
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG4

MPEG VIDEO CODING

ISO/IEC JTC1/SC29/WG4 MPEG/M54896

June 2020, Online

Source Poznań University of Technology (PUT), Poznań, Poland

Status Input

Title Even faster implementation of IV-PSNR software

Authors Jakub Stankowski, Adrian Dziembowski

Abstract
This document presents faster version of IV-PSNR software.

1 Introduction
In IV-PSNR the quality is calculated as pixel to block comparison. With 5×5 block and two-

directional comparison (A vs. B, B vs. A), it requires 50 comparisons instead of 1 for typical PSNR.

The goal of creating IV-PSNR v2.1 was to further decrease computational time (when compared

to IV-PSNR v2.0) without changing the output and introduce a new set of features.

Source code for IV-PSNR v2.1 is available on MPEG Git repository (v2.1 tag).

2 IV-PSNR v2.1 software features
The IV-PSNR v2.1 software was developed as improved version of IV-PSNR v2.0.

2.1 Parallel processing
Calculation of IV-PSNR metric have been parallelized by using multiple computing threads. The

parallel version uses OpenMP API. The number of threads could be set on runtime by

commandline parameter or determined automatically (by detection of the number of CPU logical

cores).

2.2 New functionalities

Calculation of PSNR and WS-PSNR have beed introduced. Since, computational complexity of

PSNR and WS-PSNR metrics is neglible, we decided to include them in IV-PSNR v2.1 software.

It allows to calculate a set of all metrics at a single pass, resulting in reduction of experiment

complexity and filesystem burden.

2.2.1 Implementation details – PSNR

The distortion for entire component plane is accumulated in integer numbers domain. Therefore,

all floating point inaccurancy errors are eliminated during SSD (sum of squared differences)

calculation step.

The quality values for each frame are buffered and accumulated using Kahanand-Babuska-

Neumaier summation algorithm.

2.2.2 Implementation details – WS-PSNR

Similar to IV-PSNR calculation, the distortion values for each picture row (multiplied by WS

weight) are buffered and accumulated using Kahanand-Babuska-Neumaier summation algorithm

in order to improve accurancy.

The quality values for each frame are buffered and accumulated using Kahanand-Babuska-

Neumaier summation algorithm.

When compared to [N18069], the choma pixel vertical position (and corresponding value of WS

weight) have been corrected. However, the difference in results is negligible.

Fig. 1. WS weights for 4:2:0 video: WS-PSNR software (left column) and IV-PSNR v2.1 (right).

In order to emulate behavior of WS-PSNR software (signal peak value set to 1020), the

WSPSNR_COMPATIBILITY compile-time flag has been implemented.

2.3 Fixed issues
Fixed incorrect WS-weight calculations for ERP sequences with non-180 lateral range (additional

commandline parameters –lor and –lar added).

2.4 Commandline arguments formatting

In order to improve comandline arguments clarity and robustness, the new position-independent

arguments format have been introduced. The previous (IV-PSNR v2.0 and older) positional

comandline arguments format have been preserved for compatibility reasons, howewer it is

expected to be removed in future.

w0 YCbCr Y YCbCr Y YCbCr Y YCbCr Y YCbCr Y

w1 Y Y Y Y Y Y Y Y Y Y

w2 YCbCr Y YCbCr Y YCbCr Y YCbCr Y YCbCr Y

w3 Y Y Y Y Y Y Y Y Y Y

w4 YCbCr Y YCbCr Y YCbCr Y YCbCr Y YCbCr Y

w5 Y Y Y Y Y Y Y Y Y Y

w6 YCbCr Y YCbCr Y YCbCr Y YCbCr Y YCbCr Y

w7 Y Y Y Y Y Y Y Y Y Y

w0 Cb Cb Cb Cb Cb

w2 Cb Cb Cb Cb Cb

w4 Cb Cb Cb Cb Cb

w6 Cb Cb Cb Cb Cb

w0.5 Cb Cb Cb Cb Cb

w2.5 Cb Cb Cb Cb Cb

w4.5 Cb Cb Cb Cb Cb

w6.5 Cb Cb Cb Cb Cb

w0 Cr Cr Cr Cr Cr

w2 Cr Cr Cr Cr Cr

w4 Cr Cr Cr Cr Cr

w6 Cr Cr Cr Cr Cr

w0.5 Cr Cr Cr Cr Cr

w2.5 Cr Cr Cr Cr Cr

w4.5 Cr Cr Cr Cr Cr

w6.5 Cr Cr Cr Cr Cr

2.5 YUV file reader changes
Detection of corrupted YUV files have been implemented. In case of corrupted file the error will

be reported and application will exit returning EXIT_FAILURE.

2.6 Optimization
All data processing routines have been rewritten to made auto-vectorization possible. Threfore, it

is highly encouraged to enable vector extesions at compile time (using -mtune and -march

switch in GCC/LLVM or using /arch switch in MSVC)

3 Application parameters

3.1 Commandline parameters
Position independent commandline parameters reference:

General parameters
Cmd ParamName Description

-i0 InputFile0 YUV file path – reference

-i1 InputFile1 YUV file path – tested

-w PicturWidth Width of sequence

-h PicturHeight Height of sequence

-bd BitDepth Bit depth (optional, default: 8, up to 14)

-cf ChromaFormat Chroma format (optional, default: 420) [420, 444]

-s0 StartFrame0 Start frame (optional, default: 0)

-s1 StartFrame1 Start frame (optional, default: 0)

-l NumberOfFrames Number of frames to be processed (optional, default: -1 = all)

Equirectangular parameters
Cmd ParamName Description

-erp Equirectangular Equirectangular sequence (flag, default disabled)

-lor LonRangeDeg Longitudinal range of ERP sequence [°] (optional, default: 360)

-lar LatRangeDeg Lateral range of ERP sequence [°] (optional, default: 180)

Application parameters
Cmd ParamName Description

-t NumberOfThreads Number of worker threads if compiled with OpenMP

(optional, default: -1 = all, suggested 4-8)

-v VerboseLevel Verbose level (optional, default: 2)

VerboseLevel description
Value Printed data

0 final PSNR, WS-PSNR, IV-PSNR values only

1 0 + configuration + detected number of frames

2 1 + argc/argv + frame level PSNR, WS-PSNR, IV-PSNR

3 2 + computing time (LOAD, PSNR, WS-PSNR, IV-PSNR)

(uses high resolution clock, could slightly slow down computations)

4 3 + IV-PSNR specific debug data (GlobalColorShift, R2T+T2R)

3.2 Compile-time parameters
The IV-PSNR v2.1 include a set of compile time parameters. Those parameters are defined in

CommonDef.h file:

 USE_KBNS – Enables the usage of Kahanand-Babuska-Neumaier summation algorithm. (default

= enabled)

 USE_FIXED_WEIGHTS – Enables faster 5×5 block search with fixed components weight (equal

to 4:1:1). In case of different components weight are to apllied, this switch has to be disabled.

(default = enabled)

 WSPSNR_COMPATIBILITY – Changes signal peak value from 1023 to 1020 (default = disabled)

4 Compilation requirements
The IV-PSNR v2.1 software uses following external components:

 “Formatting library for C++ “ (libfmt) – distributed under BSD licence and included in IV-PSNR

source package

 OpenMP API (optional) – expected to be a part of build envirioment

In order to build the software, the ISO C++17 conformant compiler is required.

5 Results

Both versions of IV-PSNR were compared on TMIV6.0 anchor results. Full results are attached in

the .xlsx file.

5.1 Measured quality differences

5.1.1 IV-PSNR values for SC

 IV-PSNR difference [dB]

Minimum -0.8242

Maximum -0.5039

Average -0.6680

All the differences are an effect of fixed incorrect WS-weight calculation for ERP sequences

(section 2.3).

5.1.2 Chroma WS-PSNR values for omnidirectional content

 WS-PSNRU difference [dB]

Sequence SA SB SC SN

Minimum 0.0012 -0.0044 -0.0001 -0.0005

Maximum 0.0018 0.0033 0.0001 0.0110

Average 0.0016 -0.0007 0.0001 0.0009

 WS-PSNRV difference [dB]

Sequence SA SB SC SN

Minimum 0.0010 -0.0032 0.0000 -0.0002

Maximum 0.0014 0.0045 0.0002 0.0068

Average 0.0012 0.0003 0.0001 0.0008

All the differences are an effect of fixed choma pixel vertical position (section 2.2.2).

5.1.3 WS-PSNR values for all sequences with disabled WSPSNR_COMPATIBILITY

 WS-PSNRY

difference [dB]

Minimum 0.02550

Maximum 0.02560

Average 0.02551

All the values generated by IV-PSNR v2.1 with disabled WSPSNR_COMPATIBILITY (section

3.2) are higher than values generated by WS-PSNR software [N18069] by a constant offset 𝑜:

𝑜 = 10 log10 10232 − 10 log10 10202 ≅ 0.02550924 .

When WSPSNR_COMPATIBILITY is enabled, all the WS-PSNRY values are exactly the same

as ones generated using WS-PSNR software. However, regarding the fact, that values from range

[1021, 1023] are valid and can be found in content being used (e.g. some reflections in SJ), we

recommend to keep this switch disabled.

5.2 Processing time comparison
Calculated using 6-core CPU.

Seque

nce

Processing time [s] Time reduction Speedup

IV-PSNR

v1.0

IV-PSNR

v2.0

IV-PSNR

v2.1

v1.0

v2.0

v2.0

v2.1

v1.0

v2.1

v1.0

v2.0

v2.0

v2.1

v1.0

v2.1

SA 257.36 84.64 17.05 67% 80% 93% 3.04 4.96 15.10

SB 127.48 42.01 8.63 67% 79% 93% 3.03 4.87 14.78

SC 235.01 83.77 17.02 64% 80% 93% 2.81 4.92 13.80

SD 66.88 22.30 4.62 67% 79% 93% 3.00 4.83 14.49

SE 59.95 17.69 3.83 70% 78% 94% 3.39 4.61 15.64

SJ 56.67 17.71 3.86 69% 78% 93% 3.20 4.59 14.69

SL 56.53 17.73 3.87 69% 78% 93% 3.19 4.59 14.62

Total 859.88 285.84 58.87 68% 79% 93% 3.09 4.86 14.61

6 Acknowledgement
This work was supported by the Ministry of Science and Higher Education.

7 Recommendations
We recommend:

 to use IV-PSNR v2.1 instead of v2.0,

 to change Peak_value_of_10bits parameter for WS-PSNR software from 1020 to 1023,

 to calculate WS-PSNR values using IV-PSNR software.

8 References
[N18069] “WS-PSNR Software Manual”

 ISO/IEC JTC1/SC29/WG11 MPEG/N18069, October 2018, Macao, China.

[N19495] “Software manual of IV-PSNR for Immersive Video”

 ISO/IEC JTC1/SC29/WG11 MPEG/N19495, July 2020, Online.

