

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2020/m53407

April 2020, Online

Source Poznań University of Technology, Poznań, Poland

Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea

Status Input

Title [MPEG-I Visual] Immersive video depth estimation

Author Dawid Mieloch*, Adrian Dziembowski*, Jakub Stankowski*, Olgierd Stankiewicz*,

Marek Domański*, Gwangsoon Lee**, Yun Young Jeong**

* - Poznań University of Technology,

**- Electronics and Telecommunications Research Institute

Contact dawid.mieloch@put.poznan.pl

Abstract

Omnidirectional video formats are currently considered within MPEG in the context of 6DoF/3DoF+ video

technology. Unfortunately, the current version of Depth Estimation Reference Software does not allow

depth estimation from video acquired by multiple omnidirectional cameras, needed to create multi-point

6DoF/3DoF+ scene representation. In this document, we present novel depth estimation technique and

software developed by Poznań University of Technology (PUT) and Electronics and Telecommunications

Research Institute (ETRI), called Immersive Video Depth Estimation (IVDE), which addresses these

deficiencies. Full source code of the method and CTC-based comparison with RDE are included in this

contribution.

1 Introduction

One of the subjects considered in the current MPEG-I activities in the context of prospective 6DoF/3DoF+

video technology are omnidirectional video formats. Acquisition of video with an omnidirectional camera

or with several omnidirectional cameras positioned in distinct locations seems to be a very promising way

to capture real, natural 3D content. It is therefore important to develop tools allowing further research.

2 Overview of the method

The particular usefulness of the presented method in virtual navigation, free-viewpoint television and other

6DoF systems, is a result of the joint exploitation of the ideas mentioned below:

 Depth is estimated for segments instead of individual pixels, and thus the size of segments can be used

to control the trade-off between the quality of depth maps and the processing time of estimation. Larger

segments can be used to attain fast depth estimation, or finer segments can be used to attain higher

quality.

 Estimation is performed for all views simultaneously and produces depths that are inter-view

consistent because of the utilization of the new formulation of the cost function, developed for

segment-based estimation.

 No assumptions about the positioning of views are stated: any number of arbitrarily positioned cameras

(both perspective and omnidirectional) can be used during the estimation.

 In the proposed temporal consistency enhancement method, depth maps estimated in previous frames

are utilized in the estimation of depth for the current frame, increasing the consistency of depth maps

and simultaneously decreasing the processing time of estimation.

 The proposed depth estimation framework uses a novel parallelization method that significantly

reduces the processing time of graph-based depth estimation.

The new framework does not use any external libraries for image processing operations. Such libraries offer

a very wide spectrum of image processing solutions, but they have a negative impact on the easiness of

their use in other frameworks. Moreover, OpenCV does not provide full compatibility between different

versions of this library, which provides further difficulties during the development of new software.

2.1 Depth estimation

The estimation of depth in the proposed method is based on a cost function minimization. The cost function

is based on two components: the intra-view discontinuity cost 𝑉𝑠,𝑡 and the inter-view matching cost 𝑀𝑠,𝑠′ ,

responsible for the inter-view consistency of depth maps:

𝐸(d) = ∑ ∑ { ∑ 𝑀𝑠,s′(𝑑𝑠)

𝑐′∈D

+ ∑ 𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡)

𝑡∈T

}

𝑠∈S𝑐∈C

 ,

where:

d – vector containing depth value for each segment in all views,

C – set of views,

𝑐 – view used in the estimation,

D – set of views neighboring to the view 𝑐,

𝑐′ – view neighboring to the view 𝑐,

S – set of segments of the view 𝑐,

𝑠 – segment in the view 𝑐,

𝑑𝑠 – currently considered depth of the segment 𝑠, 𝑑𝑠 ∈ d ,

𝑠′ – segment in the view 𝑐′, which corresponds to the segment 𝑠 in the view 𝑐 for the currently

considered depth 𝑑𝑠 ,

𝑀𝑠,𝑠′ – inter-view matching cost between segments 𝑠 and 𝑠′,

T – set of segments neighboring to the segment 𝑠,

𝑡 – segment neighboring to the segment 𝑠,

𝑉𝑠,𝑡 – intra-view discontinuity cost between segments 𝑠 and 𝑡,

𝑑𝑡 – currently considered depth of the segment 𝑡, 𝑑𝑠 ∈ d .

Fig. 1. Inter-view and intra-view costs.

The intra-view discontinuity cost is calculated between all neighboring segments within the same view:

𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡) = 𝛽 ∙ |𝑑𝑠 − 𝑑𝑡| ,

where:

𝛽 – smoothing coefficient,

𝑑𝑠 – currently considered depth of the segment 𝑠,

𝑠 – segment in the view 𝑐,

𝑡 – segment neighboring to the segment 𝑠,

𝑉𝑠,𝑡 – intra-view discontinuity cost between segments 𝑠 and 𝑡,

𝑑𝑡 – currently considered depth of the segment 𝑡.

In the proposed method the smoothing coefficient 𝛽 is not fixed for all segments, instead, the smoothing

coefficient is calculated using a similarity of two neighbouring segments s and t and 𝛽0 that is an initial

smoothing coefficient:

𝛽 = 𝛽0/‖[�̂� �̂�𝑏 �̂�𝑟]𝑠 − [�̂� �̂�𝑏 �̂�𝑟]𝑡‖
1
 ,

where:

𝛽 – smoothing coefficient ,

𝛽0 – initial smoothing coefficient provided by the user,

‖∙‖1 – L1 distance,

𝑠 – segment in the view 𝑐,

𝑡 – segment neighbouring to the segment 𝑠,

[�̂� �̂�𝑏 �̂�𝑟]𝑠 – vector of average Y, Cb, Cr color components of the segment 𝑠,

[�̂� �̂�𝑏 �̂�𝑟]𝑡 – vector of average Y, Cb, Cr color components of the segment 𝑡.

The core of the inter-view matching cost, denoted as 𝑚𝑠,𝑠′, is:

𝑚𝑠,𝑠′(𝑑𝑠) =
1

𝑐𝑜𝑢𝑛𝑡(𝑊)
∑ ‖[𝑌𝐶𝑏𝐶𝑟]𝜇𝑠+𝑤 − [𝑌𝐶𝑏𝐶𝑟]𝑇[𝜇𝑠]+𝑤‖

1
𝑤∈W

 ,

where:

W – set of points in the window of the size specified by the user,

count(∙) – size of the window W,

𝑤 – vector of coordinates of a point in the window W,

‖∙‖1 – L1 distance,

𝜇𝑠 – vector of coordinates of center of a segment 𝑠,

𝑇[∙] – 3D transform obtained from intrinsic and extrinsic parameters of cameras,

[𝑌 𝐶𝑏 𝐶𝑟]𝜇𝑠+𝑤 – vector of Y, Cb, Cr color components of the center 𝜇𝑠 of the segment 𝑠,

[𝑌 𝐶𝑏 𝐶𝑟]𝑇[𝜇𝑠]+𝑤 – vector of Y, Cb, Cr color components of the point in a view 𝑐′

corresponding to the center 𝜇𝑠 of the segment 𝑠 in a view 𝑐.

In order to achieve the inter-view consistency of depth maps, the value of the inter-view matching cost

𝑀𝑠,𝑠′(𝑑𝑠) is calculated as [6]:

𝑀𝑠,𝑠′(𝑑𝑠) = {
min {0, 𝑚𝑠,𝑠′(𝑑𝑠) − 𝐾} 𝑖𝑓 𝑑𝑠 = 𝑑𝑠′

0 𝑖𝑓 𝑑𝑠 ≠ 𝑑𝑠′
 ,

where:

𝑠 – segment in the view 𝑐,

𝑑𝑠 – currently considered depth of the segment 𝑠,

𝑠′ – segment in the view 𝑐′, which corresponds to the segment 𝑠 in the view 𝑐 for the

 currently considered depth 𝑑𝑠 ,

𝑑𝑠′ – currently considered depth of the segment 𝑠′,

𝑀𝑠,𝑠′ – inter-view matching cost between segments 𝑠 and 𝑠′,

𝑚𝑠,𝑠′ – core of the inter-view matching cost between segments 𝑠 and 𝑠′,

𝐾 – a positive constant.

The value of constant 𝐾 is selected so that the inter-view matching cost 𝑀𝑠,𝑠′ is not dominated by the

intra-view discontinuity cost 𝑉𝑠,𝑡 , as a sum of these two costs constitutes the cost function of the depth

optimisation. The chosen final value of 𝐾 in presented research is 30, as it provides the high quality of

estimated depth maps for all tested sequences. The use of both equirectangular and perspective views is

included in the 3D transform 𝑇[∙].

In order to increase the final quality of estimated depth maps, we propose a new segment-based method of

the depth enhancement, named neighboring segments depth analysis.

The proposed process is performed for each segment in estimated depth maps. For the currently processed

segment, depth values of its neighboring segments are tested as new depth candidates for this segment. A

depth value is used if two conditions are fulfilled: use of this depth reduces the inter-view matching cost

for the processed segment and a corresponding segment in neighboring view targeted by this depth also has

the same value of depth.

The proposed solution increases the quality of depth maps in areas of uncertain depth (e.g., disoccluded

areas) and preserves the inter-view consistency of depth maps. Moreover, because the process is performed

after estimating the depth for each frame, such enhanced depth is used for all following frames (because of

segmentation-based temporal enhancement). Therefore, such an approach increases the quality of depth

maps also in terms of temporal consistency.

2.2 Temporal consistency enhancement

In natural video sequences, only a small part of an acquired scene considerably changes in consecutive

frames, especially when cameras are not moving during the acquisition of video. The idea of the proposed

temporal consistency enhancement of depth estimation is to calculate a new value of depth only for the

segments that changed (in terms of their color) in comparison with the previous frame.

The proposed temporal consistency enhancement method allows us to automatically mark segments as

unchanged in consecutive frames. These segments are used in the calculation of the intra-view discontinuity

and the inter-view matching cost for other segments, but are not represented by any node in the structure of

the optimized graph. It reduces the number of nodes in the graph, making the optimization process

significantly faster, and on the other hand, increases the temporal consistency of estimated depth maps.

In the first frame of a depth map, denoted as an “I-type” depth frame, the estimation is performed for all

segments, as described in the previous sections. The following frames (“P-type” depth frames) can utilize

depth information from the preceding P-type depth frame and the I-type depth frame.

Segment 𝑠 is marked by the algorithm as unchanged in two cases: if all components of the vector

[�̂��̂�𝑏�̂�𝑟]𝑠 of average Y, Cb and Cr color components changed less than the set threshold 𝑇 in comparison

with segment 𝑠𝐵, which is a collocated segment in the previous P-type frame, or, if all components of the

abovementioned vector changed less than the threshold 𝑇 in comparison with segment 𝑠𝐼 – a collocated

segment in the I-type frame. If any of these two conditions are met, then segment 𝑠 adopts the depth from

the segment 𝑠𝐵 or 𝑠𝐼 (depending on which condition was fulfilled).

A collocated segment in the previous or the first frame is simply the segment which contains the central

point of the segment 𝑠. Therefore, even if the segmentation in compared frames is not the same, the

algorithm can easily find the corresponding segment in these frames.

The introduction of two reference depth frames has a beneficial impact on the visual quality of virtual

navigation. First, the adoption of depth from the previous P-type depth frame allows us to use the depth of

objects that changed their position over time. On the other hand, the adoption of depth from the I-type depth

frame minimizes the flickering of depth in the background.

2.3 Parallelization of graph-based optimization

In our proposal, each of n threads estimates a depth map with an n-times lower number of depth levels.

Depth maps with a reduced number of depth levels that were calculated by different threads have to be

merged into one depth map. The merging process is performed in a similar way as depth estimation [using

the cost function (1)], but only two levels of depth are considered for each segment – i.e., the depth of a

segment from thread 𝑡 or the depth from thread 𝑡 + 1 (Fig. 4). Only two depth maps can be merged into

one by one thread during the merging cycle. Therefore, for n threads, ⌈𝑙𝑜𝑔2(𝑛)⌉ of additional cycles are

needed to estimate the final depth map with all depth levels.

Fig. 2. Depth levels are divided into blocks, each rectangle represents a different level of the depth of a

scene.

Of course, even without the use of parallelization, all cores of the CPU can also be used for depth estimation,

e.g., each core can perform the estimation of depth for different sets of input views (e.g., for each 5 cameras

of the system), or for different frames of the sequence. Unfortunately, when many standalone depth

estimation processes are performed, it results in the loss of inter-view consistency or temporal consistency

of estimated depth maps. When the proposed parallelization is used, both inter-view and temporal

consistency of depth maps, which are fundamental for the quality of virtual view synthesis, are preserved.

Fig. 3. Depth map merging process for the case of 4-thread parallelization.

2.4 Segmentation in omnidirectional videos

The use of omnidirectional cameras is taken into account during the superpixel segmentation of input views.

The superpixel segmentation [2] is based on the calculation of the color and spatial distances of a point to

neighboring superpixels.

Fig. 4. shows initial grid of 1000 superpixels used in the beginning of segmentation process. To estimate

such initial grid, the overall size of image is divided by the number of superpixels in order to acquire the

average size of superpixel. Then, the square root of the resulting superpixel size is used to define the

distance between centers of superpixels and, in the end, the whole image is divided evenly as presented in

the figure below.

Fig. 4. Initial grid of superpixels used in segmentation.

In next steps, segments’ shapes are changed on the basis of color and spatial distances of neighboring points

in order to match edges present in a scene. The final segmentation of a omnidirectional sequence can be

seen in Fig. 5.

Segments on the top and bottom border of presented image have similar size in the whole image. However,

in equirectangular image, areas in the top and the bottom of an image represent much smaller areas of a

scene than areas in the middle of an image. Therefore, if the segmentation of the image would be not adapted

to the equirectangular images, then the accuracy of estimated depth maps would be not consistent in for the

whole image in the proposed method.

Fig. 5. Result of unmodified superpixel segmentation for an equirectangular image.

First of all, the initial segmentation of 360 video should be based on the equirectangular projection. First of

all, as in the process of unmodified segmentation, the average distance between centers of segments is

calculated as square root of the average size of a segment. This average distance is used to calculate the

number of superpixels on the ‘equator’ (central row) of an equirectangular image. The number of

superpixels in rows that are above or under the equator is proportionally lower, because these rows represent

circles on a sphere that are smaller than the circle represented by the equator. The result of such initial grid

of superpixels in an equirectangular image is presented in Fig. 6.

The calculation of the spatial distance in case of an omnidirectional image has to be based not simply on

the difference of positions of two points in an image, but on the distance between these points before the

equirectangular projection, using appropriate formulas.

The final result of such modified superpixel segmentation, adapted to equirectangular images, can be seen

in Fig. 7. The size of segments in the center of an image is smaller than in unmodified superpixel

segmentation, while the size of segments in the top and the bottom of an image is much larger, therefore,

the proposed segmentation better represents real relative sizes of objects present in a scene.

Fig. 6. Proposed initial grid of superpixels used in segmentation of an equirectangular image.

Fig. 7. Result of modified superpixel segmentation for an equirectangular image.

3 Experimental results
In order to fully test the proposed method, a series of experimental tests was performed. Tests followed

Common Test Conditions [3] and Exploration Experiments evaluation scheme [4]. The proposal was

compared with RDE 0.94 [5].

Only one exception from the CTC was made: in ULB Baby Unicorn sequence the z-near was changed, as

the previous one does not include whole range of depth (for views 20 to 24).

The comparison includes:

- softwares with no parallelization, 150 000 segments per view for IVDE (Table 1).

- multi-threaded (8 threads for RDE and 2 for IVDE) versions of softwares, 150 000 segments per

view for IVDE (Table 2)

- multi-threaded (8 threads for RDE and 2 for IVDE) versions of softwares, 50 000 segments per

view for IVDE (Table 3)

Additionally, comparison of depth estimated for ClassroomVideo (vs. original, synthetic depth) using

TMIV4 are presented in document M53567 [7].

Table 1. RDE (no parallelization) vs IVDE/ETRI depth estimation

(no parallelization, 150 000 segments per view)

Test

sequence M
et

h
o

d

IV-

PSNR

(dB)

∆IV-

PSNR

(max –

min)

(dB)

Y-

PSNR

(dB)

∆Y-

PSNR

(dB)

U-

PSNR

(dB)

∆U-

PSNR

(dB)

V-

PSNR

(dB)

∆V-

PSNR

(dB)

Time

per one

view

and

frame

(sec)

Memory

per one

view

(GB)

IntelFrog

RDE 38.26 6.92 27.84 5.62 42.36 3.93 41.18 4.72 188.9 3.4

IVDE 37.29 7.45 27.06 5.53 41.84 4.60 40.17 5.63 203.8 0.3

Diff -0.97 0.53 -0.78 -0.09 -0.52 0.67 -1.02 0.90 14.9 -3.1

Orange

Dancing

RDE 42.54 5.91 32.09 3.84 49.75 3.24 51.48 3.73 117.8 6.1

IVDE 41.85 5.25 30.85 3.52 49.17 2.79 50.96 3.47 77.6 0.3

Diff -0.69 -0.66 -1.24 -0.31 -0.58 -0.44 -0.52 -0.26 -40.2 -5.8

Orange

Kitchen

RDE 39.17 7.06 31.38 7.15 46.84 8.67 49.20 11.60 150.7 4.9

IVDE 41.33 7.24 32.93 4.90 47.61 9.13 49.92 12.39 80.7 0.3

Diff 2.15 0.18 1.55 -2.25 0.78 0.47 0.72 0.79 -70.0 -4.6

Orange

Shaman

RDE 46.34 11.12 38.72 6.82 48.46 7.97 46.39 7.56 116.3 4.7

IVDE 46.76 9.83 38.47 6.16 48.72 6.97 46.68 6.98 89.1 0.3

Diff 0.42 -1.29 -0.26 -0.66 0.26 -1.00 0.30 -0.58 -27.2 -4.4

Poznan

Fencing

RDE 38.34 4.37 30.13 2.76 45.44 2.16 44.56 1.97 337.7 6.1

IVDE 39.98 5.92 29.58 4.03 45.05 3.26 44.18 2.72 278.4 0.3

Diff 1.65 1.55 -0.55 1.27 -0.39 1.10 -0.38 0.75 -59.3 -5.8

Technicol

orPainter

RDE 40.38 9.84 31.70 7.30 45.52 5.61 44.46 6.69 188.2 5.8

IVDE 40.40 8.23 32.38 5.58 45.87 5.42 44.93 6.35 225.0 0.4

Diff 0.03 -1.61 0.68 -1.71 0.35 -0.19 0.48 -0.34 36.8 -5.4

ULBBaby

Unicorn

RDE 34.33 11.70 27.37 8.66 37.70 9.50 36.98 7.49 1290.3 17.1

IVDE 35.17 10.52 27.83 8.18 38.08 6.46 37.67 4.63 153.8 0.3

Diff 0.84 -1.18 0.47 -0.48 0.39 -3.03 0.69 -2.86 -1136.5 -16.8

ULBUnic

ornA

RDE 40.14 2.43 30.96 3.79 43.84 2.65 44.04 2.66 312.6 7.7

IVDE 39.14 2.21 29.26 3.32 43.12 2.47 43.45 2.40 245.0 0.3

Diff -1.01 -0.23 -1.70 -0.48 -0.72 -0.17 -0.58 -0.26 32.4 -7.4

ULBUnic

ornB

RDE 40.78 2.18 31.96 2.11 44.29 1.68 44.62 1.41 348.0 9.7

IVDE 40.21 2.14 30.41 3.11 43.88 2.02 43.97 1.62 386.1 0.3

Diff -0.57 -0.05 -1.55 1.00 -0.40 0.34 -0.66 0.20 38.1 -9.4

Average

RDE 40.03 6.84 31.35 5.34 44.91 5.04 44.77 5.32 338.9 7.3

IVDE 40.24 6.53 30.98 4.93 44.82 4.79 44.66 5.13 204.4 0.3

Diff 0.21 -0.31 -0.37 -0.41 -0.09 -0.25 -0.11 -0.18 -134.5 -6.9

Table 2. RDE (parallelization using 8 threads) vs IVDE depth estimation

(parallelization using 2 threads, 150 000 segments per view)

Test

sequence M
et

h
o

d

IV-

PSNR

(dB)

∆IV-

PSNR

(dB)

Y-

PSNR

(dB)

∆Y-

PSNR

(dB)

U-

PSNR

(dB)

∆U-

PSNR

(dB)

V-

PSNR

(dB)

∆V-

PSNR

(dB)

Time

per one

view

and

frame

(sec)

Memory

per one

view

(GB)

IntelFrog

RDE 38.26 6.92 27.84 5.62 42.36 3.93 41.18 4.72 168.8 3.4

IVDE 37.17 7.19 26.96 5.45 41.81 4.55 40.10 5.48 182.6 0.5

Diff -1.09 0.27 -0.89 -0.17 -0.55 0.62 -1.09 0.75 13.8 -2.9

Orange

Dancing

RDE 42.54 5.91 32.09 3.84 49.75 3.24 51.48 3.73 107.3 6.1

IVDE 41.85 5.28 30.85 3.54 49.17 2.77 50.96 3.52 48.8 0.5

Diff -0.69 -0.63 -1.24 -0.29 -0.58 -0.47 -0.52 -0.22 -58.4 -5.6

Orange

Kitchen

RDE 39.17 7.06 31.38 7.15 46.84 8.67 49.20 11.60 136.5 4.9

IVDE 41.26 7.21 32.90 4.82 47.55 9.13 49.92 12.41 51.6 0.6

Diff 2.09 0.15 1.52 -2.32 0.71 0.47 0.72 0.80 -84.9 -4.3

Orange

Shaman

RDE 46.34 11.12 38.72 6.82 48.46 7.97 46.39 7.56 108.0 4.7

IVDE 46.99 9.80 38.58 6.07 48.85 6.95 46.83 6.79 54.7 0.6

Diff 0.65 -1.31 -0.14 -0.75 0.39 -1.01 0.45 -0.77 -53.3 -4.1

Poznan

Fencing

RDE 38.34 4.37 30.13 2.76 45.44 2.16 44.56 1.97 309.8 6.1

IVDE 39.98 5.92 29.58 4.03 45.05 3.26 44.18 2.72 212.4 0.6

Diff 1.64 1.55 -0.55 1.27 -0.39 1.10 -0.38 0.75 -97.3 -5.6

Technicol

orPainter

RDE 40.38 9.84 31.70 7.30 45.52 5.61 44.46 6.69 170.3 5.8

IVDE 40.52 8.65 32.44 5.80 45.88 5.46 44.93 6.39 165.4 0.6

Diff 0.15 -1.19 0.74 -1.49 0.35 -0.15 0.48 -0.30 -4.9 -5.2

ULBBaby

Unicorn

RDE 34.33 11.70 27.37 8.66 37.70 9.50 36.98 7.49 1102.6 17.1

IVDE 35.32 10.40 27.90 8.04 38.08 6.46 37.67 4.63 92.8 0.5

Diff 0.99 -1.30 0.54 -0.62 0.39 -3.03 0.69 -2.86 -1009.7 -16.6

ULBUnic

ornA

RDE 40.14 2.43 30.96 3.79 43.84 2.65 44.04 2.66 285.0 7.7

IVDE 39.11 2.24 29.24 3.31 43.12 2.45 43.45 2.40 254.0 0.5

Diff -1.04 -0.19 -1.72 -0.48 -0.72 -0.19 -0.59 -0.26 -31.0 -7.2

ULBUnic

ornB

RDE 40.78 2.18 31.96 2.11 44.29 1.68 44.62 1.41 318.1 9.7

IVDE 40.19 2.18 30.33 2.73 43.89 2.06 44.02 1.67 261.9 0.6

Diff -0.59 0.00 -1.63 0.62 -0.40 0.38 -0.60 0.26 -56.3 -9.1

Average

RDE 40.03 6.84 31.35 5.34 44.91 5.04 44.77 5.32 300.7 7.3

IVDE 40.27 6.54 30.98 4.87 44.82 4.79 44.67 5.11 147.1 0.5

Diff 0.23 -0.30 -0.37 -0.47 -0.09 -0.25 -0.09 -0.21 -153.6 -6.7

Table 3. RDE (parallelization using 8 threads) vs IVDE depth estimation

(parallelization using 2 threads, 50 000 segments per view).

Test

sequence M
et

h
o

d

IV-

PSNR

(dB)

∆IV-

PSNR

(dB)

Y-

PSNR

(dB)

∆Y-

PSNR

(dB)

U-

PSNR

(dB)

∆U-

PSNR

(dB)

V-

PSNR

(dB)

∆V-

PSNR

(dB)

Time

per one

view

and

frame

(sec)

Memory

per one

view

(GB)

IntelFrog

RDE 38.26 5.62 27.84 5.62 42.36 3.93 41.18 4.72 168.8 3.4

IVDE 36.90 5.01 26.80 5.53 41.86 4.21 39.99 4.49 42.6 0.2

Diff -1.36 -0.61 -1.04 -0.09 -0.50 0.28 -1.19 -0.23 -126.2 -3.2

Orange

Dancing

RDE 42.54 3.84 32.09 3.84 49.75 3.24 51.48 3.73 107.3 6.1

IVDE 41.42 2.79 30.22 3.52 48.71 2.54 50.65 3.49 12.1 0.2

Diff -1.12 -1.04 -1.87 -0.31 -1.05 -0.70 -0.83 -0.24 -95.2 -5.9

Orange

Kitchen

RDE 39.17 7.15 31.38 7.15 46.84 8.67 49.20 11.60 136.5 4.9

IVDE 41.02 4.46 32.29 4.90 47.22 8.64 49.60 12.12 15.4 0.2

Diff 1.84 -2.69 0.91 -2.25 0.38 -0.03 0.41 0.51 -121.1 -4.7

Orange

Shaman

RDE 46.34 6.82 38.72 6.82 48.46 7.97 46.39 7.56 108.0 4.7

IVDE 46.10 5.28 37.52 6.16 48.08 6.50 46.00 6.17 17.1 0.2

Diff -0.24 -1.55 -1.21 -0.66 -0.38 -1.46 -0.39 -1.39 -90.9 -4.5

Poznan

Fencing

RDE 38.34 2.76 30.13 2.76 45.44 2.16 44.56 1.97 309.8 6.1

IVDE 39.46 3.74 29.17 4.03 44.93 3.11 44.11 2.73 42.9 0.2

Diff 1.12 0.98 -0.96 1.27 -0.51 0.95 -0.45 0.76 -266.9 -5.9

Technicol

orPainter

RDE 40.38 7.30 31.70 7.30 45.52 5.61 44.46 6.69 170.3 5.8

IVDE 40.57 6.44 32.61 5.58 45.85 5.38 44.91 6.36 35.4 0.2

Diff 0.19 -0.85 0.91 -1.71 0.32 -0.23 0.46 -0.33 -134.9 -5.6

ULBBaby

Unicorn

RDE 34.33 8.66 27.37 8.66 37.70 9.50 36.98 7.49 1102.6 17.1

IVDE 35.01 7.80 27.67 8.18 38.03 6.33 37.61 4.49 36.5 0.2

Diff 0.69 -0.86 0.30 -0.48 0.34 -3.16 0.63 -3.00 -1066.1 -16.9

ULBUnic

ornA

RDE 40.14 3.79 30.96 3.79 43.84 2.65 44.04 2.66 285.0 7.7

IVDE 38.96 3.43 28.93 3.32 42.89 2.77 43.27 2.48 56.6 0.2

Diff -1.18 -0.36 -2.03 -0.48 -0.95 0.12 -0.76 -0.18 -228.4 -7.5

ULBUnic

ornB

RDE 40.78 2.11 31.96 2.11 44.29 1.68 44.62 1.41 318.1 9.7

IVDE 40.06 2.83 29.98 3.11 43.88 2.13 43.98 1.79 57.3 0.2

Diff -0.72 0.72 -1.98 1.00 -0.41 0.45 -0.64 0.38 -260.8 -9.5

Average

RDE 40.03 5.34 31.35 5.34 44.91 5.04 44.77 5.32 300.7 7.3

IVDE 39.94 4.64 30.58 4.93 44.60 4.62 44.46 4.90 35.1 0.2

Diff -0.09 -0.70 -0.77 -0.41 -0.30 -0.42 -0.31 -0.41 -265.6 -7.1

Table 4. RDE (parallelization using 8 threads) vs IVDE depth estimation

(parallelization using 2 threads, 50 000 segments per view) and IVDE depth estimation

(parallelization using 2 threads, 150 000 segments per view)

The presented results show that the objective quality of RDE and IVDE is very similar. However, results

show that IVDE achieves:

 smaller deltas of PSNR – result of simultaneous estimation for all input views, depth maps are also

much more inter-view consistent,

 much shorter time of depth estimation (per one view and frame),

 much smaller memory consumption, dependent only on number of cameras and number of

segments per view

Moreover, all configuration parameters, except for one (SmoothingCoefficient) are common for all the

sequences. Below, the results of TMIV with automatic calculation of this coefficient were added.

Table 5. IVDE depth estimation (parallelization using 2 threads, 50 000 segments per view) and IVDE

depth estimation with automatic smoothing coefficient calculation (parallelization using 2 threads,

150 000 segments per view)

Method

IV-

PSNR

(dB)

∆IV-

PSNR

(dB)

Y-PSNR

(dB)

∆Y-

PSNR

(dB)

U-PSNR

(dB)

∆U-

PSNR

(dB)

V-PSNR

(dB)

∆V-

PSNR

(dB)

Time per

one view

and

frame

(sec)

Memory

per one

view

(GB)

RDE 40.03 6.84 31.35 5.34 44.91 5.04 44.77 5.32 300.7 7.3

Diff

IVDE

(150k)
0.23 -0.30 -0.37 -0.47 -0.09 -0.25 -0.09 -0.21 -153.6 -6.7

IVDE

(50k)
-0.09 -0.70 -0.77 -0.41 -0.30 -0.42 -0.31 -0.41 -265.6 -7.1

Method

IV-

PSNR

(dB)

∆IV-

PSNR

(dB)

Y-PSNR

(dB)

∆Y-

PSNR

(dB)

U-PSNR

(dB)

∆U-

PSNR

(dB)

V-PSNR

(dB)

∆V-

PSNR

(dB)

Time per

one view

and

frame

(sec)

Memory

per one

view

(GB)

IVDE 40.27 6.54 30.98 4.87 44.82 4.79 44.67 5.11 147.1 0.5

IVDE auto

smoothing
40.11 6.30 31.00 4.82 44.85 4.76 44.67 4.89 166.4 0.5

RDE IVDE (50k) IVDE (150k)

Intel Frog

Orange Dancing

Orange Kitchen

Orange Shaman

Poznan Fencing

Technicolor Painter

ULB Baby Unicorn

ULB Unicorn A

ULB Unicorn B

4 Overview of software
The software is written in C++, uses OpenMP parallelization, and does not require any additional libraries.

Depth estimation for perspective and omnidirectional videos (full 360 only at this moment) is possible.

Possible input textures are 8-bit, cf 420 and cf 444. The package includes configuration files for all tested

sequences.

5 Conclusion

The document provides a brief description of the technique and software IVDE for depth estimation from

perspective and omnidirectional video, in particular for 3DoF+ and beyond. Full source code of the method

is provided for the MPEG-I activities.

The proposal shows very good performance in terms of quality of depth maps and computational

complexity. Estimated depth maps are also inter-view consistent, what significantly increases the subjective

quality of virtual navigation. Moreover, the method achieves high quality of depth maps for unified

configuration files (with only one parameter changed).

6 Recommendations

We propose:
 to make this software a new/additional reference software for depth estimation,

 to change the znear value for ULBBabyUnicorn.

Acknowledgement

This work was supported by Institute of Information & Communications Technology Planning &

Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00207, Immersive Media

Research Laboratory).

References

[1] D. Mieloch, O. Stankiewicz and M. Domański, "Depth Map Estimation for Free-Viewpoint

Television and Virtual Navigation," IEEE Access, vol. 8, pp. 5760-5776, 2020.

[2] R. Achanta and S. Süsstrunk, “Superpixels and Polygons using simple non-iterative clustering,” in

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp.

4895–4904.

[3] Common Test Conditions for Immersive Video, ISO/IEC JTC1/SC29/WG11 MPEG2019/N18997,

Brussels, January 2020.

[4] Exploration Experiments for MPEG-I Visual: 6DoF, ISO/IEC JTC1/SC29/WG11

MPEG2019/N18998, Brussels, January 2020.

[5] Jaime Sancho, Takanori Senoh, Ségolène Rogge, Daniele Bonatto, Rubén Salvador, Eduardo Juarez,

Adrian Munteanu, Gauthier Lafruit, “[MPEG-I Visual] RDE fine-tuning to achieve DERS 8.0

performance”, ISO/IEC SC29/WG11 MPEG2020/M52135, Brussels, January 2020.

[6] V. Kolmogorov and R. Zabin, "What energy functions can be minimized via graph cuts?," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147–159, Feb. 2004.

[7] D. Mieloch, “[MPEG-I Visual] Estimated depth maps for ClassroomVideo sequence”, ISO/IEC

SC29/WG11 MPEG2020/M53567, Online, April 2020.

