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1 Abstract 

 

This document presents an analysis of depth estimation algorithm from the perspective of  

attained temporal consistency. Also, the new motion-compensated depth estimation is proposed. 

 

2 Introduction 

The straight-forward method for depth estimation in video sequences is to estimate depth map 

for each frame independently. Such an approach is simple and also allows for parallel generation of 

depth map in in consecutive frames. Unfortunately, independent estimation of depth in each frame 

in video results in depth maps which are not temporally consistent. This manifests as random 

fluctuation of depth values, even for objects that are still. Such fluctuations are equivalent to chaotic 

movements of the pixels. Desired temporal consistency of depth map means that depth changes are 

correlated with actual physical motion of the objects, and do not vary from frame to frame in a 

random way. Therefore, one of the most significant challenges in this research area is how to 

provide depth maps that are consistent in time. 

In the past, there were various approaches to improve temporal consistency of estimated depth 

by making modifications of the algorithm implemented in MPEG Depth Estimation Reference 

Software (DERS) [1], like in example in [2]  and [3].  

On the other hand, in work [4] we have proposed to improve temporal consistency of the 

estimated depth “outside” the depth estimation itself. It was proposed to perform a noise reduction 
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on the input video prior to the depth estimation, so that later, the depth estimation algorithm works 

on denoised data. A very  simple noise removal technique was used, in which not-moving regions 

are low-pass filtered in time. Therefore this is called “Still Background Noise Reduction” (SBNR) 

here. 

The above-mentioned techniques do not use motion estimation and compensation, which lowers 

their performance in the case of sequences with big amount of motion, e.g. with moving camera. In 

this paper we want to overcome this limitation. In particular, we provide results of depth estimation 

with improved temporal consistency based on noise reduction in the input video, but (despite the 

approach in SBNR) with the use of more advanced denoising technique with motion estimation. It 

will be called “Motion-Compensated Noise Reduction with Refinement” (MCNRR). 

Apart from denoising of the input video, we consider a totally different approach, based on 

custom initialization of graph cuts algorithm. In that context we show results of depth estimation 

with graph-cuts initialization that is done basing on the previously estimated depth (for previous 

frames). Such will be called “Graph Cuts Initialization” (GCI). Also we consider motion-

compensated variant of such algorithm, called here “Motion-Compensated Graph Cuts 

Initialization” (MCGCI). 

Moreover, in order to evaluate the amount of temporal consistency, we show some proposals of 

objective temporal consistency measures: based on correlation coefficient and compression ratio. 

3 Conditions of experiments 

The evaluation of the depth estimation schemes with noise reduction has been done indirectly, 

through assessment of quality of synthesized virtual views (Fig. 1). For view synthesis we have 

used commonly known MPEG View Synthesis Reference Software (VSRS). It has been 

configured so that is uses depth maps from two side-views (left and right) and synthesizes the 

center view. Therefore, depth estimation is performed for both of the side-views.  

 



3 

 

 

Fig 1. The scheme of quality evaluation in the work. 

 

Table 1. Set of sequences used in the experiments. 

Sequence Resolution Left view Right view 
Center (original/ 

/synthesized view) 

Kendo 1024x768 3 5 4 

Balloons 1024x768 3 5 4 

Newspaper 1024x768 4 6 5 

Poznan Carpark 1920x1080 3 5 4 

Poznan Hall 2 1920x1080 5 7 6 

Poznan Street 1920x1080 3 5 4 

 

The used sequences are summarized in Table 1. For all of the them, the depth estimation has 

been performed, always with the same common configuration of DERS: DepthEstimationMode=0. 

MatchingMethod=0,  MatchingBlock=1, Precision=1, SearchLevel=-1, TemporalEnhancement=0, 

ImageSegmentation=0. 

Various “Smoothing coefficient” values (in range from 1.0 to 4.0) were tested, and always the 

best results for the best smoothing coefficient are presented. 
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4 Measures of temporal consistency 

The methodology described in point 3 is used to estimate the quality of the depth maps 

indirectly, through measurement of the quality of the synthesized views. However, it does not 

provide measurement of improvement of temporal consistency, which cannot be measured if frames 

are treated independently in time from each other (like in the case of PSNR). 

4.1 Pearson Correlation Coefficient 

The first approach for formulation of temporal consistency measure, which we have tested, is 

based on Pearson Correlation Coefficient (PCC).  For datasets     and    , PCC is given  by 

equation: 

       
                 

          
           

 
 

Where    and    denote expected values of   and  , respectively. 

In our case, we calculate PCC between depth values at the same collocated positions in the 

image      , in successive frames   and    . Those can be denoted as          and          , 

which we can substitute for   and   in the equation above, respectively. For all such pairs of such 

frames, this can be simplified as: 

                    
 

                                                     

                         
  

Such PCC value is then averaged over all pixel locations      . Therefore we get: 

 

    
 

   
  

                                                       

                          
 

  

 

 

Where   and   are width and height of the depth image, respectively. 

Such averaged Perrson Correlation Coefficient PCC, attained in various depth estimation 

experiments can be compared, in order to give a measure of temporal consistency: the more 

correlated are collocated depth values in subsequent frames, the more temporally consistent is the 

analyzed depth video. 
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4.2 Video coding of the depth data 

The second approach, which we have used for objective measurement of temporal consistency 

enhancement, employs video coding of the depth data. The estimated depth maps, resulting from 

experiments described above, have been coded with the use of MVC video codec. We have chosen 

MVC because we wanted to use a codec as simple as possible, having at the same time the ability to 

compress multiview video with the use of motion compensation.  

In order to measure the gains/losses in compression performance, we have decided to use 

Bjøntegaard deltas [7], bitrate savings in particular. For those we needed a set of at least 4 coding 

rate-points for each tested case. We have decided to use Common Test Conditions (CTC) [8] which 

were used during core experiments in development of AVC-based 3D extensions. Therefore, the QP 

values were: 30, 35, 40, 45 (for full-resolution of depth). 

5 Noise reduction in the input video 

 

In this experiment three scenarios have been considered: 

- The input video is denoised with the use of SBNR (Still Background Noise Reduction”) 

technique. 

- The input video is denoised with the use of MCNRR (Motion Compensated Noise Reduction 

with Refinement) technique. 

- No noise reduction on the input video. This is anchor for the experiment. 

 

The rough idea of MCNRR technique is to perform noise reduction in the input video with the 

use of motion estimation and compensation. 



6 

 

 

Figure 2. The core of Motion-Compensated Noise Reduction (MCNRR) algorithm.  

 

 

The image is processed in overlapping blocks of size 4×4 pixels. For each processed block in the 

current frame, motion vectors are sought for 3 previous and 3 following frames, independently in 

each view. In implementation, for that purpose we have used “mv-tools” library [5]. The motion-

compensated blocks from the neighboring frames (calculated in MCP blocks in Fig. 2) are then 

compared with the processed block in the current frame. The blocks that are classified to be similar 

enough (using the Sum of Squared Differences criterion) are averaged in order to generate denoised 

(low-pass-filtered) block. Therefore, the average may be calculated from as few as 1 block (only 

from the current frame) and from as many as 7 blocks (the current frame, 3 previous and 3 

following frames). The detailed description of MCNRR algorithm can be found in [6]. 

The tested scenario is depicted in Fig. 3. For the he comparison, methodology shown in from 

Fig. 1 has been used. The results are presented in Table 2. 
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Figure 3. Comparison of depth estimation with the use of SBNR and MCNRR denoising 

techniques, versus original, unmodified DERS.  

For the he comparison, methodology shown in from Fig. 1 has been used.  

 

 

Table 2. Comparison of quality of the considered techniques of depth estimation with noise 

reduction, related to the original (unmodified) DERS technique, based on PSNR of view 

synthesis. 

 

 

 

Sequence 

Name 

a) PSNR [dB] (vs. the original view ) 

of the virtual view synthesized with 

use of depth maps estimated basing 

on: 

b) Relative change of 

correlation coefficient, 

related to the PCC of the 

anchor (the original, 

unmodified DERS) [%] 

Views denoised with: 
Anchor SBNR 

Proposed 

MCNRR  SBNR MCNRR 

Poznan Street 31.93 31.92 31.98 +0.06 +0.10 

Poznan Carpark 30.74 30.79 30.71 +0.99 +1.64 

Poznan Hall 2 32.78 32.83 32.85 +0.35 +1.02 

Newspaper 31.90 31.91 31.91 +0.23 +0.26 

Balloons 32.91 32.93 32.94 +1.74 +1.81 

Kendo 35.41 35.39 35.46 +1.12 +0.17 

Average 32.61 32.63 32.64 +0.75 +0.83 

 

As it can be seen, the PSNR ratios are not much changed by usage of noise reduction in the input 

video (Table 2a). This is not surprising, because PSNR measure is not designed to assess quality of 

temporal consistency. 

The results presented in Table 2b show that application of the proposed noise removal 

techniques for depth estimation provide gains in a form of increase of correlation between 

subsequent depth frames in given view. The Pearson Correlation Coefficient, averaged over all 
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frames and views, has been compared in the cases of depth estimation: the anchor (no noise 

reduction, not modified original DERS), the usage of SBNR on the input video and the usage of 

MCNRR. For the sake of brevity, only percentage changes, related to the anchor case, are presented 

in Table 2b. 

It can be seen that although the gains in linear correlation coefficient increase are small (up to 

1,81%, about 0.06% - 1.99% in average) it must be taken into perspective that the improved regions 

are mostly edges of the objects that cover only a small portion of the whole scene and sometimes, 

differences even between the ground truth are very small – e.g. Newspaper sequence which is 

already highly correlated (the most the scene consists in still background). 

The more interesting results are presented in Table 3. It can be seen that application of the 

considered noise reduction techniques on the input video have seriously influenced the estimated 

depth maps, because their compression ratio has vastly changed. The coding performance of such 

(compared to the original depth maps estimated with modified DERS basing on the original 

multiview video) on average is 27.02% higher in the case of the prior or on average 28.34% higher 

in the case of the proposed MCNRR algorithm. 

 

Table 3. Bjøntegaard bitrate savings - results of MVC compression of depth maps estimated with 

use of DERS basing on denoised test sequences, related to compression of depth maps estimated 

with use of DERS basing on the original test sequences (anchor). 
 

 

Sequence name 
Bit-rate savings [%] 

SBNR technique MCNRR technique 

Poznan Street 31.47 35.14 

Poznan Carpark 46.57 45.19 

Poznan Hall 2 26.44 29.01 

Newspaper 33.64 33.42 

Balloons 23.96 21.99 

Kendo 0.02 5.26 

Average 27.02 28.34 

 

In general it can be said that the average compression performance gain over the tested set is 

about 28% of depth bitrate reduction, while providing the same quality of synthesized views (the 

bitrate reduction has been measured with Bjøntegaard metric over PSNR of synthesized views). 

This provides a strong indication that the temporal consistency of the estimated depth has been 

vastly improved, because one of the main compression tools in coding technology implemented in 
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MVC is temporal prediction. The higher the correlation is between the subsequent frames, the 

higher compression performance can be attained. 

6 Graph Cuts Initialization (GCI) and Motion Compensated Graph Cuts 

Initialization (MCGCI) 

Normally, depth estimation is DERS is performed by multiple iterations of the graph cuts 

algorithm. In each iteration, another depth value (depth label) is tested by setting it as a “source” of 

the graph being solved. After performing graph-cuts, some pixels are assigned this new depth label, 

and the remaining ones stay with the depth label from previous iteration. In such a way, after 

iterating though all depth labels in set (from minimal to maximal disparity value), the final disparity 

map can contain all possible disparity values. This whole process is performed multiple times, 

called “cycles”. For example, depth estimation can be done in 2 cycles,  for 32 disparity labels, 

which results in 2x32=64 different graphs creations and graph-cuts solvings. 

In the abovementioned depth estimation process in DERS, the initial depth map is initialized 

with zero values. This enforces the algorithm to change most of the labels in every iteration. In this 

experiment, we have tested, whether estimated depth can be improved if the graph-cuts 

optimization algorithm is initialized with labels attained from estimated depth. Two scenarios were 

considered: 

- Graph Cuts Initialization (GCI): The graph cuts is initialized directly with depth labels 

estimated for the previously processed frames (and of course 0 for the first frame) 

- Motion Compensated Graph Cuts Initialization (MCGCI): The graph cuts is initialized with 

depth labels attained from motion-compensation of labels estimated for the previously 

processed frames (and of course 0 for the first frame). 

 

The tested scenario is depicted in Fig. 4. For the he comparison, methodology shown in from Fig. 1 

has been used. The expected  outcomes were: improved temporal consistency or improved speed of 

estimation. 

The results are presented in the Table 4. 
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Figure 3. Comparison of depth estimation with the use of Graph Cuts Initialization (GCI) and 

with use of Motion-Compensated Graph Cuts Initialization (MCGCI), versus original, 

unmodified DERS. For the he comparison, methodology shown in from Fig. 1 has been used.  

 

 

Table 4. Comparison of quality of the considered techniques of graph cuts initialization in depth 

estimation, related to the original (unmodified) DERS technique, based on PSNR of view 

synthesis. 

 

Sequence Name 

a) PSNR of views synthesized with the 

following depth: 

b) Relative change of 

correlation coefficient, related 

to the PCC of the original 

(unmodified) DERS [%] 
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depth 
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Depth 
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Depth 
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GCI MCGCI 

Depth 

estimated with 

the of use of 

GCI 

Depth 

estimated with 
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Poznan Street 31.98 31.88 31.91 +0.02 -0.01 

Poznan Carpark 30.71 30.70 30.73 +0.07 +0.08 

Poznan Hall 2 32.85 32.86 33.01 +0.21 +0.31 

Newspaper 31.91 31.91 31.93 +0.03 -0.02 

Balloons 32.94 32.90 32.92 +0.15 +0.17 

Kendo 35.46 35.46 35.47 +0.11 +0.31 

Average 32.64 32.62 32.66 +0.10 +0.14 

 

Again, it can be seen that the proposed techniques (GCI and MCGCI ) do not improve the PSNR 

quality of the synthesized view. Also, the relative change of the correlation coefficient is practically 

not improved at all. Unfortunately, the same holds for the compression performance improvements 

presented in Table 5. This means that custom initialization of graph cuts does not improve temporal 

consistency of the estimated depth. 
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Table 5. Bjøntegaard bitrate savings - results of MVC compression of depth maps estimated with 

use of DERS with GC and GCI, respectively, related to compression of depth maps estimated 

with use of DERS basing on the original test sequences (anchor). 

 

Sequence name Bit-rate savings [%] 

MCGC  MCGCI 

Poznan Street -0.04 0.05 

Poznan Carpark 0.23 0.21 

Poznan Hall 2 0.28 0.8 

Newspaper -0.05 0.12 

Balloons 0.33 0.53 

Kendo 0.11 0.23 

Average 0.14 0.32 

 

We have also measured time of execution of depth estimation. The results are presented in 

Table 6. It can be seen that the time of execution of depth estimation is reduced to about 87% of the 

original execution time, in both cases of GCI and MCGCI, which yields in about 13% gain. 

Therefore it can be concluded that although custom initialization of graph-cuts does not improve  

temporal consistency, it can bring interesting computational complexity reductions. 

 

Table 6. Time of execution of depth estimation with graph cuts initialization techniques (GCI 

and MCGCI) versus unmodified original DERS 

 

Resolution Sequence name 

Time of execution per frame [s] 

(average over smoothing coefficient 

values) 

Relative time of 

execution [%] 

Anchor 

(original, 

unmodified 

DERS) 

GCI MCGCI GCI MCGCI 

HD 

Poznan Street 410.4 350.9 346.0 85.5% 84.3% 

Poznan Carpark 339.2 279.2 275.4 82.3% 81.2% 

Poznan Hall 2 570.6 510.7 488.4 89.5% 85.6% 

XGA 

Newspaper 44.4 39.2 39.9 88.2% 89.9% 

Balloons 46.6 40.8 39.8 87.5% 85.4% 

Kendo 38.3 35.4 35.6 92.5% 93.0% 

Average relative time of execution (versus anchor): 87.58% 86.57% 
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7 Conclusions 

Basing on the presented results it can be concluded that usage of more advanced noise reduction 

technique with motion compensation (MCNRR technique) provides minor gains compared to a 

simple noise reduction technique operating only on still regions (SBNR technique). On the other 

hand, the share of any of the two considered noise reduction techniques in total depth estimation 

process is negligible (0.3 - 1% of time of execution of the whole process at most) so it is beneficial 

to use motion compensation-based technique as it will work best on any type of sequences. In any 

case, the attained improvement of temporal consistency of depth has been measured by about 28% 

bitrate reduction for considered depth, representing the same scene. Therefore, we recommend to 

use the proposed scheme in depth estimation for future test sequences. 

We have shown that custom initialization of graph cuts algorithm does not improve temporal 

consistency of the estimated depth. This holds for all considered measures of quality and temporal 

consistency: PSNR, Pearson Correlation Coefficient and compression performance. It has however 

been shown that the proposed graph-cuts initialization schemes, GCI and MCGCI, respectively, 

bring about 13% reduction of time of execution of depth estimation. Therefore we recommend to 

include the proposed graph cuts initialization scheme in DERS. 

As for the measures of temporal consistency, it has been shown that inter-sample correlation 

between depth values is not a very good indicator. It is instead proposed that enhancement of 

temporal consistency can be measured by improvement of compression performance of the 

analyzed depth maps. It is recommended that the future improvements of DERS related to temporal 

consistency should be demonstrated basing on that basis. 
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