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1. Introduction 
During the 115th meeting in Chengdu, a new MPEG-I project was established. Its goal is to 
explore and standardize technologies allowing support for 3DoF+ and 6DoF 3D video. The 
considered prospective technologies include depth image based rendering (DIBR). DIBR 
requires depth which has to be acquired or estimated.  
The document presents mathematical foundations and a method for depth estimation for such a 
scenario. In particular, circular projection of 360 degree 3D video is considered. The paper 
addresses the relation of such depth estimation to a more explored case of parallel camera 
arrangement.  

2. Circular projection of 360 degree 3D video 
 
The 360-degree 3D video can be represented with a circular projection. In such an approach, the 
model of the video is composed of two cylindrical panoramas [1][2]. In each time instant (frame), 
each panorama represents an image captured by a rotating camera with a very narrow field of 
view (Fig. 1). An exemplary stereoscopic omnidirectional image in circular projection is 
presented in Figure 2. 

 

Figure 1. Circular projection obtained using a rotating pair of cameras.  



 

Figure 2. The example of circular projection model (the left view on the top, the right view on 
bottom) [1] 

 
Obviously, the widely discussed mentioned equirectangular projection differs from the 
cylindrical projection defined by Formula (1). The principle of cylindrical projection (Fig. 3) is 
different along vertical axis of the image, which can be expressed as follows:  

𝑥 = 𝑅 ∙ (𝛼 − 𝛼଴) , 𝑦 = 𝑅 ∙ 𝑇𝑎𝑛(𝛽) , (1) 

where  and  are the azimuth and elevation, or the longitude and latitude, respectively 
(cf. Figure 3). Please note that the cylindrical projection was discussed in ages under the name of 
Mercator projection that is well-known as one of the basic cartographic projections.  
 
 

 

Figure 3. Cylindrical projection principle. 

 
 
 
 
 
 



3. Depth estimation from circular projection 
 
Let us assume that a point X is observed by omnidirectional stereoscopic camera that produces 
360 degree 3D video in circular projection format. For simplicity, we start with consideration of 
a point observed at the equator (Figure 4 b). 

3.1 Distance estimation 
Point X is visible in the left view at angle 𝛼௟ and in the right view at angle 𝛼௥. Let us denote the 
difference of position in both views as ∆𝛼. With the use of simple trigonometric relationship we 
get: 

𝑆𝑖𝑛 ൬
∆𝛼
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𝑟

𝑅
 (2) 

 
where 𝑟 is radius of acquisition system, and 𝑅 is distance from the camera center to the point X. 
 

                    

a)                                                                                    b) 

Figure 4. Considered case of matching in circular projection. 

 

Therefore, based on the position difference ∆𝛼 = 𝛼௟ − 𝛼௥ of a given point in the left and in the 
right view we can get distance 𝑅: 
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3.2 Pixel position  
 
Position of a point in 360 degree 3D video can be expressed (Fig. 5) as angular position (𝛼, 𝛽) 
but it is more convenient to express it in pixel coordinates (𝑥, 𝑦). 



 

Figure 5. Angular and pixel position of a point in 3D degree 3D video. 

 

If an acquired image has a resolution of 𝑊 by 𝐻 (which typically are in the proportion of  
ௐ
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) 

then angular position can be expressed as: 
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2𝜋

𝑊
 (4) 

Equation (4) can be used for (3): 
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(5) 

 
where 𝑥௟  and 𝑥௥  are pixel coordinates of a considered point in the left and in the right view, 
respectively. In depth estimation a difference in pixel coordinates of a given point in the left and 
the right view is called disparity, and denoted as 𝑑. Therefore, (5) can be simplified to: 
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3.3. Relationship to depth estimation from rectified pairs of images 
 
Equation (6) is somehow similar to the expression that defines a distance estimated from a 
rectified video pair (7) where the base 𝑏 = 𝑟/2: 

𝑍 =
𝑓 ∙ 𝑏

𝑑
 (7) 

 
where 𝑓 is the focal length of a camera, 𝑏 is the baseline of camera pair, and 𝑑 is the disparity 
(defined exactly as in this document). 
The main difference between (6) and (7) is the sine function in the denominator.  
This 𝑆𝑖𝑛 operator in the denominator can be expanded with Taylor series which yields: 
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(8) 



Les us assume that 𝑑 ∙
గ

ௐ
≪ 1 is very small, so that we can omit higher order components in 

Taylor series in (8): 
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As we can see, the resultant approximated distance 𝑅 value attained in (9) is the same as (7) but 
just with different constants. Therefore, it can be stated that for small values of disparity, the 
calculation (6) of distance 𝑅 used in depth estimation in circular projection can be approximated 
with formula used in stereoscopic planar depth estimation (7). Small values of disparity occur in 
far objects. Therefore, the mentioned approximation can be used directly for objects that are far 
from the camera. Of course, one cannot control application of depth estimation for far objects 
only prior to determining their distance, therefore the only practical approach is to assume that 
all objects are far in the analyzed scene.  
Therefore, it can be summarized that the presented approximation can be used for scenes that are 
far from the camera set. 

3.4 Far objects 
 
Now we will analyze the case when approximation (9) is an accurate enough approximation of 
(6).  
Let us define an approximation error 𝛿𝑅 as a difference of distance 𝑅 calculated from (6) and (9) 
in proportion to the distance 𝑅: 
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Now, (10) expresses relative estimation error 𝛿𝑅 as a function of the observed disparity. Even 
more interesting is an expression of relative estimation error 𝛿𝑅 in a function of the distance 𝑅 
itself. For (6) we can derive formula for disparity 𝑑 as: 
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After substitution of (11) to (10) and simplification we get: 
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Which is a direct formula for relative estimation error 𝛿𝑅 as a function of the distance 𝑅. It is 
presented in Fig. 6. 
 



 

Figure 6. Relative estimation error 𝛿𝑅 in function of 
ோ

௥
 

 
As it can be seen from Figure 6, relative estimation error 𝛿𝑅  decreases very rapidly with 
increasing distance 𝑅. At the distance 𝑅 > 4 ∙ 𝑟 relative error is below 1%. I.e. for a 10 cm radius 
360 degree 3D camera, objects that are further than 40 cm away can be considered to be far 
enough. Condition of 4 ∙ 𝑟 is not very strong requirement and it can be easily fulfilled for most of 
the omnidirectional cameras used nowadays. 
 

3.5 Understanding camera parameters used in approximation 
 
As it was mentioned, the equation (9) has similar form to (7) but is expressed with different 
constants. Now we will try to understand relation of these constants and thus the effective 
baseline 𝑏 and focal length 𝑓 of an approximation (9).  
 

 

Figure 7. Relationship between focal length, field of view angle and resolution of the camera. 

 
First let us analyze the remaining basic relationship between focal length 𝑓, field of view angle 
𝑓𝑜𝑣 and horizontal resolution 𝑊 of the camera (Figure 7): 
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From (13) we can obtain focal length expressed as field of view angle: 
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By expanding it with Taylor series we get: 
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For an omnidirectional camera 𝑓𝑜𝑣 = 2𝜋, and baseline between pair of images is 𝑏 = 2𝑟. We 
can substitute this result into (7) and get: 
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which gives equation for our derived approximation (9). 
 
We conclude that camera parameters used for the approximation would be: 

𝑓 =
𝑊

2𝜋
𝑏 = 2𝑟 . (17) 

For far objects, this conclusion appears well-understood. Such camera parameters can be 
used in existing stereo-pair-based depth estimation software like MPEG DERS. 
 

 

4. Summary 
 
A formula for distance measurement from 360 degree 3D video in circular projection has been 
presented. Further, similarities between the derived formula and the one describing depth 
estimation from a rectified pair of pictures have been shown. Then, an approximation of the 
derived formula is provided. The practical importance of this approximation is related to depth 
estimation using the currently available depth estimation software. Finally, a necessary condition 
for approximation has been given. As it was shown, reasonable formula of 4 times radius of 
omnidirectional camera allows less than 1% relative distance estimation error. Based on the 
presented analysis of an approximation, necessary camera parameters for depth estimation 
software has been derived. 
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