, the metrics were compared using two 

commonly used correlation coefficients, which allow for 
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assessing the monotonicity of the relationship between 

objective and subjective quality: Spearman and Kendall rank-

order correlation coefficients: SROCC and KROCC [79]. In 

Section X, the computational time of all tested metrics was 

evaluated.  

VII. EFFECTIVENESS FOR DIFFERENT IMMERSIVE VIDEO 

ENCODING TECHNIQUES 

A. Overview of the Experiment 

In the first experiment, the effectiveness of the IV-PSNR 

metric was assessed using the results of the “MPEG Call for 

Proposals on 3DoF+ Visual” [80], purposed to evaluate 

proposed techniques of coding the immersive video content. 

In general, 𝑁 input views with corresponding depth maps and 

camera parameters are preprocessed by the immersive video 

coding technique (orange block in Fig. 6). It generates 𝑛 videos 

with corresponding depth maps (where 𝑛 ≤ 𝑁) together with 

metadata, which allows for restoring the entire input 

information. Each of 𝑛 texture videos and each of 𝑛 depth 

videos is independently encoded using the HEVC encoder. In 

the end, all the data are packed into one bitstream. 

At the decoder side, the bitstream is unpacked into 𝑛 texture 

video streams and 𝑛 depth video streams. After HEVC 

decoding, the immersive video decoding is performed as a 

postprocessing step in order to produce a final video presented 

to the viewer (e.g., any of the input views or views on a virtual 

trajectory of the viewer). 

 

Fig. 6. Multiview video coding scheme used for “MPEG Call for Proposals on 

3DoF+ Visual” [80]. 𝑵 views with corresponding depth maps and camera 

parameters are preprocessed in the immersive video coding step (orange block). 
 

B. Methodology 

For each coding technique the same output (decoded) videos 

were generated: 

• two “posetrace” videos – videos containing views 

synthesized on the preset virtual trajectory of the 

theoretical viewer of the immersive video system (Fig. 7), 

• a subset of selected input views (4 for ClassroomVideo and 

Painter, 3 for Hijack and Frog, and 6 for Museum). 

 

Fig. 7. The idea of the posetrace; blue – input views, white – the posetrace build 

of virtual views, containing F consecutive frames. 

 

The duration of each video was 300 frames except for the 

ClassroomVideo sequence where only 120 frames are available. 

The subjective quality evaluation was performed in 

EVATech and GBTech laboratories using the DSIS (Double 

Stimulus Impairment Scale) test method [90]. In total, 18 naïve 

viewers participated in the tests [91]. 

The participants were assessing the quality of the posetrace 

videos, simulating the case of virtual navigation within a scene. 

Each participant assessed the quality of 280 videos (4 rate 

points × 5 test sequences × 7 coding techniques × 2 posetraces). 

The subjective quality evaluation was performed on a 2D 

screen by viewing posetraces instead of using VR headsets 

because, as described in [1], assessment with head-mounted 

displays has two flaws: it is more time consuming and each 

participant may arbitrarily change their viewpoint, making 

results from different participants incomparable. Moreover, as 

indicated in [92], the quality of a full omnidirectional view can 

be inferred from the quality of selected viewports 

As presented in Fig. 7, the posetrace contains a set of virtual 

views, generated between the input ones. When using the full-

reference quality metrics, it is not possible to evaluate the 

objective quality on the posetrace because of lack of the 

reference views. Therefore, for the calculation of the objective 

quality, the quality of the synthesized input views was 

calculated. 

For each of the 280 test points, the Mean Opinion Score 

(MOS) was calculated. Then, MOS for two posetraces 

generated for the same rate point, sequence, and coding 

technique were averaged resulting in 140 test points. For all of 

them, the objective quality was evaluated. For each test point, 

the one value of each quality metric was obtained by averaging 

over all frames (300 or 120) and all synthesized input views (3, 

4, or 6, depending on the sequence). 

C. Dataset 

In total, 7 compression techniques were compared. The 

videos encoded using each technique targeted in the same 

bitrates. For each test sequence, four target bitrates were chosen 

in order to compare the techniques in various conditions. The 

total bitrate should not exceed 6.5 Mbit/s for the first rate point 

(highest compression), and 10, 15, and 25 Mbit/s for lower 

compression rate points. All techniques were compared using a 

test set containing five multiview test sequences (Fig. 8), 

described in Table V, allowing efficiency assessment for the 

3DoF+ scenario [109] (three omnidirectional ERP sequences) 

and also windowed-6DoF applications [109] (two sequences 

captured by multiview systems equipped with multiple 

perspective cameras). 

Two of the techniques being compared were “anchors” [80]. 

The anchors were prepared using a previously existing video 

coding technique, i.e., HEVC simulcast. In anchor A, all the 
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input views and corresponding depth maps were independently 

encoded using HEVC. Of course, it implied very high 

compression required to fit within the bitrate limits. In this case, 

the orange block in Fig. 6 was just passing the input data and 

𝑛 = 𝑁. Anchor B was defined differently, and only the subset 

of input views and corresponding depth maps was encoding 

using HEVC simulcast. Due to the lower number of videos, the 

compression could be much lower, than for anchor A. On the 

other hand, when some views were skipped the disocclusions 

problem occurred (because the information from these views 

was not sent at all). The number of views being sent varied for 

different sequences: 9 for ClassroomVideo, 8 for Museum, 5 for 

Hijack, 8 for Painter, and 7 for Frog. The views were selected 

manually. 

TABLE V TEST SEQUENCES USED FOR COMPARISON OF VARIOUS COMPRESSION 

TECHNIQUES. CG – COMPUTER GENERATED, NC – NATURAL CONTENT, ERP – 

EQUIRECTANGULAR PROJECTION, PERSP. – PERSPECTIVE VIEWS. 

Sequence Type Source Resolution Input views 

ClassroomVideo CG/ERP [81] 4096 × 2048 15 

Museum CG/ERP [58] 2048 × 2048 24 

Hijack CG/ERP [58] 4096 × 4096 10 

Painter NC/Persp. [82] 2048 × 1088 16 

Frog NC/Persp. [83] 1920 × 1080 13 
 

   

  
Fig. 8. Test sequences. Top row (from left): Frog, Museum, and Hijack; bottom 
row (from left): Painter and ClassroomVideo. 
 

Besides two anchors, 5 compression techniques proposed by 

different organizations were compared. List of proposals 

contained techniques proposed by (in alphabetical order): 

Nokia [84], Philips [85], PUT (Poznan University of 

Technology) and ETRI (Electronics and Telecommunications 

Research Institute) [86], Technicolor and Intel [87], and ZJU 

(Zhejiang University) [88]. 

The proposals were based on different approaches. One of 

the proposals was based on the processing of the point cloud 

containing projected pixels from all the views. In two of the 

proposals, several input views were chosen as base views and 

sent in their entirety, while other views were pruned in order to 

preserve only the non-redundant information. Another 

approach was to use the data from all the input views to 

synthesize the base view with the field of view high enough to 

contain information from the entire scene. 

Different methods had their advantages and disadvantages. 

For example, if a subset of input views was chosen as the base 

ones, the quality of views presented to the viewer significantly 

differs depending on his/her position. If the viewer watches the 

scene from the position close to the base view, the quality is 

much higher than if the scene is watched from other viewpoints. 

On the other hand, when the base view is synthesized, the 

quality is more stable when virtually moving among the scene, 

but the peak quality is worse due to the reprojection artifacts. 

The proposals have also different approaches for handling 

the preserved, non-redundant information from other (non-

base) views. In some of them, various packing algorithms were 

used to organize the data from other views as a mosaic of 

patches, allowing for decreasing the pixel rate of the video [89]. 

In others, instead of packing, the non-redundant information 

from other views was stored as additional layers of the base 

view, additionally filled in the spatial and temporal domain in 

order to fit the non-empty areas into the CU-grid and GOP 

structure of the HEVC encoder. 

Moreover, one of the proposals contained additional noise 

modeling, including a parametrization of the noise in input 

views, denoising of input views, and re-noising of the 

synthesized output views using synthetic noise with proper 

parameters. The synthetic noise is not correlated to the input 

noise, thus degrades the pixel-wise quality metrics like PSNR. 

On the other hand, the re-noised video seems to be subjectively 

better for the viewer. 

Several proposals introduced also additional tools, which 

increased the efficiency of the immersive video coding or the 

subjective quality of the synthesized video. For example, one 

proposal contained additional filtering of the physical edges of 

the objects in the virtual views to improve the subjective 

quality; and two of the proposals included the refinement of 

depth maps for the natural content, as the input depth maps 

contained many artifacts and were inconsistent between views.  

Each of 7 coding techniques (2 anchors + 5 proposals) was 

used for the generation of the bitstream (cf. Fig. 6).  

D. Experimental Results 

The correlation between subjective and objective quality 

(measured by 32 tested quality metrics) is presented in Fig. 9. 

The first conclusion that follows from the Fig. 9 is that the 

proposed IV-PSNR metric clearly outperforms other evaluated 

objective quality metrics. IV-PSNR achieved KROCC higher 

by 0.057, and SROCC higher by 0.065 than the second-best 

metric – the full variant of MP-PSNR [75] (0.578 vs. 0.521, and 

0.728 vs. 0.663 for KROCC and SROCC, respectively). It 

should be noted that other metrics designed for multiview video 

(such as MP-PSNR and MW-PSNR) achieved relatively good 

results when compared to other state-of-the-art metrics, 

additionally showing the relevance of the experiment. 

Among other metrics, the highest correlation was achieved 

by VIF-P and MS-SSIM, but the difference between them and 

IV-PSNR is even more significant than for MP-PSNR-F (0.081 

for KROCC and 0.093 for SROCC). 
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It can be seen that despite IV-PSNR is not utilizing any 

temporal information (each frame of video is measured 

independently), it still provides a higher correlation than 

metrics that measure inter-frame similarity (e.g., VMAF). As it 

was shown in previous research on the quality of synthesized 

video [93], the temporal distortions in such video are mainly 

introduced not by timeline, but by changing the viewpoint, 

therefore, by the virtual view synthesis. It indicates that for 

measuring the quality of immersive video it is much more 

important to focus on the measurement of the synthesis-induced 

distortion than on the temporal instability of the content itself. 
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SROCC 

Fig. 9. SROCC and KROCC values for the considered metrics. 

VIII. EFFECTIVENESS FOR TYPICAL PROCESSING OF 

IMMERSIVE VIDEO 

A. Overview of the Experiment 

The experiment described in the previous section assessed 

the correlation between the objective quality metrics and the 

subjective quality perceived by a viewer for different 

immersive video coding techniques. In the second experiment, 

the correlation between MOS and objective quality metrics for 

different types of immersive video processing was evaluated. 

Three common types of processing of immersive video were 

analyzed: color correction of input views, filtration of 

reprojected views and depth maps, and the influence of using 

different view synthesis algorithms. 

B. Methodology 

For each test sequence, the quality of 4 videos was compared: 

A. synthesized using View Synthesis Reference Software 

(VSRS) [100], 

B. synthesized using MultiView Synthesizer (MVS) [101] 

with no color correction and filtration of reprojected 

views and depth maps, 

C. synthesized using MVS with additional filtration [102], 

D. synthesized using MVS with filtration and color 

correction of input views [62]. 

The subjective quality evaluation was performed using the 

PairComparison (PC) method [90], where a viewer compares 

the quality of two videos presented side-by-side using the scale 

[-3, 3], where -3 means, that the left video has significantly 

better quality, 0 – that the quality of both videos is equal, and 3 

means that the right video is significantly better [103]. The PC 

method was chosen, as it performs better than the most popular 

Absolute or Degradation Category Rating (ACR, DCR) 

methods when the characteristics of errors/artifacts in videos 

being compared are significantly different [104], [105]. 

The viewers were comparing videos in 3 test types (Fig. 10): 

1. different synthesizers: the quality difference between 

videos A and D, 

2. color correction: the quality difference between D and B, 

3. filtration: the quality difference between videos C and B. 

In total, 44 naïve viewers participated in the viewing 

sessions. Each viewer made 72 assessments: 12 sequences × 3 

test types × 2 presentation orders (L/R, R/L). The objective 

quality evaluation was performed by assessing the quality of 

videos A, B, C, and D compared to the reference input view. 

   

   
Fig. 10. Fragments of virtual views compared in 3 test types (from left): 

1. different synthesizers: VSRS (top) and MVS (bottom), BBB Flowers Arc, 

2. color correction: disabled (top) and enabled (bottom), SoccerArc, 

3. filtration: disabled (top) and enabled (bottom), PoznanBlocks. 
 

Then, for each sequence and metric, three differences were 

calculated, in the same manner as was done for subjective 

quality assessment. For example, for PSNR metric and Ballet 

sequence, 3 differences were calculated: ΔPSNR𝐴𝐷 = PSNR𝐴 −
PSNR𝐷, ΔPSNR𝐷𝐵 = PSNR𝐷 − PSNR𝐵 and ΔPSNR𝐶𝐵 =
PSNR𝐶 − PSNR𝐵. It should be highlighted, that the correlation 

between subjective and objective quality was calculated for 

these differences, not the absolute values of metrics. 

C. Dataset 

The experiment was performed on a test set containing 12 

miscellaneous multiview sequences (Fig. 11): BBB Butterfly 

Arc, BBB Flowers Arc [94], Carpark, Street [95], 

PoznanBlocks2, Fencing, PoznanService2 [96], Breakdancers, 

Ballet [97], SoccerLinear, SoccerArc [98], PoznanBlocks [99]. 

D. Experimental Results 

The results of the second experiment are presented in Fig. 12. 

As previously, the metrics adapted for multiview video perform 

better, than other state-of-the-art methods. 

When considering SROCC, IV-PSNR outperforms all other 

considered quality metrics, while the second-best metric is 

again MP-PSNR (however, as opposed to the previous 

experiment, in its reduced variant [76]). The difference in their 

correlations is higher than in the first experiment (0.088). 
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Fig. 11. Test sequences. 1st row (from left): BBB Butterfly Arc, BBB Flowers 

Arc, and PoznanService2; 2nd row (from left): Carpark, Street, and Fencing; 3rd 

row (from left): PoznanBlocks, PoznanBlocks2, and SoccerArc; 4th row (from 
left): Ballet, Breakdancers, and SoccerLinear. 
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Fig. 12. SROCC and KROCC values for all considered metrics. 

Also for KROCC, IV-PSNR is the best metric, slightly 

(0.044) above LPIPS [39]. However, it should be noted, that 

LPIPS is a machine-learning-based method, what makes it less 

robust for different applications (its efficiency highly depends 

on the pre-trained model). For example, when the quality of the 

immersive video compression was assessed (Section VII), the 

LPIPS performed much worse than other considered metrics. 

IX. EFFECTIVENESS FOR NON-IMMERSIVE VIDEO 

APPLICATIONS 

A. Overview of the Experiment 

In the third experiment, the proposed quality metric IV-

PSNR was compared to other objective quality metrics in non-

immersive video including typical 2D video and simple 3DoF 

applications. 

The rationale behind this experiment is to present, that the 

proposed IV-PSNR metric not only outperforms the state-of-

the-art metrics for immersive video applications but also can be 

efficiently used in other typical scenarios, being competitive to 

other efficient quality metrics. 

To perform a valid comparison, TID2013 [78] and CVIQ 

[108] databases were used. 

The TID2013 database contains images distorted using 24 

different types of distortions, such as various noise types, image 

blurring, compression, transmission errors, contrast and 

brightness change, etc. The complete list of the distortion types 

is presented in Table VI. 

The CVIQ database contains several omnidirectional ERP 

videos, allowing to assess the efficiency of the metric for a 

simple virtual reality scenario (i.e., 3DoF [109]), where a user 

may look around the scene but cannot change his or her 

position.  

Obviously, there are numerous image and video quality 

assessment databases, such as commonly used CSIQ [106], 

LIVE [107], and databases designed for omnidirectional video, 

e.g., VQA-ODV [110] and BIT360 [111]. However, we decided 

to show the performance of IV-PSNR on TID2013, as it 

contains the highest number of distortion types, what allows for 

comprehensively comparing IV-PSNR with state-of-the-art 

quality metrics. For omnidirectional video, we tested the 

metrics on CSIQ, which contains 528 images compressed with 

three coding techniques at several bitrates. 

B. TID2013 Database 

The correlation between subjective and objective quality was 

estimated separately for each distortion type and presented in 

Table VI. Then, for each distortion type, all considered quality 

metrics were ranked based on SROCC value. Fig. 13 contains 

SROCC and KROCC values averaged over all distortion types. 

K
R

O
C

C
 

 
 

SROCC 

Fig. 13. TID2013: SROCC and KROCC values for the considered metrics. 

As presented in Fig. 13, the IV-PSNR metric performs 

similarly to other commonly used state-of-the-art metrics, such 

as MS-SSIM, VIF, and VMAF. What was expected, among 

tested methods, the best are versatile methods designed for 

assessing the quality of non-immersive videos. Most of these 

methods are based on frequency-domain-based assessment 

(PSNR-HVS, PSNR-HA, PSNR-HMA, and, to some extent, 

FSIM), showing potential in this direction of research, or either 

trained to be sensitive to traditional distortions (VMAF). In 

general, IV-PSNR was the 7th best metric among 32 tested 

quality metrics in assessments it was not designed for. It 

implies, that it can be successfully used in any application, not 

only in immersive video systems. 
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C. CVIQ database 

In contrast to the TID2013 database, which contains 24 types 

of distortions, in the CVIQ database, only the compression 

(using various encoders) is considered. Therefore, the 

correlation between objective and subjective quality was 

estimated for the entire database at once (not for each distortion 

separately, as for TID2013). The results are presented in Fig. 

14. 

The SROCC and KROCC results for the proposed IV-PSNR 

metric are very similar for both TID2013 and CVIQ databases, 

where the IV-PSNR performs as well as other commonly used 

objective quality metrics being at the 5th place among all tested 

metrics. 
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Fig. 14. CVIQ: SROCC and KROCC values for the considered metrics. 
 

Presented results show that the proposed quality metric can 

be efficiently used not only for the sophisticated immersive 

video systems where a user may freely navigate in the scene 

(6DoF), but also for simplified systems, where a user can only 

look around the scene (3DoF). 

X. COMPUTATIONAL TIME ESTIMATION 

In three previous sections, we presented the comparison 

between IV-PSNR and state-of-the-art metrics in terms of 

correlation with subjective quality. Of course, a practical 

objective quality should mimic the human visual system, but 

also it should provide the results as fast as possible. 
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computational time (for 4K × 4K image) [s] 

Fig. 15. SROCC and mean computational time for all considered metrics. 
 

Fig. 15 presents the SROCC values for all considered metrics 

together with the time required for the calculation of the quality 

of one frame of high-resolution video (4096 × 4096 pixels, 

sequence Hijack). For the purposes of this comparison, SROCC 

values from Section VII were reused, as the immersive video 

coding is the main application of the IV-PSNR metric. 

It should be noted that time values presented in Fig. 15 are 

approximate, as extremely different implementations of various 

metrics were used, including Matlab, C++, and Python with 

various libraries. We did not optimize implementations of any 

tested metric except for IV-PSNR, PSNR, and WS-PSNR 

(which are implemented within the IV-PSNR software), for all 

other metrics, the existing implementations were used. 

All the calculations were performed on the PC equipped with 

AMD Ryzen 9 3900XT 12-core processor operating at 3.79 

GHz, 32 GB RAM DDR4, SSD, and 64-bit Windows 10. 

As it is presented in Fig. 15, the IV-PSNR value can be 

calculated much faster, than other state-of-the-art metrics 

(especially when multithreading is enabled), simultaneously 

providing the highest correlation with the human visual system. 

XI. CONCLUSIONS 

The processing and compression of immersive video 

introduce distortions that are not properly assessed using state-

of-the-art objective quality metrics, thus the correlation 

between objective and subjective quality for immersive video 

systems is usually not satisfactory. This paper presents a quality 

metric adapted for such kinds of systems. The proposed metric, 

IV-PSNR, is a full-reference, PSNR-based objective quality 

metric. It contains two main techniques, which significantly 

increase its correlation with the human visual system: the 

corresponding pixel shift, which considers the problem with the 

slight shifting of pixels during reprojection between views; and 

the global component difference, which deals with the problem 

of different color characteristics of views captured by different 

cameras of a multicamera system. 

The IV-PSNR metric was compared to 31 state-of-the-art 

metrics in three experiments, showing its performance for 

immersive video coding and processing, and also in other 

applications, using the commonly used IQA TID2013 database. 

As presented, IV-PSNR clearly outperforms other metrics for 

immersive video applications and can still be used for other 

purposes. The proposed metric is efficiently implemented 

allowing very fast quality assessment. The IV-PSNR software 

was provided by the authors of this paper and is used by MPEG 

for the evaluation of the upcoming MPEG Immersive video 

(MIV) standard. The software is publicly available on the 

public git repository. 

The IV-PSNR metric is based on PSNR, which is the most 

commonly used quality metric in video processing. However, 

the proposed immersive-video-directed techniques 

(corresponding pixel shift and global component difference) are 

metric-agnostic, thus, in the future, they could be used together 

with other quality metrics, also with ones, which provide a 

better correlation with subjective quality such as SSIM.  
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TABLE VI RANKS FOR ALL CONSIDERED METRICS (THE BEST METRIC FOR EACH DISTORTION TYPE IS HIGHLIGHTED); WS-PSNRY AND WS-PSNRYUV METRICS WERE 

OMITTED, AS FOR PERSPECTIVE CONTENT, THEY PERFORM IDENTICALLY TO PSNRY AND PSNRYUV. 
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Distortion type 
 

# Average SROCC 7 16 11 17 3 8 2 5 6 21 18 20 26 24 23 19 27 13 10 4 22 15 9 25 30 28 14 29 12 1 
1 Additive Gaussian noise 1 13 12 9 4 14 2 7 11 8 5 10 15 21 6 3 27 23 22 19 25 20 17 18 30 29 26 28 24 16 
2 Noise in color comp. 1 2 4 14 3 18 8 16 15 13 7 12 10 21 6 5 27 23 24 19 25 11 20 17 30 29 26 28 22 9 
3 Spatially correl. noise 2 13 12 8 11 5 1 3 14 7 10 9 15 22 6 4 27 21 23 19 26 20 18 17 30 28 25 29 24 16 
4 Masked noise 19 6 3 2 20 25 14 16 4 12 11 9 21 22 15 1 23 10 13 17 26 27 8 7 30 29 18 28 5 24 
5 High freq. noise 5 14 15 13 2 18 1 10 16 8 9 11 12 21 6 4 28 25 22 19 26 17 20 7 30 29 27 24 23 3 
6 Impulse noise 11 8 5 2 7 12 4 9 3 14 20 15 29 27 28 26 17 18 21 16 22 6 19 1 30 23 25 24 13 10 
7 Quantization noise 9 11 13 16 4 2 3 1 12 6 5 7 20 25 22 21 27 24 14 15 19 8 17 18 29 28 23 30 26 10 
8 Gaussian blur 18 14 16 15 11 13 10 12 17 21 19 22 26 20 25 23 24 5 1 7 8 9 3 27 29 28 6 30 4 2 
9 Image denoising 1 9 10 19 4 11 2 3 8 6 5 7 24 14 23 15 27 22 17 16 21 13 20 25 29 28 18 30 26 12 

10 JPEG compression 17 20 6 16 1 13 2 4 9 21 15 19 7 23 3 5 27 24 10 11 26 12 14 25 29 28 18 30 22 8 
11 JPEG2000 compression 23 26 16 22 4 2 3 1 20 19 15 18 10 14 12 21 25 24 8 5 17 9 6 27 29 28 11 30 13 7 
12 JPEG transm. errors 18 19 20 22 14 15 7 6 9 24 26 25 13 16 10 12 23 11 4 5 17 21 2 28 29 27 1 30 8 3 
13 JPEG2000 transm. errors 20 10 16 22 3 4 1 2 7 25 23 24 12 21 5 8 26 14 9 6 19 11 13 27 30 28 17 29 15 18 
14 Non ecc. patt. noise 1 23 15 16 19 14 17 12 22 28 26 27 5 20 11 18 21 13 3 4 24 6 10 7 30 25 2 29 9 8 
15 Local block-wise dist. 24 16 21 27 14 18 20 22 19 30 28 29 13 10 11 9 3 1 6 4 17 25 15 26 23 2 8 12 5 7 
16 Mean shift 14 10 12 11 8 5 18 17 13 6 9 7 25 15 27 4 20 1 3 19 26 2 21 24 30 28 16 29 22 23 
17 Contrast change 10 18 20 22 16 19 4 3 12 15 14 13 24 5 23 6 27 11 8 7 25 21 9 28 29 26 17 30 2 1 
18 Change of color saturation 5 24 18 4 10 11 20 21 6 7 9 8 27 26 29 28 2 14 15 16 22 12 1 23 25 30 3 19 13 17 
19 Multipl. Gaussian noise 2 12 13 7 9 14 1 8 3 6 10 5 21 26 19 11 28 22 20 17 24 16 18 4 30 29 25 27 23 15 
20 Comfort noise 21 23 5 6 2 10 1 7 14 11 9 12 18 25 17 19 27 26 22 13 20 8 15 3 29 28 16 30 24 4 
21 Lossy compr. of noisy im. 5 20 17 1 7 4 10 3 16 12 11 13 19 26 18 15 27 22 21 9 25 6 14 8 30 28 23 29 24 2 
22 Im. color quant. w. dither 1 3 6 20 2 7 4 5 8 11 9 10 25 21 22 16 29 23 19 15 18 12 14 26 30 13 24 28 27 17 
23 Chromatic aberrations 23 3 12 28 7 16 20 21 18 25 22 24 19 5 10 11 15 2 4 13 14 17 8 27 29 26 6 30 1 9 
24 Sparse sampl. and reconstr. 5 24 13 14 4 2 3 1 15 22 16 21 23 20 19 18 27 25 8 6 12 9 7 26 29 28 11 30 17 10 
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