10 isc

Joint Collaborative Team on 3D Video Coding Extension Development
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
6th Meeting: Geneva, CH, 25 Oct. — 1 Nov. 2013

Document:
JCT3V-F1001-v4

Title: 3D-HEVC Draft Text 2
Status: Output Document of JCT-3V
Purpose: 3D-HEVC working draft
Author(s) or Gerhard Tech Email: gerhard.tech@hhi.fraunhofer.de
Contact(s): Fraunhofer HHI
Krzysztof Wegner Email: kwegner@multimedia.edu.pl
Poznan University of Technology
Ying Chen Email: cheny@qti.qualcomm.com
Qualcomm Incorporated
Sehoon Yea Email: sehoon.yea@lge.com

LG Electronics
Source: Editor

3D-HEVC

ABSTRACT

Draft 2 of 3D-HEVC

----------- Release v4 -----------

Accepted change marks.

----------- Release v3 -----------

(3DC-41) Disabling Sub PU Iv MVP for depth

(3DC-40) Review GT

(3DC-39) Review CY

(3DC-38) Fix related to FO105.

(3DC-37) Fix #49 Ticket Mismatch in VSP horSplitFlag derivation between WD and HTM

(3DC-36) Review GT

(3DC-35/JCT3V-F0123, JCT3V-F0108) Harmonize FO0108/F0123 according to the above for inter-view ARP.
(3DC-34/JCT3V-F0131, JCT3V-F0139, JCT3V-F0138) DLT related: including F0131, F0139 and moving DLT from
VPS to PPS.

(3DC-33) Review CY

——————————— Release v2 -----------

(3DC-32) Review GT

(3DC-31) Review GT

(3DN-30/JCT3V-F0093) CE3.h: Results on simple merge candidate list construction for 3DV. It was agreed to add
the condition on numMergeCand from F0129.Decision: Adopt FO093 with modifications of F0129

(3DE-29) Cleanup merge list generation 2: Removed VSP flag list

(3DE-28) Cleanup merge list generation 1: Introduced equal motion function.

(3DC-27) Fixes related to F1001.

(3DC-26) Fix vps_inter_sdc_flag.

(3DC-25) Fix number extra merge candidates F1001.

——————————— Release v1 -----------

(3DN-24/JCT3V-F0160) Non-CE: Illumination compensation flag coding ; Decision: Adopt
(3DN-23/JCT3V-F0151) HLS: Removal of IC in depth coding and IC flag signalling in 3D-HEVC; Decision:
Remove IC for depth map coding, no change for texture coding.

(3DN-22/JCT3V-F0082) HLS: On slice-level camera parameter signaling ;Decision: Adopt the second solution: the
cp_in_slice_segment_layer flag to be view specific and used as a condition of the presence of slice header level
camera parameters.

(3DN-21/JCT3V-F0136) Comments on camera parameters in 3D-HEVC, Decision: Adopt (harmonized
F0136/F0045)

(3DN-20/JCT3V-F0044) HLS: HEVC compatible slice segment header in 3D-HEVC; Decision: Adopt the proposal
to move the camera parameters from slice header extension to some place before the slice header extension in slice
header under the condition of nuh_layer_id unequal to O. If changes are to be made, the MV CompatibleFlag should
also be part of the condition.

(3DN-19/JCT3V-F0045) HLS: Constraints on camera parameter signaling; Decision (BF): Add missing brackets in
the loop related to the camera parameter signaling.

(3DN-18/JCT3V-F0105) CE4: ARP reference picture selection and its availability check ;One aspect suggests to use
the first temporal reference picture instead of the first entry in each reference picture list (same as F0123). Another
aspect proposes to check whether ARP fixed reference picture is in DPB marked as “used for reference”, which is
explicitly indicated in reference layer’s RPS. The text was revised from the original proposal to have a slice level
check. Decision: Adopt

(3DE-17) Added General decoding process for prediction units in inter prediction mode

(3DN-16/JCT3V-F0110) CE3: Sub-PU level inter-view motion prediction. Decision: Adopt, specify 8x8 in CTC
(3DN-15/JCT3V-F0125) CE3: Inter-view motion vector prediction for depth coding Decision: Adopt F0125.
(3DN-14/JCT3V-F0111) CE1: Simplified view synthesis prediction Decision: Adopt both simplifications suggested
in FO111.

(3DN-13/JCT3V-F0104) CE3: Removal of redundancy on VSP, ARP and IC Decision: Adopt F0104 (without
IC_ARP_DEPEND)Item 2 has already been decided to study in CE as per the discussion in CEA4.
(3DN-12/JCT3V-F0161) CE4: Coding of weighting factor of advanced residual prediction; Decision: Adopt.
(3DE-11 Ed. five_minus_max_num_merge_cand) Added updated semantics of five_minus_max_num_merge_cand
from HEVC version 1.

(3DN-10/JCT3V-F0150) CE3: MPI candidate in depth merge mode list construction Decision: Adopt (option 1)

3D-HEVC

http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1460
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1445
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1468
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1476
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1475
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1428
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1498
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1489
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1417
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1473
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1379
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1380
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1442
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1447
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1462
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1448
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1441
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1499
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1488

3D-HEVC

(3DN-09/JCT3V-F0109,JCT3V-F0120) CE1: A simplified block partitioning method for view synthesis prediction
Decision: Adopt (F0109/F0120) (Identical)

(3DN-08/JCT3V-F0102) CE1: VSP partitioning for AMP Decision: Adopt F0102

(3DN-07/JCT3V-F0115) CE2: Problem fix of the DV derivation in 3D-HEVC Decision: Adopt the suggested
solution which aligns the text with the software bug fix.

(3DN-06/JCT3V-F0149) CES5: Simplified depth inter mode coding; Adoption (BF): Align the text with software as
suggested in FO149.

(3DN-05/JCT3V-F0147) CE5: DMM simplification and signalling Decision: Adopt (remove DMM3 and RBC).
(3DN-04/JCT3V-F0159) CES5: Fast depth lookup table application method to intra modes for depth data ;Decision:
Adopt F0159 method 3. Implement an enabling flag at (position t.b.d.).

(3DN-03/JCT3V-F0132) CE5: Unification of delta DC coding for depth intra modes.

(3DN-01/JCT3V-F0171) CE5: Fix for DMM/RBC reference sample filtering.

(3DC-00 Review GT)

Draft 1 of 3D-HEVC
Ed. Notes (Draft 1) (changes compare to JCT3V-D1005)

----------- Release v3 -----------

Accepted change marks.

——————————— Release v2 -----------

(3DC-04) Fix disparity derivation

(3D-GT6) Review, cleanups.

(3DC-03) Update definitions.

(3DC-02/JCT3V-E0159) Removal further unused parts of overlap between DMM1 and DMM3.
(3DC-01 Fix refldx for VSP)

(3DN-22/JCT3V-E0172) Added missing dv-scaling of item 3.

(3DC-GT5) Revised editors comments. Cleanups. Fixed ticket #41, #42, #43

(3DE-02) Update to HEVC version 1

——————————— Release v1 -----------

(3DN-GT3) Cleanups

(3DE-CY1): Review and editorial improvements.

(3DN-23/JCT3V-E0163) Camera parameter presence indication.

(3DN-22/JCT3V-E0172/Items 3+4) CE2: VSP Fix

(3DC-GT?2) Fix tickets #35, #30, #32, #33, #34, #37

(3DN-21/JCT3V-E0126) CE3: Merge candidates derivation from vector shifting.
(3DN-20/JCT3V-E0142,JCT3V-E0190) CE2: Simplified NBDV and improved disparity vector derivation
(3DN-19/JCT3V-E0207) + JCT3V-E0208 CE1: Adaptive block partitioning for VSP and clipping.
(3DN-18/JCT3V-E0141) CE2: Clipping in depth-based disparity vector derivation
(3DN-17/JCT3V-E0156) CE6: Simplified Inter Mode Coding of Depth Decision

(3DE-01) Added Decoding process for the residual signal of coding units coded in inter predmode from base spec
(3DN-16/JCT3V-E0034) HLS: Revision of the Alternative Depth Info SEI message
(3DN-15/JCT3V-E0160) HLS: Make 3D-HEVC Compatible with MV-HEVC Adopt (solution 2)
(3DN-14/JCT3V-E0134) HLS: Signalling of camera parameters.

(3DN-13/JCT3V-E0057) HLS: On parameter sets. Adopt View Id aspect

(3DN-12/JCT3V-E0104) HLS: Only portion that swaps multiview and depth flag in scalability dimension
(3DN-11/JCT3V-E0182) CE3: A bug-fix for the texture merging candidate

(3DC-GT1) Review and editorial improvements

(3DN-10/JCT3V-E0172/Item 5) CE2: Disparity inter-view motion vector derivation
(3DN-10/JCT3V-EQ172/Item 7) CE2: DVMCP Fix

(3DN-09/JCT3V-E0170) CE3: Motion data buffer reduction for 3D-HEVC Decision: Adopt (first scheme)
(3DN-08/JCT3V-E0117) CE6: Simplified DC calculation for SDC

(3DN-07/JCT3V-E0242) CE5: On DMM simplification

(3DN-06/JCT3V-E0204) CES5: Simplified Binarization for depth_intra_mode
(3DN-05/JCT3V-E0159) CE5: Removal of Overlap between DMM1 and DMM3
(3DN-04/JCT3V-E0158) CE6: Removal of DC from SDC Mode

(3DN-03/JCT3V-E0146) CE5: DMM simplification and signalling. Remove DMMZ2.
(3DN-02/JCT3V-E0168) CE4: Complexity reduction of bi-prediction for illumination compensation
(3DN-01/JCT3V-E0046) CE4: Resampling in IC parameter derivation and 4x4 Chroma removal

Decision: Adopt: JCT3V-E0046

3D-HEVC 3

http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1446
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1457
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1439
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1452
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1487
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1485
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1497
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1469
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1509
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1173
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1186
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=1177
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1186
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1140
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1156
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=1204
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1221
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1155
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1170
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1043
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1174
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1148
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1067
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1116
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1196
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1186
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1186
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1184
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1130
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1258
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1218
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1173
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1172
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1160
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1182
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=1056

3D-HEVC

Ed. Notes (TM4) (changes compare to JCT3V-C1005):

——————————— Release v4 -----------

Accepted all change marks.

----------- Release v3 -----------

(3DC-GT4) Review and editorial improvements

----------- Release v2 -----------

(3DN-22/JCT3V-D0166) On reference view selection in NBDV and VSP

(3DC-01 availableFlagDV) Fixed availability flag for disparity vector.

(3DC-GT3) Review and editorial improvements

(3DC-CY1) Review and editorial improvements

——————————— Release v1 -----------

(3DC-GT2) Clean-up of variables not used any more (related to disparity derivation)
(3DN-21/D0220/Viewld) Viewld not reflecting coding order any more.
(3DN-20/JCT3V-D0272) Signaling Global View and Depth

(3DN-19/JCT3V-D0103) Signaling Warp Maps as an Alternative 3D Format
(3DN-18/JCT3V-D0032/JCT3V-D0141/JCT3V-D0034) SDC Residual CABAC contexts.
(3DN-17/JCT3V-D0035) DLT for DMM deltaDC coding

(3DN-16/JCT3V-D0195) Unification of new intra modes in 3D-HEVC
(3DN-15/JCT3V-D0193) Clean-up for 64x64 SDC

(3DN-14/JCT3V-D0183) Simplified DC predictor for depth intra modes
(3DN-13/JCT3V-D0110) Sample-based simplified depth coding.
(3DN-12/JCT3V-D0060) Removal of parsing dependency for illumination compensation
(3DN-11/JCT3V-D0122) AMVP candidate list construction

(3DN-10/JCT3V-D0091) Inter-view SAO process in 3DV coding
(3DN-09/JCT3V-D0177) Advanced residual prediction for multiview coding
(3DN-08/JCT3V-D0138) Simplified DV derivation for DONBDV and BVSP
(3DN-07/JCT3V-D0112) Default disparity vector derivation

(3DN-06/JCT3V-D0105) BVSP NBDV

(3DN-05/JCT3V-D0191) Clean-ups for BVSP in 3D-HEVC.

(3DN-04/JCT3V-D0092) CE1.h related: BVSP mode inheritance

(Incorporated 8.5.2.1.3 from base spec) Derivation process for combined bi-predictive merging candidates.
(3DN-03/JCT3V-D0181) CE2.h related: CU-based Disparity Vector Derivation
(Incorporated 8.5 from base spec)

(3DN-02/JCT3V-D0135) CE5: Unification of disparity vector rounding
(3DN-01/JCT3V-D0156): HLS for stereo compatibility.(Also covers disabling of VSP for depth as proposed in
D0105 and D0139).

(3DC-GT1) Editorial improvements, small corrections.

Ed. Notes (TM3) (changes compare to JCT3V-B1005):

(3Dc-04) Revised text related to edge intra.

(3DC-GT?2) Editorial improvements, small corrections.(among others tickets #21 #22)
----------- Release d0 -----------

Converted to .doc- File

Split of Test Model text and specification text

(3DE-05) Alignment with MVV-HEVC draft 3.

(3DE-01) Reordered sub-clauses related to disparity estimation and additional motion candidates.
(3DN-20) Alignment of JCT3V-C0152 + JCT3V-C0137.

(3DN-07/JCT3V-C0137) Texture motion vector candidate for depth.
(3DN-07/JCT3V-C0137) Removal of MPI.

(3DN-19) Camera parameters

(3Dn—-03) Wedgelet pattern generation process.

(3Dn-01) Incorporated missing intra-predicted wedgelet partition mode
(3DN-08/JCT3V-C0138) Removal of parsing dependency for inter-view residual prediction.
(3DN-18/JCT3V-C0160) QTL disabled for RAP.

(3DN-17/JCT3V-C0154) Reference sub-sampling for SDC and DMM.

(3Dc-03) Fix SDC

(3DN-16/JCT3V-C0096) Removal of DMM 2 from SDC.

(3DN-15/JCT3V-C0034) Delta DC processing for DMMs.

(3DN-14/JCT3V-C0044) Signalling of wedgeldx for DMM3.
(3DN-02/JCT3V-C0152) View synthesis prediction (without disparity derivation part).

3D-HEVC

http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=851
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=907
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=960
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=788
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=716
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=826
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=718
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=719
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=880
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=878
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=868
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=795
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=744
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=807
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=776
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=862
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=823
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=797
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=790
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=876
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=777
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=866
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=820
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=841
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=594
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=578
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=578
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=578
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=579
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=604
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=596
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=535
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=467
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=481
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=594

3D-HEVC

(3DN-03/JCT3V-C0112) Restricted search of max disparity.

(3DN-01,02/JCT3V-C0131,JCT3V-C0152) Disparity derivation from depth maps.

(3Dc-02) Incorporated missing conditions of long/short-term pictures in AMVP (related to JCT3V-B0046).
(3DN-13/JCT3V-C0116)_Inter-view vector scaling for AMVP.

(3DE-03) Incorporated derivation process for AMVP from base spec.

(3DN-12/JCT3V-C0115) Signalling of inter-view motion vector scaling.

(3DE-02) Incorporated TMVP text from base spec.

(3DN-09/JCT3V-C0047) Alternative reference index for TMVP.

(3DN-10/JCT3V-C0051) Unification of inter-view candidate derivation.

(3DE-01) Revised text related to residual prediction.

(3DN-06/JCT3V-C0129) Vertical component in residual prediction.
(3DN-05/JCT3V-C0097/JCT3V-C0141) Temporal blocks first in DV derivation.

(3DC-GT1) Editorial improvements, small corrections.

(3DN-04/JCT3V-C0135) Restriction on the temporal blocks for memory bandwidth reduction in DV derivation.
(3Dn-02) Full sample MV accuracy for depth.

(3DN-11/JCT3V-C0046) Extension of illumination compensation to depth.

(3Dc-01) Fix Hlumination compensation (including ic_flag for skip).

Ed. Notes (TM2) (changes compared to JCT3V-A1005)

Accepted changes and marked delta to base spec

(3DC-GT?2) Editorial improvements, small corrections

(3DC-CY) Editorial improvements, small corrections

(MVS-02/JCT3V-B0046) Treatment of inter-view pictures as long term- reference pictures
(3DE-11) Revised text related to 3Dn-01

(3Dn-01/m23639) Results on motion parameter prediction

(3DE-12) Revised text related residual prediction

(3DE-10) Revised text Related to Illumination compensation.

(3DN-01/JCT3V-B0045) lllumination compensation for inter-view prediction.
(3Dn-02/m24766) Restricted Inter-View Residual Prediction

(3DE-09) Revised text related to depth intra: Edge Intra

(3DE-09) Revised text related to depth intra: SDC

(3DE-09) Revised text related to depth intra: DMMs

(3D0O-01/JCT3V-B0131) Depth distortion metric with a weighted depth fidelity term
(3DN-12/JCT3V-B0036) Simplified Depth Coding with an optional Depth LUT
(3DN-13/JCT3V-B0039) Simplified Wedgelet search for DMM modes 1 and 3
(3DN-03/JCT3V-B0083) Unconstrained motion parameter inheritance

(3DE-08) Incorporated context tables for SDC

(3DE-07) Improved MPI text.

(3DN-02/JCT3V-B0068) Incorporated Depth Quadtree Prediction.

(3DE-06) Incorporated parsing process, including tables for DMMs.

(3DE-05) Added missing initialization of invalid motion/disparity parameters

(3DC-03) Added missing pruning of collocated merge candidate due to number of total candidates.
(3DE-04) Moved pruning of spatial merge candidate B2 due to number of total candidates.
(3DE-03) Moved derivation of disparity one level higher in process hierarchy.

(3DE-02) Inserted "Derivation process for motion vector components and reference indices" from base spec
(3DC-02) Fixed storage of lvpMvFlagLX and IvpMvDisp.
(3DN-09-10-11/JCT3V-B0048,B0069,B0086) Modification inter-view merge candidates
(3DC-01) Fixed derivation of inter-view merge candidates.

(3DE-01) Revised derivation of disparity from temporal candidates
(3DN-04/JCT3V-B0047) Improvements for disparity vector derivation)
(3DN-08/JCT3V-B0136) Support of parallel merge in disparity vector derivation
(3DN-05/JCT3V-B0135) Modified disparity vector derivation process for memory reduction
(3DN-04/JCT3V-B0111) Decoupling inter-view candidate for AMVP
(3DN-07/JCT3V-B0096) Removal of dependency between multiple PUs in a CU for DV-derivation
(3DC-GT) Small corrections, editorial improvements

Ed. Notes (TM1) (changes compare to N12744)

3D-HEVC

http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=551
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=572
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=594
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=235
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=555
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=554
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=485
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=489
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=570
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=536
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=582
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=576
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=484
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=235
http://phenix.int-evry.fr/mpeg/doc_end_user/current_document.php?id=36409&id_meeting=151
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=234
http://phenix.int-evry.fr/mpeg/doc_end_user/current_document.php?id=37712&id_meeting=152
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=340
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=224
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=228
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=288
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=271
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=237
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=272
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=291
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=236
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=345
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=344
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=320
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=301

6

(3D08/JCT3V-A0126) (T,N) Simplified disparity derivation

(3D16) Moved 3D-tool related flags from SPS to VPS, removal camera parameters
(3D09/JCT3V-A0049) (N) Inter-view motion prediction modification
(3D13/JCT3V-A0119) (T) VSO depth fidelity

(3D07/JCT3V-A0070) (T,N) Region boundary chain coding for depth maps
(3D06/JCT3V-A0087) (T) RDO selection between Non-Zero Residual and All-Zero Residual Intra
(3D12) (T) Depth Quadtree Prediction

(3D15) (N) Fix references

(3D11) (T,N) Improvement of text of already adopted tools

(3D10/JCT3V-A0097) (T;N) Disparity vector generation

(3D02) (N) Removed MV-Part and update to Annex F

(3D03) (T) Labelling of tools not in CTC/Software. Removal?
(3D05/JCT3V-A0093) (T) VSO early skip

(3D04/JCT3V-A0033) (T) VSO model based estimation

(3D14) (N) Update of low level specification to match HEVC text specification 8(d7)
(3D01) (N): Removed HEVC text specification

3D-HEVC

3D-HEVC

3D-HEVC

CONTENTS
AN 011 - T SO TR URO PR 2
LO00] 01 10| TSRS USSP 7
ST OF FIQUIES. ...ttt bbbt bt bbbt b et b b e b e bt b e bt Rt b e b e e b e b e b e b b e b e e b b e b e e b e b e bt e b b et eb b bt et n e 8
LSt OF TADIES ..t R Rt E Rt 8
Annex H 3D High Efficiency Vide0 COING.......cciiviiiieiieieiiie e sese e ee et se st se e s ente e ste e snesrasneensesaensessesnens 10
HoL SCOPE e s 10
H.2 NOIMALIVE FETEIENCES .. .cviviiceeiee et b et r ettt 10
H.3 DEFINILIONS ..o b bR et R Rt e Rt r Rt r et 10
[I AN o o] 1Y T 4[] LSOO PRSP 10
[IR T o 1Y/ T0 o] O URUUSRT 11
H.6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships 11
H.7 SYNTAX ANGA SEIMANTICS ...tttk b et bbb bbb bbb bbb b et bbbt b n e 11
H.7.1 Method of specifying syntax in tabular fOrm ..o 11
H.7.2 Specification of syntax functions, categories, and deSCriPLOrS.........coveiiireiiiireieere e 11
H.7.3 SyntaxX in tabUIAr FOIMooviiiii bbbt bbbt nre e 11
H.7.3.1 NAL UNKESYNTAX 1.ttt sttt sttt b et b et b e bbb bbb bbb bbbttt nb et nb e 11
H.7.3.2 Raw byte sequence payloads and RBSP trailing bitS SYNtaXccccceveviiiiiieniieiisie e 11
H.7.3.3 Profile, tier and IeVEl SYNTAXcoiviiii ittt ne e nneeee s 15
H.7.3.4 Scaling liSt data SYNTAXeiieieiiieie ettt e e te e te e te e e e s neesneenneeneeenes 16
H.7.3.5 Supplemental enhancement information Message SYNtAX.........cccvevvevveriieriesiesee e e e 16
H.7.3.6 Slice SEgMENt NEAUET SYNTAXviivieieiieciistie e et et e e te e ste et e st e e s e st e te e teestesneesnnesreenneeeeenes 17
H.7.3.7 Short-term reference PIiCture SEt SYNTAXcoeirerieiiieriee et 20
H.7.3.8 SIiCe SEgMENT JAA SYNTAXvirveiiitiiieiiiie etttk b et sb ettt nb e 20
o T o 1T oSO SSRS ORI 25
[T O €= 01T - | PSSR 25
H.7.4.2 NAL UNIT SEMANTICSovviieiieitieieiieieriesie sttt sttt e ettt eete e s e e e e e sbesreateaseeneeneeneeneeans 25
H.7.4.3 Raw byte sequence payloads, trailing bits, and byte alignment Semanticsc.ccccovervvrienciiiennnn. 25
H.7.4.4 Profile, tier and 16VEl SEMANTICSccociriiiiiirieiie e 30
[A T o | 1o TN 1T APPSR 30
H.7.4.6 Supplemental enhancement information message SEMANTICS.........cccccvieierieiieree e 30
H.7.4.7 Slice segment NEader SEMANTICSc..ccuiiiiiieie et ste e re et e st e e teestesee s e e sreesraereenes 30
H.7.4.8 Short-term reference picture SEt SEMANTICSccvveiiieiieiie e 31
H.7.4.9 SIICE data SEMANTICSeveieiriieiiitere ettt r et n e nr e 31
H.8 DECOUING PIOCESSeuetiteueatirteseetestes ettt ettt e bbb ehe st b es b b es kb e st b b e st e bbb e bt e b e bbbt b e b e e bt bbbt b r e 35
H.8.1 General deCOUING PrOCESSc.viviietiiterteieite ettt sttt sttt sttt b e bttt sb et ebesbe st eb e st e st e bt sbe e ebenbe e ebesre e 35
H.8.1.1 Decoding process for a coded picture with nuh_layer_id greater than 0cccoevvieniinenciiiennn 35
H.8.2 NAL UNIt AECOUING PrOCESS. .. ccvivetiitertiteiterieteste sttt sttt sttt st e et b ettt sbe et e sbe e et e s b et ebesbe e ebenbe e ebenbe e 35
H.8.3 SIICE JECOUING PrOCESSviveieititeteete ettt ettt b et b et b e bbb st b e s bttt sb et et s bt ebenre e 35
H.8.3.1 Decoding process for PiCtUre OFAEN COUNT........coiirieiieriei ettt 35
H.8.3.2 Decoding process for reference PICLUIE SEL........coveiiviiiiiiiie et 35
H.8.3.3 Decoding process for generating unavailable reference piCtures..........ccoovoeeieiininieneninieee e 35
H.8.3.4 Decoding process for reference picture listS CONSLIUCTIONooviiiieiiiiiiiie e 36
H.8.3.5 Derivation process for the candidate picture list for disparity vector derivationcc.cccccevenenenn 36
H.8.3.6 Decoding process for a depth 100KUpP table..........couoiiiiii 36
H.8.3.7 Derivation process for the alternative target reference index for TMVP in merge mode.................... 37
H.8.3.8 Derivation process for the default reference view order index for disparity derivation...................... 37
H.8.3.9 Derivation process for the target reference index for residual prediction...........ccccocvvvvvinveieiicnnnenn, 37
H.8.4 Decoding process for coding units coded in intra prediction MOdeccccvviveriererierinsrse e 38
H.8.4.1 General decoding process for coding units coded in intra prediction modec.ccoovveveiverercnnnnnnn, 38
H.8.4.2 Derivation process for luma intra prediction MOGe...........cccoveiiiiiiiiiiene e 38
H.8.4.3 Derivation process for chroma intra prediction MOdE............cccueiiriiieiiiiiiiiie e 40
H.8.4.4 Decoding process for iNtra DIOCKS.ooi i e 40
H.8.5 Decoding process for coding units coded in inter prediction MOGEcccooeiieieneneninineee e 49
H.8.5.1 General decoding process for coding units coded in inter prediction modec.ccoceeoniiieiincnnnn 49
H.8.5.2 INtEr PrediCtiON PrOCESS. viitiiieiiietieitete ettt ettt sttt b et bbbt e e st e ebesbesbe st e e st eneeeenbe b e 50
H.8.5.3 Decoding process for prediction units in inter prediction mode ..o 50
H.8.5.4 Decoding process for the residual signal of coding units coded in inter prediction mode................... 78
H.8.5.5 Derivation process for diSParity VECIOIScvcverierieieriesiseeieree e se e et e e see e 80
H.8.5.6 Derivation process for disparity vectors from neighbouring depth samples............ccccevvvvveieicrnnnnn 83

3D-HEVC 7

3D-HEVC

H.8.6 Scaling, transformation and array construction process prior to deblocking filter process...........c.ccocveu.. 84
H.8.7 L To T oI L T=T o 0oL S 84
H.O PAISING PIOCESSvieeitiitititieteet ettt ekttt ettt bbb b s b b h kb h b b h bbb bt e bbbt R bbb bbb bbb 84
[TR T A =T o 1] - | OSSR SRS RPN 84
H.9.2 Parsing process for 0-th order EXp-Golomb COUEScoiiiiiriiiiiirciciiee e 84

[IR T €= o 1= - | OSSPSR 84
H.9.2.2 Mapping process for signed EXp-Golomb COUESccoeiiiiiiiiieiseee e 84
H.9.3 CABAC parsing process for slice Segment dataccoreiiiireiiiiieieiieeese e 84

[TR T R =TT | OO OO OSSPSR 84
H.9.3.2 INItIAliZAtION PrOCESS ..cuviieieitiiieeie ettt sttt ettt sttt e et et e st e st e e beese e e et e besaeateaseeneeeeeeeenns 85
H.9.3.3 BINAIIZALION PrOCESS. .. c.viveiveitisieeuteiestestestestesteesseaestestestesteaseasseseessestestesteaseassessessestesaeateaseenseseenseneees 87
H.9.3.4 DeCoding ProCess FlOW........cccviiiieiiicie sttt sttt s aeste e e e e e e nne e 89
H.9.3.5 Arithmetic encoding process (INfOrMAtiVE)ccceveieiiiiiieiieie e 90
H.10 Sub-bitStream eXIraCtION PrOCESSviverieiieiieriestesesteitest e e steste e eseesee st e testestesseesee e entestestestesseeseeneeneeseenrenrenns 91
H.L11 ProfileS AN TEVEIS ..ottt sttt b et et e tesbesbesbe et e e neenee e sbe e e 91
H.12 BYEE SIrEAM FOIMAL.cuitieiitiiteeetist etk b bbb bbbt bbbt bbbt b e 91
H.13 Hypothetical referenCe ECOURTouiiiiiiiriec bbb 91
H.14 Supplemental enhancement iNFOrMALIONcoiiiiiiiiiee e 91
[T =T 31T - | SRR 91
H.14.2 SEI PAYIOAA SYNTAX ...e.viiiitiieiiitiitetietest ettt sttt sttt eb bt besa et b e bbb s e bt eb et et sb et et e s b e ebenbe e 91
H.14.2.1 Alternative depth information SEI MeSSAge SYNLAXcc.civiereiiinieiiie e 91
H.14.3 SEI PAYI0Ad SEMANTICS ...oviieiiitiiietiiteieeieete ettt ettt bbb bt bttt sb et ebe e ebesre e 92
H.14.3.1 Alternative depth information SEI message SEMaNtiCS.......cccccvevverieiieiiiesie e 92
H.15 Video usability INfOrMAtiONccvoiiiiii et e st e te e teesteeeesnnas 95

LIST OF FIGURES

Figure H-1 Fractional sample position dependent variables in bi-linear interpolation and surrounding integer position

R Laa] o] (=R AN = T G o o 1 I PSSR

Figure H-2 Relation between camera ID and GVD texture/depth and packing of texture/depth views to the base and

FESIAUAIL tEXTUFE/EPEN TAYET ..ottt bbbttt be e

LIST OF TABLES
Table H-1 — Mapping of Scalabiltyld to scalability dimensions

95

25

Table H-2 — Specification of DepthintraMode and associated name depending on depthintraModeSet and

depth_intra_mode and specification of and depthintraModeMaxLen depending on depthintraModeSet 33
Table H-3 — Specification of intra prediction mode and associated names 38
Table H—4 — Specification of resShift 45
Table H—5 — Specification of xPosS, yPosS, xPosE, yPosE, xIncS, yIncS, xIncE, yIncE 45
Table H—6 — Specification of xS, yS, xE, yE 46
Table H—7 Specification of xOff, yOff 47
Table H-8 — Specification of divCoeff depending on sDenomDiv 72
Table H-9 — Specification of the variables xOff, yOff, and interSdcResildx[i] 79
Table H-10 — Association of ctxldx and syntax elements for each initializationType in the initialization process 85
Table H-11 — Values of initValue for wedge_full_tab_idx ctxldx 86
Table H-12 — Values of initValue for depth_dc_abs ctxldx 86
Table H-13 — Values of initValue for iv_res_pred_weight_idx ctxldx 86
Table H-14 — Values of initValue for ic_flag ctxldx 86
Table H-15 — Values of initValue for depth_intra_mode ctxldx 86
Table H-16 — Values of initValue for depth_dc_flag ctxldx 87

8 3D-HEVC

3D-HEVC

Table H-17 — Values of initValue for inter_sdc_flag ctxldx

Table H-18 — Values of initValue for inter_sdc_resi_abs_minusl ctxldx

Table H-19 — Values of initValue for inter_sdc_resi_sign_flag ctxldx

Table H-20 — Syntax elements and associated binarizations

Table H-21 —Values of wedgeFullTabldxBits[log2PUSize]

Table H-22 —Assignment of ctxInc to syntax elements with context coded bins
Table H-23 — Specification of ctxInc using left and above syntax elements

Table H-24 — Interpretation of depth_type

87
87
87
88
88
90
90
93

Table H-25- Top-left corner co-ordinates of GVD sub-residual views packed in a residual layer of width = W and

height=H.

3D-HEVC

95

9

3D-HEVC

3D High Efficiency Video Coding Draft Specification

The specifications made in this section are based on HEVC version 1 and MV-HEVC draft 6 (JCT3V-F1004).
In text blocks copied from HEVC version 1 or MV-HEVC draft 6 changes are highlighted.

Modifications of HEVC specification:

In Foreword replace paragraph that start with "In this Recommendation | International Standard Annexes":

In this Recommendation | International Standard Annexes A through H contain normative requirements and are an
integral part of this Recommendation | International Standard.

In 0.7, add the following paragraph after the paragraph that starts with "Annex F":

Annex H specifies multiview and depth video coding, referred to as 3D High Efficiency Video Coding (3D-HEVC). The
reader is referred to Annex H for the entire decoding process for 3D-HEVC, which is specified there with references
being made to clauses 1-9 and Annexes A-G.

Annex H 3D High Efficiency Video Coding
[Ed. (GT) Annex character and title formatting need to be updated.]
This annex specifies 3D high efficiency video coding, referred to as 3D-HEVC.

H.1 Scope

Bitstreams and decoders conforming to the profile specified in this annex are completely specified in this annex with
reference made to clauses 2-9 and Annexes A-G.

[Ed. (GT): Some references to Annex F might be replaced to references to Annex G and vice versa. This should be fixed
when MV-HEVC structure is finalized. When a referenced subclause does not exist in Annex G, the corresponding
subclause in Annex F is valid or vice versa.]

H.2 Normative references

The specifications in clause 2 apply.

H.3 Definitions

For the purpose of this annex, the following definitions apply in addition to the definitions in clause F.3 and G.3. These
definitions are either not present in clause F.3 and G.3 or replace definitions in clause F.3 and G.3.

H.3.1 depth view: A sequence of pictures associated with the same value of ViewOrderldx and DepthFlag equal
to 1.

H.3.2 depth view component: A coded representation of a the depth view.

H.3.3 texture view: A sequence of pictures associated with the same value of ViewOrderldx and DepthFlag equal
to 0.

H.3.4 texture view component: A coded representation of a the texture view.

H.3.5 view component: A coded representation of a view that may contain a depth view component and a texture
view component.

H.4 Abbreviations

The specification in clause 4 apply.

10 3D-HEVC

3D-HEVC

H.5 Conventions

The specification in clause 5 apply.

H.6 Source, coded, decoded and output data formats, scanning processes, and neighbouring
relationships

The specification in clause 6 apply.

H.7 Syntax and semantics

This clause specifies syntax and semantics for coded video sequences that conform to one or more of the profiles
specified in this annex.

H.7.1 Method of specifying syntax in tabular form

The specifications in subclause 7.1 apply.

H.7.2 Specification of syntax functions, categories, and descriptors
The specifications in subclause 7.2 apply.

H.7.3 Syntax in tabular form

H.7.3.1 NAL unit syntax

The specifications in subclause G.7.3.1 and all its subclauses apply.
H.7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

H.7.3.2.1 Video parameter set RBSP
The specifications in subclause G.7.3.2.1 apply.
[Ed. (GT): Inclusion of potential VPS extension 3 needs to be specified.]

H.7.3.2.1.1 Video parameter set extension syntax

The specifications in subclause G.7.3.2.1.1 apply.

3D-HEVC 11

H.7.3.2.1.2 Video parameter set extension 2 syntax

3D-HEVC

vps_extension2() { Descriptor
while('byte_aligned())
vps_extension_byte alignment_reserved_one_bit u(1)
for(i = 0;i<=vps_max_layers_minusl; i++) {
layerld = layer_id_in_nuh[i]
if (layerld!=0) {
iv_mv_pred_flag[layerld] u(l)
log2_sub_pb_size_minus2[layerld] ue(v)
if ("VpsDepthFlag[layerld]) {
iv_res_pred_flag[layerld] u(l)
depth_refinement_flag[layerld] u(l)
view_synthesis_pred_flag[layerld] u(1)
}else {
mpi_flag[layerld] u(1)
vps_depth_modes_flag[layerld] u(l)
lim_qgt_pred_flag[layerld] u(1)
vps_inter_sdc_flag[layerld] u(l)
}
}
}
Cp_precision ue(v)
for(i=0;i < NumViews; i++) {
cp_present_flag[i] u(l)
if(cp_present_flag[i]) {
cp_in_slice_segment_header_flag[i] u(l)
if('cp_in_slice_segment_header_flag[i])
for(j=0;j < i;j++){
vps_cp_scale[i][j] se(v)
vps_cp_off[i][j] se(v)
vps_cp_inv_scale_plus_scale[i][]j] se(v)
vps_cp_inv_off_plus_off[i][]] se(v)
}
}
}
iv_mv_scaling_flag u(l)
}
H.7.3.2.2 Sequence parameter set RBSP syntax

The specifications in subclause G.7.3.2.2 apply.

[Ed. (GT): Inclusion of a potential further SPS extension needs to be specified.]

H.7.3.2.2.1 Sequence parameter set extension syntax

The specifications in subclause G.7.3.2.2.1 apply.

H.7.3.2.3 Picture parameter set RBSP syntax

12 3D-HEVC

3D-HEVC

pic_parameter_set_rbsp() { Descriptor

pps_pic_parameter_set_id ue(v)
pps_seq_parameter_set_id ue(v)
dependent_slice_segments_enabled_flag u(1)
output_flag_present_flag u(1)
num_extra_slice_header_bits u(3)
sign_data_hiding_flag u(1)
cabac_init_present_flag u(l)
num_ref_idx_|0_default_active_minusl ue(v)
num_ref_idx_I1_default_active_minusl ue(v)
init_gp_minus26 se(v)
constrained_intra_pred_flag u(1)
transform_skip_enabled_flag u(1)
cu_gp_delta_enabled_flag u(l)
if (cu_qp_delta_enabled_flag)

diff_cu_qp_delta_depth ue(v)
pps_cb_gp_offset se(v)
pps_cr_gp_offset se(v)
pps_slice_chroma_qp_offsets_present_flag u(l)
weighted_pred_flag u(l)
weighted_bipred_flag u(l)
transquant_bypass_enabled_flag u(l)
tiles_enabled_flag u(1)
entropy_coding_sync_enabled_flag u(1)
if(tiles_enabled_flag) {

num_tile_columns_minusl ue(v)

num_tile_rows_minusl ue(v)

uniform_spacing_flag u(1)

if(luniform_spacing_flag) {
for(i=0;i<num_tile_columns_minusl; i++)

column_width_minusl[i] ue(v)
for(i=0;i<num_tile_rows_minusl; i++)
row_height_minusl[i] ue(v)
}
loop_filter_across_tiles_enabled_flag u(l)
}
loop_filter_across_slices_enabled_flag u(l)
deblocking_filter_control_present_flag u(l)
if(deblocking_filter_control_present_flag) {
deblocking_filter_override_enabled_flag u(l)
pps_disable_deblocking_filter_flag u(l)
if(!pps_disable_deblocking_filter _flag) {
pps_beta_offset_div2 se(v)
pps_tc_offset div2 se(v)
}
}
pps_scaling_list_data_present_flag u(l)

if(pps_scaling_list_data present flag)

3D-HEVC 13

3D-HEVC

scaling_list_data()

lists_modification_present_flag u(l)
log2_parallel_merge_level_minus2 ue(v)
slice_segment_header_extension_present_flag u(l)
pps_extension_flag u(1)
if(pps_extension_flag) {
pps_extension()
pps_extension2_flag u(1)
if(pps_extension2_flag)
while(more_rbsp_data())
pps_extension_data_flag u(1)
}
rbsp_trailing_bits()
}
H.7.3.2.3.1 Picture parameter set extension syntax
pps_extension() { Descriptor
dit_present flag u(1)
if(dlt_present flag) {
pps_depth_layers_minusl u(6)
pps_bit_depth_for_depth_views_minus8 u(4)
for(i=0; i <=pps_depth_layers_minusl; i++) {
dit_flag[i] u(l)
if(dlt flag[i]) {
inter_view_dIt pred_enable flag[i] u(l)
if(linter view_dlt pred enable flag[i])
dit_bit map rep flag[i] u(l)
if(dit_bit map rep flag[i])
for(j=0;j <= depthMaxValue; j++)
dlit_bit map flag[i][j] u(1)
else
entry table(i)
}
}
}
}
H.7.3.2.3.2 Entry table syntax
entry table(i) { Descriptor
num_entry u(v)
if(num_entry >0) {
if(num_entry > 1)
max_diff u(v)
if(num_entry >2)
min_diff_minusl u(v)
entry(Q u(v)
3D-HEVC

14

3D-HEVC

if(max_diff > (min_diff minusl + 1))

for(k =1; k <num_entry; k++)

entry_value diff minus_min[k]

u(v)

H.7.3.2.4 Supplemental enhancement information RBSP syntax

The specifications in subclause G.7.3.2.4 apply.

H.7.3.2.5 Access unit delimiter RBSP syntax

The specifications in subclause G.7.3.2.5 apply.
H.7.3.2.6 End of sequence RBSP syntax
The specifications in subclause G.7.3.2.6 apply.
H.7.3.2.7 End of bitstream RBSP syntax
The specifications in subclause G.7.3.2.7 apply.
H.7.3.2.8 Filler data RBSP syntax

The specifications in subclause G.7.3.2.8 apply.
H.7.3.2.9 Slice layer RBSP syntax

The specifications in subclause G.7.3.2.9 apply.
H.7.3.2.10 RBSP slice trailing bits syntax
The specifications in subclause G.7.3.2.10 apply.
H.7.3.2.11 RBSP trailing bits syntax

The specifications in subclause G.7.3.2.11 apply.
H.7.3.2.12 Byte alignment syntax

The specifications in subclause G.7.3.2.12 apply.
H.7.3.3 Profile, tier and level syntax

The specifications in subclause G.7.3.3 apply.
H.7.3.4 Scaling list data syntax

The specifications in subclause G.7.3.4 apply.

H.7.3.5 Supplemental enhancement information message syntax

The specifications in subclause G.7.3.5 apply.

3D-HEVC

15

H.7.3.6 Slice segment header syntax

H.7.3.6.1 General slice segment header syntax
slice_segment_header() { Descriptor
first_slice_segment_in_pic_flag u(1)
if(nal_unit_type >= BLA W _LP && nal_unit_type <= RSV_IRAP_VCL23)
no_output_of_prior_pics_flag u(1)
slice_pic_parameter_set id ue(v)
if(!first_slice_segment_in_pic_flag) {
if(dependent_slice_segments_enabled_flag)
dependent_slice_segment_flag u(1)
slice_segment_address u(v)
}
if(!dependent_slice_segment_flag) {
i=0
if(num_extra_slice_header_bits > i) {
i++
poc_reset_flag u(l)
}
if(num_extra_slice_header_bits > i) {
i++
discardable_flag u(l)
}
for(+==; i <num_extra_slice_header_bits; i++)
slice_reserved_flag[i] u(l)
slice_type ue(v)
if(output_flag_present_flag)
pic_output_flag u(l)
if(separate_colour_plane_flag == 1)
colour_plane_id u(2)
if(nuh_layer_id>0 ||
(‘nal_unit_type !'= IDR_W_RADL && nal_unit type '= IDR_ N LP)){
slice_pic_order_cnt_Isb u(v)
if(nal_unit type != IDR W RADL && nal unit type != IDR N LP) {
short_term_ref _pic_set_sps_flag u(l)
if(Ishort_term_ref pic_set sps_flag)
short_term_ref_pic_set(num_short_term_ref pic_sets)
else if(num_short_term_ref pic_sets>1)
short_term_ref_pic_set_idx u(v)
if(long_term_ref _pics_present flag) {
if(num_long_term_ref pics_sps>0)
num_long_term_sps ue(v)
num_long_term_pics ue(v)
for(i=0;i<num_long_term_sps + num_long_term_pics; i++) {
if(i <num_long_term sps) {
if(num_long_term_ref pics_sps>1)
It_idx_sps[i] u(v)
}else {
poc_Isb_It[i] u(v)
used_by curr_pic_It flag[i] u(l)

16

3D-HEVC

3D-HEVC

3D-HEVC

}
delta_poc_msb_present_flag[i] u(l)
if(delta_poc_msh_present_flag[i])
delta_poc_msb_cycle_It[i] ue(v)
}
}
if(sps_temporal_mvp_enabled flag)
slice_temporal_mvp_enabled_flag u(l)
}
if(nuh_layer_id >0 && all_ref layers_active flag &&
NumDirectRefLayers[nuh_layer id]>0) {
inter_layer pred_enabled_flag u(l)
if(inter layer pred enabled flag && NumDirectRefLayers[nuh layer id] > 1) {
if(!max_one_active ref layer flag)
num_inter_layer ref pics minusl u(v)
if(NumActiveRefLayerPics !'= NumDirectRefLayers[nuh_layer id])
for(i =0; i < NumActiveRefLayerPics; i++)
inter_layer_pred_layer_idc[i] u(v)
}
}
if(sample_adaptive_offset_enabled_flag) {
slice_sao_luma_flag u(l)
slice_sao_chroma_flag u(l)
}
if(slice_type == P || slice_type == B){
num_ref idx_active_override_flag u(l)
if(num_ref_idx_active_override_flag) {
num_ref_idx_I0_active_minusl ue(v)
if(slice_type == B)
num_ref idx_I1_active_minusl ue(v)
}
if(lists_modification_present flag && NumPicTotalCurr>1)
ref_pic_lists_modification()
if(slice_type == B)
mvd_I1 zero_flag u(l)
if(cabac_init_present flag)
cabac_init_flag u(l)
if(slice_temporal_mvp_enabled flag) {
if(slice_type == B)
collocated_from 10 flag u(l)
if((collocated_from_I0_flag && num_ref idx_I0_active_minusl1 >0) ||
(!collocated from 10 flag && num_ref idx |1 active minusl >0))
collocated_ref idx ue(v)
}
if((weighted pred flag && slice_type == P) ||
(weighted bipred flag && slice type == B))
pred_weight_table()
else if(nuh_layer_id > 0 && !DepthFlag && !'MvHevcCompatibilityFlag) {
slice_ic_enable_flag u(1)
if(slice_ic_enable flag)

3D-HEVC

17

18

3D-HEVC

slice_ic_disable_merge_zero_idx_flag u(1)
}
five_minus_max_num_merge_cand ue(v)
}
slice_gp_delta se(v)
if(pps_slice_chroma_qgp_offsets_present_flag) {
slice_cb_gp_offset se(v)
slice_cr_qp_offset se(v)
}
if(deblocking_filter_override_enabled_flag)
deblocking_filter_override_flag u(l)
if(deblocking_filter_override_flag) {
slice_deblocking_filter_disabled flag u(1)
if(Islice_deblocking_filter_disabled flag) {
slice_beta_offset_div2 se(V)
slice_tc_offset_div2 se(v)
}
}
if(pps_loop_filter_across_slices_enabled flag &&
(‘slice_sao_luma_flag || slice_sao_chroma_flag ||
Islice_deblocking_filter_disabled flag))
slice_loop_filter_across_slices_enabled_flag u(l)
}
if(tiles_enabled flag || entropy_coding_sync_enabled flag) {
num_entry_point_offsets ue(v)
if(num_entry_point_offsets > 0) {
offset_len_minusl ue(v)
for(i=0;i<num_entry point_offsets; i++)
entry_point_offset_minusl[i] u(v)
}
}
if(nuh_layer id > 0 && cp_in_slice segment header flag[Viewldx])
for (j=0;j < Viewldx; j++) {
cp_scale[j | se(v)
cp_off[j | se(v)
cp_inv_scale_plus_scale[j] se(v)
cp_inv_off plus_ off] j] se(v)
¥
if(slice_segment_header_extension_present_flag) {
slice_segment_header_extension_length ue(v)
slice_segment_header_extension() u(l)
for(i=0;i<slice_segment_header_extension_length; i++)
slice_segment_header_extension_data_byte[i] u(8)

¥

byte alignment()

3D-HEVC

3D-HEVC

H.7.3.6.2 Reference picture list modification syntax

The specifications in subclause 7.3.6.2 apply.

H.7.3.6.3 Weighted prediction parameters syntax

The specifications in subclause 7.3.6.3 apply.

H.7.3.7 Short-term reference picture set syntax

The specifications in subclause 7.3.5.2 apply.

H.7.3.8 Slice segment data syntax

The specifications in subclause 7.3.8 apply.

H.7.3.8.1 General slice segment data syntax

The specifications in subclause 7.3.8.1 apply.

H.7.3.8.2 Coding tree unit syntax

The specifications in subclause 7.3.8.2 apply.

H.7.3.8.3 Sample adaptive offset syntax

The specifications in subclause 7.3.8.3 apply.

H.7.3.8.4 Coding quadtree syntax

3D-HEVC

19

3D-HEVC

coding_quadtree(x0, y0, log2ChSize, cqtDepth) {

Descriptor

if(X0 + (1 << log2ChSize) <= pic_width_in_luma_samples &&
y0 + (1 << log2ChSize) <= pic_height_in_luma_samples &&
log2ChSize > MinCbLog2SizeY && !predSplitCuFlag)

split_cu_flag[x0][y0]

ae(v)

if(cu_gp_delta_enabled_flag && log2ChSize >= Log2MinCuQpDeltaSize) {

IsCuQpDeltaCoded = 0

CuQpDeltaval =0

}

if(split_cu_flag[x0][y0]){

X1=x0+ (1 << (log2CbSize — 1))

yl=y0+ (1 << (log2CbSize — 1))

coding_quadtree(x0, y0, log2CbSize — 1, cqtDepth + 1)

if(x1 < pic_width_in_luma_samples)

coding_quadtree(x1, y0, log2CbSize — 1, cqtDepth + 1)

if(y1 < pic_height_in_luma_samples)

coding_quadtree(x0, y1, log2CbSize — 1, cqtDepth + 1)

if(X1 < pic_width_in_luma_samples && y1 < pic_height_in_luma_samples)

coding_quadtree(x1, y1, log2CbSize — 1, cqtDepth + 1)

} else

coding_unit(x0, y0, log2CbSize, cqtDepth)

H.7.3.8.5 Coding unit syntax

20

coding_unit(x0, y0, log2CbSize , ctDepth) {

Descriptor

if(transquant_bypass_enabled_flag)

cu_transquant_bypass_flag

ae(v)

if(slice_type 1= 1)

cu_skip_flag[x0][yO]

ae(v)

nCbS = (1 << log2ChSize)

if(cu_skip_flag[x0][y0]) {

prediction_unit(x0, y0, nCbS, nCbS)

if (iv_res_pred_flag[nuh_layer_id] && RpRefPicAvailFlag)

iv_res_pred_weight_idx

ae(v)

if (icEnableFlag)

ic_flag

ae(v)

}

else {

if(slice_type != 1)

pred_mode_flag

ae(v)

if((CuPredMode[xOJ[yO] !'= MODE_INTRA ||
log2ChSize == MinCbLog2SizeY) && !predPartModeFlag)

part_mode

ae(v)

if(CuPredMode[x0][yO] == MODE_INTRA) {

if(PartMode == PART_2Nx2N && pcm_enabled flag &&
log2CbSize >= Log2MinlpcmCbSizeY &&
log2ChSize <= Log2MaxlpcmChSizeY)

pcm_flag[x0][y0]

ae(v)

3D-HEVC

3D-HEVC

if(pcm_flag[x0][y0]) {

while('byte_aligned())

pcm_alignment_zero_bit

f(1)

pcm_sample(X0, yO0, log2CbSize)

}else {

pbOffset = (PartMode == PART_NxN) ? (nCbS/2) : nChS

for(j=0; j <nCbsS; j =] + pbOffset)

for(i=0;i<nCbS;i=i+ pbOffset) {

if(vps_depth_modes_flag[nuh_layer_id])

depth_mode_parameters(x0 + i, yO+ j, log2CbSize)

if(DepthintraMode[X0 +i]J[y0+j] == INTRA_DEP_NONE)

prev_intra_luma_pred flag[x0+i][y0+j]

ae(v)

¥

for(j =0;j <nCbs; j = j + phOffset)

for(i=0;i<nCbS;i=i+ pbOffset)

if(DepthintraMode[X0 +i]J[y0 +j] == INTRA DEP_NONE) {

if(prev_intra_luma_pred_flag[x0 +i][y0+j])

mpm_idx[x0+i][y0+j]

ae(v)

else

rem_intra_luma_pred_mode[x0 +i][y0 +j]

ae(v)

}

intra_chroma_pred_mode[x0][yO0]

ae(v)

}

}else {

if(PartMode == PART_2Nx2N) {

prediction_unit(x0, y0, nCbS, nCbS)

if (iv_res_pred_flag[nuh_layer_id] && RpRefPicAvailFlag)

iv_res_pred_weight_idx

ae(v)

} else if(PartMode == PART_2NxN) {

prediction_unit(x0, y0, nCbS, nChS/2)

prediction_unit(x0, y0 + (nChS/2), nChS, nChS/2)

} else if(PartMode == PART_Nx2N) {

prediction_unit(x0, y0, nCbS / 2, nChS)

prediction_unit(x0 + (nChS/2), y0, nCbS /2, nChS)

} else if(PartMode == PART_2NxnU) {

prediction_unit(x0, y0, nCbS, nChS / 4)

prediction_unit(x0, yO + (nCbS/4), nChS,nChS*3/4)

} else if(PartMode == PART_2NxnD) {

prediction_unit(x0, y0, nChS, nCbS *3/4)

prediction_unit(x0, y0 + (nCbS*3/4), nChS, nChS/4)

} else if(PartMode == PART nLx2N) {

prediction_unit(x0, y0, nCbS / 4, nChS)

prediction_unit(X0 + (nChS/4), y0, nCbhS * 3/ 4, nChS)

} else if(PartMode == PART_nRx2N) {

prediction_unit(x0, y0, nChS * 3/ 4, nChS)

prediction_unit(x0 + (nChS*3/4), y0, nChS /4, nChS)

} else { /* PART_NxN */

prediction_unit(x0, y0, nCbS /2, nChS/2)

prediction_unit(x0 + (nChS/2),y0,nChS/2,nChS/2)

prediction_unit(x0, y0 + (nChS/2),nChS/2,nChS/2)

prediction_unit(x0 + (nChS/2),y0+ (nChS/2),nChS/2,nChS/2)

}

¥

3D-HEVC

21

3D-HEVC

if (icEnableFlag)

ic_flag

ae(v)

if(vps_inter_sdc_flag && PredMode[x0][y0] != MODE_INTRA
&& !Iskip_flag[x0][y01])

inter_sdc_flag

ae(v)

if(inter_sdc_flag) {

puNum = (PartMode == PART 2Nx2N)?1: (PartMode == PART NxN?4:2)

for(i=0;i<puNum;i++){

inter_sdc_resi_abs_minus1[x0][y0][i]

ae(v)

inter_sdc_resi_sign_flag[x0][y0][i]

ae(v)

}

¥

if(Ipcm_flag[x0][y01]) {

if(CuPredMode[x0][y0] !'= MODE_INTRA &&
I(PartMode == PART 2Nx2N && merge flag[x0][y0]))

rqt_root_cbf

ae(v)

if(rqt_root_cbf && linter sdc flag) {

MaxTrafoDepth = (CuPredMode[x0][y0] == MODE_INTRA?
('max_transform_hierarchy_depth_intra + IntraSplitFlag) :
max_transform_hierarchy depth_inter)

transform_tree(x0, y0, x0, y0, log2ChSize, 0, 0)

}

}

}

}

H.7.3.8.5.1 Depth mode parameter syntax

depth_mode_parameters(x0 , yO , log2CbSize) {

Descriptor

depth_intra_mode[x0][y0]

ae(v)

if (DepthintraMode[x0][y0] == INTRA_DEP_DMM_WFULL ||
DepthintraMode[X0][y0] ==INTRA_DEP_SDC_DMM_WFULL)

wedge_ full_tab_idx[x0][y0]

ae(v)

if(DmmFlag[x0][y0] || SAcFlag[x01[y0]) {

dcNumSeg = (DepthintraMode[x0][y0] == INTRA_DEP_SDC_PLANAR)?1:2

depth_dc_flag[x0 J[yO]

ae(v)

if (depth_dc_flag[x0][y0])

for(i=0;i<dcNumSeg;i++){

depth_dc_abs[x0][y0]1[i]

ae(v)

if (depth_dc_abs[x0][yO1[i])

depth_dc_sign flag[xOJ[yO][i]

ae(v)

H.7.3.8.6 Prediction unit syntax
The specifications in subclause 7.3.8.6 apply.

H.7.3.8.7 PCM sample syntax
The specifications in subclause 7.3.8.7 apply.

22 3D-HEVC

3D-HEVC
H.7.3.8.8 Transform tree syntax
The specifications in subclause 7.3.8.8 apply.

H.7.3.8.9 Motion vector difference coding syntax

The specifications in subclause 7.3.8.9 apply.

H.7.3.8.10 Transform unit syntax
The specifications in subclause 7.3.8.10 apply.

H.7.3.8.11 Residual coding syntax
The specifications in subclause 7.3.8.11 apply.

3D-HEVC 23

3D-HEVC

H.7.4 Semantics
H.7.4.1 General
H.7.4.2 NAL unit semantics

H.7.4.2.1 General NAL unit semantics
The specifications in subclause G.7.4.2.1 apply.

H.7.4.2.2 NAL unit header semantics
The specification in subclause G.7.4.2.2 apply with the following modifications and additions.

The variable RapPicFlag is derived as specified in the following:

RapPicFlag = (nal_unit_type >= BLA W_LP && nal_unit_type <= RSV_IRAP_VCL23) (H-1)

H.7.4.2.3 Encapsulation of an SODB within an RBSP (informative)
The specifications in subclause G.7.4.2.3 apply.

H.7.4.2.4 Order of NAL units and association to coded pictures, access units, and video sequences

The specifications in subclause G.7.4.2.4 apply.
H.7.4.3 Raw byte sequence payloads, trailing bits, and byte alignhment semantics

H.7.43.1 Video parameter set RBSP semantics
The specifications in subclause G.7.4.3.1 apply, with the following modifications and additions:

vps_extension2_flag equal to O specifies that no vps_extension2() syntax structure is present in the VPS RBSP syntax
structure. vps_extension_flag equal to 1 specifies that the vps_extension2() syntax structure is present in the VPS RBSP
syntax structure. The variable MvHevcCompatibilityFlag is set equal to !vps_extension2_flag. [Ed.(GT): At some stage
this might be changed to profile Idc. Moreover, vps_extensions for different HEVC extensions need to be harmonized.]

vps_extension3_flag equal to 0 specifies that no vps_extension3_data_flag syntax elements are present in the VPS
RBSP syntax structure. vps_extension2_flag shall be equal to 1 in bitstreams conforming to Annex H of this
Recommendation | International Standard. The value of 1 for vps_extension3_flag is reserved for future use by
ITU-T | ISO/IEC. Decoders shall ignore all data that follow the value 1 for vps_extension3_flag in a VPS NAL unit.

H.7.4.3.1.1 Video parameter set extension semantics
The specifications in subclause G.7.4.3.1.1 apply, with the following modifications and additions:

— Table F-1 is replaced by Table H-1.

Table H-1 — Mapping of Scalabiltyld to scalability dimensions

scalability mask Scalability Scalabilityld
index dimension mapping
0 Depth Depth Flag
1 Multiview View Order Index
2-15 Reserved

The variable Scalabilityld[i][smldx] specifying the identifier of the smidx-th scalability dimension type of the i-th
layer, the variable ViewOrderldx[layer_id_in_nuh[i]] specifying the view order index of the i-th layer, the variable
VpsDepthFlag[layer_id_in_nuh[i]] specifying the depth flag of the i-th layer, and the variable ViewScalExtLayerFlag
specifying whether the i-th layer is a view scalability extension layer are derived as follows:

NumViews = 1
for(i=0;i <= vps_max_layers_minusl; i++) {
lld = layer_id_in_nuh[i]
for(smldx=0, j = 0; smldx < 16; smldx++)
if(scalability_mask_flag[smldx])
Scalabilityld[i][smldx] = dimension_id[i][j++]

24 3D-HEVC

3D-HEVC

VpsDepthFlag[1ld] = Scalabilityld[i][0]

ViewOrderldx[11d] = Scalabilityld[i][1]

if(i>0 && (ViewOrderldx[1ld] != Scalabilityld[i—1][1]))
NumViews++

ViewScalExtLayerFlag[11d] = (ViewOrderldx[11d] > 0)

}
The function Viewldx(picX) is specified as follows:
Viewldx(picX) = ViewOrderldx[nuh_layer_id of the picture picX] (H-2)

The function DepthFlag(picX) is specified as follows:

DepthFlag(picX) = VpsDepthFlag[nuh_layer_id of the picture picX] (H-3)
The function Viewld(picX) is specified as follows:

Viewld(picX) = Viewld[nuh_layer_id of the picture picX] (H-4)
The function DiffViewld(picA, picB) is specified as follows:

DiffViewld(picA, picB) = Viewld(picA) — Viewld(picB) (H-5)
H.7.4.3.1.2 Video parameter set extension 2 semantics

iv_mv_pred_flag[layerld] indicates whether inter-view motion parameter prediction is used in the decoding process of
the layer with nuh_layer_id equal to layerld. iv_mv_pred_flag[layerld] equal to O specifies that inter-view motion
parameter prediction is not used for the layer with nuh_layer_id equal to layerld. iv_mv_pred_flag[layerld] equal to 1
specifies that inter-view motion parameter prediction may be used for the layer with nuh_layer_id equal to layerld. When
not present, the value of iv_mv_pred_flag[layerld] is inferred to be equal to 0.

log2_sub_pb_size_minus2[layerld] specifies the value of the variable SubPbSize[layerld] that is used in the decoding
of prediction units using the inter-view merge candidate. The value of log2_sub_pb_size_minus2 shall be in the range of
0 to 4, inclusive.

[Ed. (CY): There sounds to be no need and no agreement to send this syntax element for each view. In addition, sub-PU
doesn’t apply to depth views.]

The variable SubPbSize[layerld] is derived as specified in the following:
SubPbSize[layerld] = VpsDepthFlag(layerld) ? 64 : 1 << (log2_sub_pb_size_minus2[layerld]+ 2) (H-6)

[Ed. (GT): The derivation of SubPbSize corresponds to the fixed derivation process in HTM-9.0rl. Further discussions
might be required.]

iv_res_pred_flag[layerld] indicates whether inter-view residual prediction is used in the decoding process of the layer
with nuh_layer_id equal to layerld. iv_res_pred_flag[layerld] equal to O specifies that inter-view residual prediction is
not used for the layer with nuh_layer_id equal to layerld. iv_res_pred_flag[layerld] equal to 1 specifies that inter-view
residual prediction may be used for the layer with nuh_layer_id equal to layerld. When not present, the value of
iv_res_pred_flag[layerld] is to be equal to 0.

view_synthesis_pred_flag[layerld] equal to 0 specifies that view synthesis prediction merge candidates are not used
for the layer with nuh_layer_id equal to layerld. view_synthesis_pred_flag[layerld] equal to 1 specifies that view
synthesis prediction merge candidates might be used for the layer with nuh_layer_id equal to layerld. When not present,
the value of view_synthesis_pred_flag[layerld] is inferred to be equal to 0.

depth_refinement_flag[layerld] equal to O specifies that depth view components are not used in the derivation process
for a disparity vector for the layer with nuh_layer id equal to layerld. depth_refinement_flag[layerld] equal to 1
specifies that depth components are used in the derivation process for a disparity vector for the layer with nuh_layer id
equal to layerld. When not present, the value of depth_refinement_flag[layerld] is inferred to be equal to 0.

mpi_flag[layerld] equal to O specifies that motion parameter inheritance is not used for the layer with nuh_layer_id
equal to layerld. mpi_flag[layerld] equal to 1 specifies that motion parameter inheritance may be used for the layer with
nuh_layer_id equal to layerld. When not present, the value of mpi_flag[layerld] is inferred to be equal to 0.

vps_depth_modes_flag[layerld] equal to 1 specifies that depth map modelling modes, the chain coding mode and
simplified depth coding modes may be used in the decoding process of the layer with layer_id equal to layerld.
vps_depth_modes_flag[layerld] equal to O specifies that depth map modelling modes, the chain coding mode and
simplified depth coding modes are not used in the decoding process of the layer with layer_id equal to layerld. When not
present, vps_depth_modes_flag[layerld] is inferred to be equal to 0.

lim_qt_pred_flag[layerld] equal to 1 specifies that prediction of a limited quadtree is used for the layer with

3D-HEVC 25

3D-HEVC

nuh_layer_id equal to layerld.. lim_qgt_pred_flag[layerld] equal to 0 specifies that prediction of a limited quadtree is not
used for the layer with nuh_layer_id equal to layerld. When not present, the value of lim_qt _pred_flag[layerld] is
inferred to be equal to 0.

vps_inter_sdc_flag[layerld] equal to 1 specifies that inter SDC coding is used for the layer with nuh_layer_id equal to
layerld. vps_inter_sdc_flag[layerld] equal to O specifies that inter SDC coding is not used for the layer with
nuh_layer_id equal to layerld. When not present, the value of vps_inter_sdc_flag[layerld] is inferred to be equal to 0.

cp_precision specifies the precision of vps cp_scale[i][j], vps_cp_off[i][]j], vps_cp_inv_scale plus scale[i][]j],
and vps_cp_inv_off plus off[i][j] in the VPS and cp _scale[j], cp_off[j], cp_inv_scale plus scale[j], and
cp_inv_off_plus_off[j] in the slice segment header. The value of cp_precision shall be in the range of 0 to 5, inclusive.

cp_present flag[i] equal to 1 specifies that the syntax elements wvps cp_scale[i][j], vps_cp off[i][]j],
vps_cp_inv_scale plus_scale[i][j], and vps_cp_inv_off plus off[i][j] are present in the VPS or that cp_scale[j],
cp_off[j], cp_inv_scale plus scale[j], and cp_inv_off plus off[j] are present in slice segment headers with
nuh_layer_id equal to layerld and VpsViewldx[layerld] equal to i. cp_present flag[i] equal to 1 indicates that camera
parameters are not present.

For layerld in the range of 0 to MaxLayersMinusl, inclusive, the following applies:

cpRequiredFlag[layerld] = depth_refinement_flag[layerld] || view_synthesis_pred_flag[layerid] ||
(iv_mv_pred_flag[layerld] && VpsDepthFlag[layerld]) (H-7)

When, for any value of layerld, cpRequiredFlag[layerld] is equal to 1, the wvalue of
cp_present_flag[VpsViewldx[layerld]] shall be equal to 1. When not present, the value of cp_present flag[i] is
inferred to be equal to 0.

cp_in_slice_segment_header flag[i] equal to 1 specifies that the syntax elements wvps cp_scale[i][]],
vps_cp_off[i][]j1, vps_cp_inv_scale_plus_scale[i][], and vps_cp_inv_off plus_off[i][j] are not present in the VPS
and that the syntax elements cp_scale[j], cp_off[j], cp_inv_scale plus_scale[j], and cp_inv_off plus off[j] are
present in slice segment headers with nuh_layer id equal to layerld and VpsViewldx[layerld] equal to i.
cp_in_slice_segment_header_flag equal to O specifies that the vps cp_scale[i][j], vps_cp off[i][]j],
vps_cp_inv_scale_plus_scale[i][], and vps_cp_inv_off _plus_off[i][j] syntax elements are present in the VPS and
that the syntax elements cp_scale[j], cp_off[j], cp_inv_scale plus_scale[j], and cp_inv_off plus_off[j] are not
present in slice segment headers with nuh_layer_id equal to layerld and VpsViewldx[layerld] equal to i. When not
present, the value of cp_in_slice_segment_header_flag[i] is inferred to be equal to 0.

vps_cp_scale[i][j], vps_cp_off[i][j], vps_cp_inv_scale plus scale[i][j], and vps_cp_inv_off plus off[i][]]
specify conversion parameters for converting a depth value to a disparity value and might be used to infer the values of
cp_scale[j], cp_off[j], cp_inv_scale_plus_scale[j], and cp_inv_off _plus_off[j] for the i-th view specified in VPS.
When the i-th view contains both a texture view and a depth view, the conversion parameters are associated with the
texture view.

iv_mv_scaling_flag equal to 1 specifies that motion vectors used for inter-view prediction in a layer with nuh_layer _id
equal to layerld may be scaled based on Viewld[layerld] values. iv_mv_scaling_flag equal to 0 specifies that motion
vectors used for inter-view prediction in a layer with nuh_layer id equal to layerld are not scaled based on
Viewld[layerld] values. When not present, the value of iv_mv_scaling_flag is inferred to be equal to 0.

H.7.43.2 Sequence parameter set RBSP semantics
The specifications in subclause G.7.4.3.2 and its subclauses apply, with the following modifications and additions:

sps_extension2_flag equal to 0 specifies that no sps_extension2() syntax structure is present in the SPS RBSP syntax
structure. sps_extension2_flag equal to 1 specifies that the sps_extension2() syntax structure is present in the SPS RBSP
syntax structure.

sps_extension3_flag equal to 0 specifies that no sps_extension_data_flag syntax elements are present in the SPS RBSP
syntax structure. sps_extension3_flag shall be equal to 0 in bitstreams conforming to this version of this Specification.
The value of 1 for sps_extension3 flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all
sps_extension_data_flag syntax elements that follow the value 1 for sps_extension3_flag in an SPS NAL unit.

H.7.4.3.3 Picture parameter set RBSP semantics
The specifications in subclause G.7.4.3.3 apply with the following modifications and additions:

pps_extension2_flag equal to 0 specifies that no pps_extension_data_flag syntax elements are present in the PPS RBSP
syntax structure. pps_extension2_flag shall be equal to 0 in the bitstream conforming to this version of this specification.
The value 1 for pps_extension2_flag is reserved for future use by ITU-T|ISO/IEC. Decoders shall ignore all
pps_extension_data_flag syntax elements that follow the value 1 for pps_extension2_flag in a PPS NAL unit.

26 3D-HEVC

3D-HEVC

H.7.4.3.3.1 Picture parameter set extension semantics

dit_present_flag equal to 1 specifies the depth lookup tables for the depth views are present in this PPS. dlt_present_flag
equal to 0 specifies the depth lookup tables for the depth views are not present in this PPS.

For variables NumDepthLayers and DepthldxToLayerldInNuh are derived as specified in the following:
j=0
for (i=0;i <= MaxNumLayersMinusl; i++) {
layerld = LayerldInNuh[i]
if(VpsDepthFlag[layerld])
DepthldxToLayerldInNuh[j++] = layerld
NumDepthLayers =

pps_depth_layers_minusl plus 1 specifies the number of depth layers. pps_depth_layers_minusl shall be equal to
NumDepthLayers — 1.

pps_bit_depth_for_depth_views_minus8 plus 8 specifies the bit depth of the samples of the depth layer.
The variable depthMaxValue is set equal to (1 << (pps_bit_depth_for_depth_views _minus8 + 8)) — 1.

dit_flag[i] equal to 1 specifies that the i-th depth lookup table is present in the PPS and used and for the coding of the
layer with nuh_layer_id equal to DepthldxToLayerldInNuh[i]. dit_flag[i] equal to O specifies that a depth lookup table
is not present for the layer with nuh_layer_id equal to DepthldxToLayerldInNuh[i]. When not present, the value of
dlt_flag[i] is inferred to be equal to 0.

For i in the range of 0 to NumDepthLayers —1, the variable DItFlag[DepthldxToLayerldInNuh[i]] is set equal to
dit_flag[i].

inter_view_dIt_pred_enable_flag[i] equal to 1 indicates the i-th depth lookup table is predicted from the depth lookup
table of the O-th depth lookup table. [Ed. (CY): a more generic solution is to signal the reference view for DLT
prediction.] inter_view_dIt _pred_enable_flag[i] equal to O indicates the i-th depth lookup table is not predicted from
any other depth lookup table. The value of inter_view_dIt_pred_enable_flag[0] shall be equal to 0.

[Ed. (GT): Since flexible coding order is not allowed the 0-th DLT always belongs to the base view. See comments on
derivation process below.]

dit_bit_map_rep_flag[i] equal to 1 specifies the i-th depth lookup table is represented as bit map by the syntax
elements dit_bit_map_flag[j]. dit_bit_ map_rep_flag[i] equal to O specifies the i-th depth lookup table is derived from
the entry table. When not present, the value of dIt_bit_map_rep_flag[i] is inferred to be equal to 0.

dit_bit_map_flag[i][j] equal to 1 specifies that the depth value equal to j is present in the i-th depth lookup table as
one entry. dlt_bit_map_flag[i][j] equal to O specifies that the depth value equal to j is not an entry of the depth lookup
table as one entry.

The variable layerld is set equal to DepthldxToLayerldInNuh[i] and when dlt_bit_map_rep_flag[i] is equal to 1, the
variables DItDepthValue[layerld][k]] and NumDepthValuesInDIt[layerld] of the i-th depth lookup table are derived
as follows:

k=0
for(j=0;j <= depthMaxValue; j++)
if(dlt_bit_map_flag[i][j]) (H-8)
DltDepthValue[layerld][k++] =]
NumDepthValuesInDIt[layerld] = k

H.7.4.3.3.2 Entry table semantics

num_entry specifies the number of entries in the i-th depth lookup table. The length of num_entry syntax element is
pps_bit_depth_for_depth_views_minus8 + 8 bits.

max_diff specifies the maximum difference between two consecutive entries of the i-th depth lookup table. The length
of max_diff syntax element is pps_bit_depth_for_depth_views minus8 + 8 bits. When not present, the value of max_diff
is inferred to be equal to 0.

min_diff_minusl specifies the minimum difference between two consecutive entries of the i-th depth lookup table,
min_diff_minusl is in the range of 0 to max_diff — 1, inclusive. The length of the min_diff_minusl syntax element is
Ceil(Log2(max_diff + 1)) bits. When not present, the value of min_diff minusl is inferred to be equal to
(max_diff—1).

The variable minDiff is set equal to (min_diff_minusl +1).

3D-HEVC 27

3D-HEVC

entry0 specifies the 0-th entry of the i-th depth lookup table. The length of the entry0 syntax element is
pps_bit_depth_for_depth_views_minus8 + 8 bits

entry_value_diff_minus_min[k] plus minDiff specifies the difference between the k-th entry and the (k — 1)-th entry
in the i-th depth lookup table. The length of entry value diff minus_min[k] syntax element is
Ceil(Log2(max_diff — minDiff + 1)) bits.

The variable entry[k] is derived as specified in the following:

entry[0]= entry0
for(k =1; k< num_entry; k++) (H-9)
entry[k] =entry[k— 1] + entry_value_diff_minus_min[k] + minDiff

The variable layerld is set equal to DepthldxToLayerldInNuh[i] and the variable baseDepthLayerld is set equal to
DepthldxToLayerldInNuh[O].

Depending on inter_view_dIt pred_enable_flag[i] the variables DlItDepthValue[layerld][k]] and
NumDepthValuelnDIt[layerld] of the i-th depth lookup table are derived as specified in the following:

— Ifinter_view_dIt_pred_enable_flag[i] is equal to 0, the following applies: :

NumbDepthValuelnDIt[layerld] = num_entry
for(j =0;j <num_entry; j++) (H-10)
DitDepthValue[layerld][j] =entry[]]

— Otherwise (inter_view_dIt_pred_enable_flag[i] is equal to 1), the following applies:

for(j =0, k=0;j < depthMaxValue && k < NumDepthValuelnDIt[baseDepthLayerld]; j++) {
dItRefBitMapFlag[j]1=0
if(DItDepthValue[baseDepthLayerld][k] == j) {
dItRefBitMapFlag[j]=1
k++

}

}
[Ed. (CY): the above calculations assume that the O-th DLT is the DLT table of the base view.]
[Ed. (GT): Since flexible coding order is not allowed (Although text for this seems to missing in the draft), this
assumption is right.]
for(j =0, k=0;j <depthMaxValue && k< num_entry; j++) {
dItSignalBitMapFlag[j] =0 (H-11)
ifCentry[k] == j){
ditSignalBitMapFlag[j] =1
k++

}
}
for(j = 0; j < depthMaxValue; j++)

ditBitMapCurrFlag][j] = dItRefBitMapFlag][j] ~ dItSignalBitMapFlag[j]
for(j=0,k=0;j <= depthMaxValue; j++)

if(dItBitMapCurrFlag[j])

DltDepthValue[layerld][k++] =]

NumbDepthValuelnDIt[layerld] = k

H.7.43.4 Supplemental enhancement information RBSP semantics
The specifications in subclause G.7.4.3.4 apply.

H.7.435 Access unit delimiter RBSP semantics

The specifications in subclause G.7.4.3.5 apply.

H.7.4.3.6 End of sequence RBSP semantics

The specifications in subclause G.7.4.3.6 apply.

H.7.43.7 End of bitstream RBSP semantics

The specifications in subclause G.7.4.3.7 apply.

H.7.43.8 Filler data RBSP semantics
The specifications in subclause G.7.4.3.8 apply.

28 3D-HEVC

3D-HEVC

H.7.4.3.9 Slice layer RBSP semantics
The specifications in subclause G.7.4.3.9 apply.

H.7.4.3.10 RBSP slice trailing bits semantics
The specifications in subclause G.7.4.3.10 apply.

H.7.4.3.11 RBSP trailing bits semantics
The specifications in subclause G.7.4.3.11 apply.

H.7.4.3.12 Byte alignment semantics
The specifications in subclause G.7.4.3.12 apply.

H.7.4.4 Profile, tier and level semantics

The specifications in subclause G.7.4.4 apply.

H.7.4.5 Scaling list

The specifications in subclause G.7.4.5 apply.

H.7.4.6 Supplemental enhancement information message semantics

The specifications in subclause 7.4.6 apply.
H.7.4.7 Slice segment header semantics

H.7.4.7.1 General slice segment header semantics
The specification in subclause G.7.4.7.1 apply with the following modifications and additions.

The variable DepthFlag is set equal to VpsDepthFlag[nuh_layer_id] and the variable Viewldx is set equal to
ViewOrderldx[nuh_layer_id].

five_minus_max_num_merge_cand specifies the maximum number of merging MVP candidates supported in the slice
subtracted from 5.

The variable NumExtraMergeCand is derived as specified in the following:

NumExtraMergeCand = iv_mv_pred_flag[nuh_layer_id] | | mpi_flag[nuh_layer_id] (H-12)
The maximum number of merging MVP candidates, MaxNumMergeCand is derived as follows:

MaxNumMergeCand = 5 — five_minus_max_num_merge cand + NumExtraMergeCand (H-13)
The value of MaxNumMergeCand shall be in the range of 1 to (5 + NumExtraMergeCand), inclusive.

slice_ic_enable_flag equal to 1 specifies illumination compensation is enabled for the current slice. slice_ic_enable_flag
equal to O specifies that illumination compensation is disabled for the current slice, When not present,
slice_ic_enable_flag is inferred to be equal to 0.

slice_ic_disable_merge_zero_idx_flag equal to 1 specifies that ic_flag is not present in the coding units with
partitioning mode equal to PART_2Nx2N of the current slice when merge flag is equal to 1 and merge_idx of the
prediction unit in the coding unit is equal to 0. slice_ic_disable_merge zero_idx_flag equal to O specifies that ic_flag
might be present in the coding units with partitioning mode equal to PART_2Nx2N of the current slice when merge_flag
is equal to 1 and merge idx of the prediction unit in the coding unit is equal to 0. When not present,
slice_ic_disable_merge_zero_idx_flag is inferred to be equal to 0.

cp_scale[], cp_off[j], cp_inv_scale_plus_scale[j], and cp_inv_off plus_off[j] specify conversion parameters for
converting a depth value to a disparity value. When not present, the values of cp_scale[j], cp_off[j],
cp_inv_scale_plus_scale[j], and cp_inv_off plus off[j], are inferred to be equal to vps_cp_scale[Viewldx][],
vps_cp_off[Viewldx][j], vps_cp_inv_scale_plus_scale[Viewldx][j], and vps_cp_inv_off plus_off[Viewldx][],
respectively. It is a requirement of bitstream conformance, that the wvalues of cp_scale[j], cp_off[j],
cp_inv_scale_plus_scale[j], and cp_inv_off_plus_off[j] in a slice segment header having a Viewldx equal to viewldxA
and the values of cp_scale[j], cp_off[j], cp_inv_scale_plus_scale[j], and cp_inv_off plus_off[j] in a slice segment
header having a Viewldx equal to viewldxB shall be the same, when viewldxA is equal to viewldxB.

[Ed. (GT): Consider adding range limitations for values of above syntax elements.]

The array DepthToDisparityB[j][d] specifying the disparity between the current view and the view with Viewldx

3D-HEVC 29

3D-HEVC

equal j corresponding to the depth value d in the view with Viewldx equal to j and the array DepthToDisparityF[j][d]
specifying the disparity between the view with Viewldx equal j and the current view corresponding to the depth value d
in the current view is derived as specified in the following:

— The variable log2Div is set equal to BitDepthy — 1 + cp_precision.
— Fordinrangeof 0to ((1 << BitDepthy) — 1), inclusive, the following applies:

— Foriin the range of 0 to Viewldx — 1, inclusive, the following applies:

offset = (cp_off[j] << BitDepthy) + ((1 << log2Div) >> 1) (H-14)

scale = cp_scale[j] (H-15)

DepthToDisparityB[j][d] = (scale * d + offset) >> log2Div (H-16)

invOffset = ((cp_inv_off plus off[j]—cp_off[j]) << BitDepthy)+ ((1 << log2Div) >> 1) (H-17)

invScale = (cp_inv_scale_plus_scale[j]—cp_scale[j]) (H-18)

DepthToDisparityF[j][d] = (invScale * d + invOffset) >> log2Div (H-19)
H.7.4.7.2 Reference picture list modification semantics

The specifications in subclause G.7.4.5.2 apply.

H.7.4.8 Short-term reference picture set semantics

The specifications in subclause G.7.4.8 apply.
H.7.4.9 Slice data semantics

H.7.4.9.1 Slice data semantics

The specifications in subclause 7.4.9.1 apply.

H.7.4.9.2 Coding tree unit semantics
The specifications in subclause 7.4.9.2 apply, with the following modifications and additions.

Let DepthPic be the picture in the current access unit with Viewldx(DepthPic) equal to Viewldx and
DepthFlag(DepthPic) equal to 1.

Let TexturePic be the picture in the current access unit with Viewldx(TexturePic) equal to Viewldx and
DepthFlag(TexturePic) equal to 0.

The arrays TextureCtDepth TexturePartMod, TexturePredMode, and TexturelntraPredModeY are set equal to the arrays
CtDepth, CtPartMode, PredMode, and IntraPredModeY of Texture Pic, respectively...

H.7.4.9.3 Sample adaptive offset semantics

The specification in subclause 7.4.9.3 apply.

H.7.4.9.4 Coding quadtree semantics
The specifications in subclause 7.4.9.4 apply.

The variable predSplitCuFlag specifying whether the split_cu_flag is predicted by inter-component prediction is derived
as specified in the following.

— If slice_type is not equal to I, RapPicFlag is equal to 0, and lim_qt_pred_flag[nuh_layer_id] is equal to 1,
predSplitCuFlag is set equal to (TextureCtDepth[x0][yO] <= ctDepth)

— Otherwise (slice_type is equal to | or RapPicFlag is equal to 1 or lim_qt_pred_flag[nuh_layer _id] is equal to
0), predSplitCuFlag is set equal to 0.

split_cu_flag[x0][yO] specifies whether a coding unit is split into coding units with half horizontal and vertical size.
The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative
to the top-left luma sample of the picture.

When split_cu_flag[x0][y0] is not present, the following applies:

— If log2CbSize is greater than MinCbLog2SizeY and predSplitCuFlag is equal to 0 , the value of
split_cu_flag[x0][y0] is inferred to be equal to 1.

30 3D-HEVC

3D-HEVC

— Otherwise (log2ChSize is equal to MinCbLog2SizeY or predSplitCuFlag is equal to 1), the value of
split_cu_flag[x0][y0] is inferred to be equal to 0.

H.7.4.9.5 Coding unit semantics
The specification in subclause 7.4.9.5 apply with the following modifications and additions:

— If slice_type is not equal to I, RapPicFlag is equal to 0 and lim_qt_pred_flag[nuh_layer_id] is equal to 1, the
variable predPartModeFlag specifying whether part_mode is predicted by inter-component prediction is derived as
follows.

predPartModeFlag =
(TextureCtDepth[X0][yO] == ctDepth) && (TexturePartMode[x0][y0] != PART_NxN) (H-20)

— Otherwise (slice_type is equal to | or RapPicFlag is equal to 1 or lim_qt_pred_flag[nuh_layer_id] is equal to 0),
predPartModeFlag is set equal to 0.

iv_res_pred_weight_idx specifies the index of the weighting factor used for residual prediction.
iv_res_pred weight_idx equal to O specifies that residual prediction is not used for the current coding unit.
iv_res_pred_weight_idx not equal to O specifies that residual prediction is used for the current coding unit. When not
present, the value of iv_res_pred_weight_idx is inferred to be equal to 0.

When DefaultDispFlag[x0][yO] is equal to 1, iv_res_pred_weight_idx shall be equal to 0.

The variable icEnableFlag is set equal to 0 and when slice_ic_enable_flag is equal to 1 and PartMode is equal to 2Nx2N
and PredMode[x0][y0] is not equal to MODE_INTRA, the following applies:

— If merge_flag[x0][yO] is equal to 1, the following applies:
icEnableFlag = (merge_idx[x0][y0]!=0) || !slice_ic_disable_merge_zero_idx_flag (H-21)
— Otherwise (merge_flag[x0][yO] is equal to 0), the following applies:

— With X being replaced by 0 and 1, the \wvariable refViewldxLX is set equal to
Viewldx(RefPicListLX[ref_idx_IX[x0][y0]]1).

— The flag icEnableFlag is derived as specified in the following:

icEnableFlag =
(inter_pred_idc[x0][yO] != Pred_LO && refViewldxL1l != Viewldx) ||
(inter_pred_idc[xO][yO] !'= Pred L1 && refViewldxL0O !'= Viewldx) (H-22)

ic_flag equal to 1 specifies illumination compensation is used for the current coding unit. ic_flag equal to O specifies
illumination compensation is not used for the current coding unit. When not present, ic_flag is inferred to be equal to 0.

inter_sdc_flag equal to 1 specifies simplified depth coding of residual blocks is used for the current coding unit.
inter_sdc_flag equal to 0 specifies simplified depth coding of residual blocks is not used for the current coding unit.
When not present, inter_sdc_flag is inferred to be equal to 0.

inter_sdc_resi_abs minus1[x0][y0][i], inter_sdc_resi_sign_flag[x0][yO][i] are used to derive
InterSdcResi[x0][yO][i] as follows:

InterSdcResi[X0 J[yOJ[i]=(1—2 * inter_sdc_resi_sign flag[xO][yO][i])*
(inter_sdc_resi_abs minus1[x0][y0][i]+1) (H-23)

rqgt_root_cbf equal to 1 specifies that the transform_tree() syntax structure is present for the current coding unit.
rqt_root_cbf equal to O specifies that the transform_tree() syntax structure is not present for the current coding unit..
When not present, the value of rqt_root_cbf is inferred to be equal to !SdcFlag[x0][y0].

When DepthFlag is equal to 0, for use in derivation processes of variables invoked later in the decoding process, the
following assignments are made for x = x0..x0 + (1 << log2chSize) — 1,y =y0..y0 + (1 << log2chSize) — 1:

CtDepth[x][y] = ctDepth (H-24)
CtPartMode[x][y] = PartMode (H-25)
CbSize[x][y]=(1 << log2cbSize) (H-26)
CbPosX[x][y]=x0 (H-27)
CbPosY[x][y]=YO0 (H-28)

3D-HEVC 31

3D-HEVC

H.7.4.9.5.1 Depth mode parameter semantics

The variable Log2MaxDmmCbSize is set equal to 5.

The variables depthintraModeSet is derived as specified in the following:
— If log2ChSize is equal to 6, depthintraModeSet is set equal to 0.

— Otherwise, if log2ChSize is equal to 3 and PartMode[xC][yC] is equal to PART_NxN, depthintraModeSet is set
equal to 1.

— Otherwise, depthintraModeSet is set equal to 2.

depth_intra_mode[x0][yO] specifies the depth intra mode of the current prediction unit. Table H-2 specifies the value
of the variable depthintraModeMaxLen depending on depthintraModeSet and the value of the variable DepthintraMode
and the associated name depending on the on depth_intra_mode and depthintraModeSet.

The variable SdcFlag[x0][y0] is derived as specified in the following:

SdcFlag[x0][y0]= (DepthintraMode[x0][y0] == INTRA_DEP_SDC_PLANAR) || (H-29)
(DepthintraMode[X0 J[y0] == INTRA_DEP_SDC_DMM_WFULL)

The variable DmmFlag[x0][y0] is derived as specified in the following:

DmmFlag[x0][y0] = (DepthintraMode[x0][y0] == INTRA_DEP_DMM_WFULL) || (H-30)
(DepthintraMode[X0 J[y0] == INTRA_DEP_DMM_CPREDTEX)

Table H-2 — Specification of DepthlintraMode and associated name depending on depthintraModeSet and
depth_intra_mode and specification of and depthintraModeMaxLen depending on depthintraModeSet

depthIintraModeSet 0 1 2
depthIintraModeMaxLen 1 3 3
DepthlntraMode Associated hame depth_intra_mode

0 INTRA_DEP_SDC_PLANAR 0 - 0

1 INTRA_DEP_NONE 1 0 1

2 INTRA DEP_SDC_DMM WFULL - - 2

3 INTRA_DEP_DMM_WFULL - 1 3

4 INTRA_DEP_DMM_ CPREDTEX - - 4

wedge_full_tab_idx[x0][yO] specifies the index of the wedgelet pattern in the corresponding pattern list when
DepthIntraMode[x0][y0] is equal to INTRA_DEP_DMM_WFULL.

depth_dc_flag[xO][yO] equal to 1 specifies that depth_dc_abs[xO J[y0O][i] and depth_dc_sign flag[xO][yO][i]
are present. depth _dc flagfx0][y0] equal to O specifies that depth_dc abs[x0][y0][i] and
depth_dc_sign_flag[x0][yO][i] are not present.

depth_dc_abs[x0][y0][i], depth_dc_sign_flag[x0][yO][i] are used to derive DcOffset[x0][yO][i] as follows:

DcOffset[x0][y0][] =
(1—2*depth_dc_sign_flag[x0][yO][i]) * (depth_dc_abs[xO][yO][i] — dcNumSeg +2) (H-31)

H.7.4.9.6 Prediction unit semantics

The specifications in subclause 7.4.9.6 apply.

H.7.49.7 PCM sample semantics
The specifications in subclause 7.4.9.7 apply.

H.7.4.9.8 Transform tree semantics

The specifications in subclause 7.4.9.8 apply.

H.7.4.9.9 Motion vector difference coding semantics

The specifications in subclause 7.4.9.9 apply.

32 3D-HEVC

3D-HEVC

H.7.4.9.10 Transform unit semantics

The specifications in subclause 7.4.9.10 apply.

H.7.4.9.11 Residual coding semantics

The specifications in subclause 7.4.9.11 apply.

3D-HEVC

33

H.8

H.8.1

3D-HEVC

Decoding process

General decoding process

The specifications in subclause F.8.1 apply with the following modifications:.

— "ViewScalExtLayerFlag[nuh_layer _id] is equal to 1" is replaced by "ViewScalExtLayerFlag[nuh_layer id] is
equal to 1 or VpsDepthFlag[nuh_layer_id] is equal to 1"

— All invocations of the process specified in subclause G.8.1 are replaced with invocations of the process specified in
subclause H.8.1.1.

H.8.1.1 Decoding process for a coded picture with nuh_layer_id greater than 0

The decoding process operates as follows for the current picture CurrPic:

1.
2.

H.8.2

The decoding of NAL units is specified in subclause G.8.2.

The processes in subclause G.8.1.2 and G.8.3.4 specify the following decoding processes using syntax elements
in the slice segment layer and above:

Prior to decoding the first slice of the current picture, subclause G.8.1.2 is invoked.

At the beginning of the decoding process for each P or B slice, the decoding process for reference picture
lists construction specified in subclause G.8.3.4 is invoked for derivation of reference picture list 0
(RefPicList0), and when decoding a B slice, reference picture list 1 (RefPicListl).

When iv_mv_pred_flag[nuh_layer _id] is equal to 1 or iv_res_pred_flag[nuh_layer_id] is equal to 1, the
decoding process for candidate picture list for disparity vector derivation in subclause H.8.3.5is invoked at
the beginning of the decoding process for each P or B slice. [Ed. (GT): VSP should be added here as
condition.]

At the beginning of the decoding process for each P or B slice, the derivation process for the alternative
target reference index for TMVP in merge mode as specified in subclause H.8.3.7 is invoked.

At the beginning of the decoding process for each P or B slice, the derivation process for the default
reference view order index for disparity derivation as specified in subclause H.8.3.8 is invoked.

When iv_res_pred_flag[layerld] is equal to 1, the derivation process for the for the target reference index
for residual prediction as specified in subclause H.8.3.9 is invoked, at the beginning of the decoding process
for each P or B slice.

When DItFlag[nuh_layer _id] is equal to 1, the decoding process for the depth lookup table in subclause
H.8.3.6 is invoked at the beginning of the decoding process of first slice.

The processes in subclauses H.8.3.8, H.8.5, H.8.5.6, and H.8.7 specify decoding processes using syntax
elements in all syntax structure layers. It is a requirement of bitstream conformance that the coded slices of the
picture shall contain slice segment data for every coding tree unit of the picture, such that the division of the
picture into slices, the division of the slices into slice segments, and the division of the slice segments into
coding tree units each form a partitioning of the picture.

After all slices of the current picture have been decoded, the marking process for ending the decoding of a
coded picture with nuh_layer_id greater than 0 specified in subclause G.8.1.3 is invoked.

NAL unit decoding process

The specification in subclause G.8.2 apply.

H.8.3

Slice decoding process

H.8.3.1 Decoding process for picture order count

The specifications in subclause G.8.3.1 apply.

H.8.3.2 Decoding process for reference picture set

The specifications in subclause G.8.3.2 apply.

H.8.3.3 Decoding process for generating unavailable reference pictures

The specifications in subclause G.8.3.3 apply.

34

3D-HEVC

3D-HEVC

H.8.3.4 Decoding process for reference picture lists construction

The specifications in subclause G.8.3.4 apply.

H.8.3.5 Derivation process for the candidate picture list for disparity vector derivation
[Ed. (GT): This algorithm is different from the algorithm in software. However, it seems to be equivalent.]

The variable NumDdvCandPics is set equal to 0 and the candidate picture list DdvCandPicList with a number of
NumDdvCandPics elements is constructed as follows.

When slice_temporal_mvp_enabled_flag is equal to 1 the following ordered steps apply:

1. DdvCandPicListf0] is set equal to RefPicListX[collocated ref idx], with X equal to (1-
collocated_from_l10_flag), and NumDdvCandPics is set equal to 1.

2. The variable lowestTemporalldRefs is set equal to 7.

3. NumbDdvCandPics, DdvCandPicList[1] and lowestTemporalldRefs are derived as specified in the following:

for (dir =0; dir <2 ; dir++) {
X =dir ? collocated_from_I0_flag : (1 — collocated_from_I0_flag)
for(i=0;i <= num_ref_idx_IX_default_active_minusl; i++) {
if(Viewldx == Viewldx(RefPicListX[i])
&& (X == collocated_from_I0_flag || i != collocated_ref idx)
&& (NumDdvCandPics '= 2)){
if(RefPicListX[i] is a random access view component) {
DdvCandPicsList[1] = RefPicListX[i]
NumDdvCandPics = 2

else if(lowestTemporalldRefs > Temporalld of RefPicListX[i])
lowestTemporalldRefs = Temporalld of RefPicListX[i]
}
}
}

4. When NumDdvCandPics is equal to 1, the following applies:

pocDistance =255
for(dir = 0; dir < 2 ; dir++) {
X =dir ? collocated_from_l0_flag : (1 — collocated_from_l0_flag)
for(i =0; i <= num_ref_idx_IX_default_active_minusl; i++) {
if(Viewldx == Viewldx(RefPicListX[i])
&& (X == collocated_from_l0_flag || i != collocated_ref _idx)
&& Temporalld of RefPicListX[i] = = lowestTemporalldRefs
&& (Abs(PicOrderCntVal — PicOrderCnt(RefPicListX[i])) < pocDistance)) {
pocDistance = Abs(PicOrderCntVal — PicOrderCnt(RefPicListX[i])
Z=X
idx =i
}
}

}
if(pocDistance < 255) {

DdvCandPicsList[1] = RefPicListZ][idx]
NumDdvCandPics =2

}
H.8.3.6 Decoding process for a depth lookup table

This process is only invoked when DItFlag[nuh_layer_id] is equal to 1.

The list elements Idx2DepthValue[i] specifying the depth value of the i-th index in the lookup table with i ranging from
0 to NumDepthValuesInDIt[nuh_layer_id] — 1, inclusive is derived as follows.

— For i in the range of 0 to NumDepthValuesInDIt[nuh_layer_id] — 1, inclusive, the elements in ldx2DepthValue are
derived as follows:

— ldx2DepthValue[i] is set equal to DItDepthValue[nuh_layer id][i]
The list elements DepthValue2ldx[d] specifying the index of depth values d in the lookup table with d ranging from 0

3D-HEVC 35

3D-HEVC

to BitDepthy — 1, inclusive are derived as specified in the following:

for(d = 0; d < BitDepthy; d++) {
idxLower =0
for(iL = 1, foundFlag = 0; iL < NumDepthValuesInDIt[nuh_layer_id] && !foundFlag; iL++)
if(Idx2DepthValue[iL]>d) {
idxLower =iL—1
foundFlag = 1

}
idxUpper = NumDepthValuesInDIt[nuh_layer id] -1
for(iU = NumDepthValuesInDIt[nuh_layer_id] — 2, foundFlag = 0; iU >= 0 && !foundFlag; iU++)
if (1dx2DepthValue[iU]<d) {
idxUpper =iU + 1
foundFlag =1

¥

if(Abs(d — ldx2DepthValue[idxLower]) < Abs (d — Idx2DepthValue[idxUpper]))
DepthValue2ldx[d] = idxLower

else
DepthValue2ldx[d] = idxUpper

H.8.3.7 Derivation process for the alternative target reference index for TMVP in merge mode
This process is invoked when the current slice is a P or B slice.

The variables AltRefldxL0 and AltRefldxL1 are set equal to —1 and the following applies for X in the range of 0 to 1,
inclusive:

— When X is equal to 0 or the current slice is a B slice the following applies:

zeroldxLtFlag = RefPicListX[0] is a short-term reference picture 20 : 1
for(i=1;i <= num_ref_idx_IX_active_minusl && AltRefldxLX == —1; i++)
if((zeroldxLtFlag && RefPicListX[i] is a short-term reference picture) ||
('zeroldxLtFlag && RefPicListX]i] is a long-term reference picture))
AltRefldxLX =i

H.8.3.8 Derivation process for the default reference view order index for disparity derivation

This process is invoked when the current slice is a P or B slice.

The variable DefaultViewldx is set equal to -1, and the following applies for curViewldx in the range of 0 to
(Viewldx — 1), inclusive:

— The following applies for X in the range of 0 to 1, inclusive:

— When X is equal to 0 or the current slice is a B slice, the following applies for i in the range of 0 to
NumRefPicsLX, inclusive:

— When all of the following conditions are true, DefaultViewldx is set equal to curViewldx.
— DefaultViewldx is equal to —1.
— Viewldx(RefPicListX[i]) is equal to curViewldx.
— PicOrderCnt(RefPicListX[i]) is equal to PicOrderCntVal.

H.8.3.9 Derivation process for the target reference index for residual prediction
This process is invoked when the current slice is a P or B slice.

The variables RpRefldxLO and RpRefldxL1 are set equal to -1, the variables RpRefPicAvailFlagLO and
RpRefPicAvailFlagL1l are set equal to 0.

The following applies for X in the range of 0 to 1, inclusive:
— When X is equal to 0 or the current slice is a B slice the following applies:
— Foriinthe range of 0 to num_ref idx_IX_active_minusl, inclusive, the following applies:

— When PicOrderCnt(RefPicListX[i]) is not equal to PicOrderCntVal and RpRefPicAvailFlagLX is equal
to 0, the following applies:

RpRefldxLX = i (H-32)

36 3D-HEVC

3D-HEVC

RpRefPicAvailFlagLX = 1 (H-33)

[Ed. (GT): There might be pictures present in the DPB fulfilling the above conditions, but having e.g. a
different value of DepthFlag compared to the current layer.].

The variable RpRefPicAvailFlag is set equal to (RpRefPicAvailFlagLO || RpRefPicAvailFlagL1).
When RpRefPicAvailFlag is equal to 1, the following applies for X in the range of 0 to 1, inclusive:
— When X is equal to 0 or the current slice is a B slice the following applies:
— Foriinthe range of 0 to NumActiveRefLayerPics — 1, inclusive, the following applies:
— The variable refViewldx is set equal to Viewldx(RefPicListX[i]).
— The variable RefRpRefAvailFlagL X[refViewldx] is set equal to 0.

— When RpRefPicAvailFlagLX is equal to 1 and there is a picture picA in the DPB with PicOrderCnt(picA)
equal to PicOrderCnt(RefPicListX[RpRefldxLX]), Viewldx(picA) equal to refViewldx,
DepthFlag(picA) equal to 0 and marked as “used for reference”, RefRpRefAvailFlagLX][refViewldx] is
set equal to 1.

H.8.4 Decoding process for coding units coded in intra prediction mode

H.8.4.1 General decoding process for coding units coded in intra prediction mode
The specifications in subclause 8.4.1 apply with the following modification:

— All invocations of the process specified in subclause 8.4.2 are replaced with invocations of the process specified in
subclause H.8.4.2.

— All invocations of the process specified in subclause 8.4.4.1 are replaced with invocations of the process specified
in subclause H.8.4.4.1.

H.8.4.2 Derivation process for luma intra prediction mode

Input to this process is a luma location (XPb, yPb) specifying the top-left sample of the current luma prediction block
relative to the top left luma sample of the current picture.

In this process, the luma intra prediction mode IntraPredModeY|[xPb][yPb] is derived.

Table H-3 specifies the value for the intra prediction mode and the associated names.

Table H-3 — Specification of intra prediction mode and associated names

Intra prediction mode Associated name
0 INTRA_PLANAR
1 INTRA_DC
2.34 INTRA_ANGULAR2..INTRA_ANGULAR34
35 INTRA_DMM_WFULL
36 INTRA_DMM_CPREDTEX

IntraPredModeY[xPb][yPb] labelled 0..34 represents directions of predictions as illustrated in Figure 8 1.

— If DepthintraMode[xPb J[yPb] is equal to INTRA_DEP_SDC_PLANAR, IntraPredModeY[xPb][yPb] is set
equal to INTRA PLANAR.

— Otherwise, if DepthintraMode[xPb][yPb] is equal to INTRA_DEP_SDC_DMM_WEFULL,
IntraPredModeY[xPb][yPb] is set equal to INTRA_DMM_WFULL.

— Otherwise, if DepthIntraMode[xPb][yPb] is equal to INTRA DEP_DMM_WFULL,
IntraPredModeY[xPb][yPb] is set equal to INTRA_DMM_WFULL.

— Otherwise if DepthlintraMode[xPb][yPb] is equal to INTRA_DEP_DMM_CPREDTEX,
IntraPredModeY[xPb][yPb] is set equal to INTRA_DMM_CPREDTEX.

— Otherwise (DepthintraMode[xPb][yPb] is equal to INTRA DEP_NONE), IntraPredModeY[xPb][yPb] is

3D-HEVC 37

38

3D-HEVC

derived as the following ordered steps:

1. The neighbouring locations (xNbA, yNbA) and (xNbB,yNbB) are set equal to (xPb—1,yPb) and
(xPb, yPb — 1), respectively.

2. For X being replaced by either A or B, the variables candIntraPredModeX are derived as follows:

— The availability derivation process for a block in z-scan order as specified in subclause 6.4.2 is invoked
with the location (xCurr, yCurr) set equal to (xPb, yPb) and the neighbouring location (xNbY, yNbY)
set equal to (XNbX, yNbX) as inputs, and the output is assigned to availableX.

— The candidate intra prediction mode candIntraPredModeX is derived as follows:
— IfavailableX is equal to FALSE, candintraPredModeX is set equal to INTRA_DC.

— Otherwise, if CuPredMode[xNbX J[yNbX] is not equal to MODE_INTRA or
pcm_flag[xNbX][yNbX] is equal to 1, candIntraPredModeX is set equal to INTRA _DC,

— Otherwise, if X is equal to B and yPb -1 is less than
((yPb >> CtbLog2SizeY) << CtbLog2SizeY), candIntraPredModeB is set equal to INTRA_DC.

— Otherwise, if candIntraPredModeX is larger than 34, candintraPredModeX is set equal to INTRA_DC.
— Otherwise, candintraPredModeX is set equal to IntraPredModeY[xNbX][yNbX].
3. The candModeL.ist[x] with x = 0..2 is derived as follows:
— If candIntraPredModeB is equal to candIntraPredModeA, the following applies:

— If candintraPredModeA is less than 2 (i.e. equal to INTRA_PLANAR or INTRA_DC),
candModelList[x] with x = 0..2 is derived as follows:

candModeList[0] = INTRA_PLANAR (H-34)

candModeList[1] = INTRA_DC (H-35)

candModeList[2] = INTRA_ANGULAR26 (H-36)
— Otherwise, candModeList[x] with x = 0..2 is derived as follows:

candModeList[0] = candIntraPredModeA (H-37)

candModeList[1] =2 + ((candIntraPredModeA + 29) % 32) (H-38)

candModelList][2] =2 + ((candIntraPredModeA -2 + 1) % 32) (H-39)

— Otherwise (candIntraPredModeB is not equal to candIntraPredModeA), the following applies:
— candModeList[0] and candModeList[1] are derived as follows:
candModeL.ist[0] = candIntraPredModeA (H-40)
candModeList[1] = candIntraPredModeB (H-41)

— If neither of candModeListf0] and candModeListf 1] is equal to INTRA_PLANAR,
candModelList[2] is set equal to INTRA_PLANAR,

— Otherwise, if neither of candModeListf0] and candModeList[1] is equal to INTRA_DC,
candModelL.ist[2] is set equal to INTRA_DC,

— Otherwise, candModeList[2] is set equal to INTRA_ANGULAR?26.
4. IntraPredModeY[xPb][yPb] is derived by applying the following procedure:

— If prev_intra_luma_pred_flag[xPb][yPb] is equal to 1, the IntraPredModeY[xPb][yPb] is set equal to
candModeList[mpm_idx].

— Otherwise, IntraPredModeY[xPb][yPb] is derived by applying the following ordered steps:
1) The array candModeList[x], x = 0..2 is modified as the following ordered steps:

i. When candModeList[0] is greater than candModeL.ist[1], both values are swapped as follows:

(candModeList[0], candModeList[1]) = Swap(candModeL.ist[0], candModeList[1]) (H-42)

ii. When candModelList[0] is greater than candModeL.ist[2], both values are swapped as follows:

3D-HEVC

3D-HEVC
(candModeList[0], candModeL.ist[2]) = Swap(candModeL.ist[0], candModeList[2]) (H-43)

iii. When candModeL.ist[1] is greater than candModeL.ist[2], both values are swapped as follows:

(candModeList[1], candModeList[2]) = Swap(candModeL.ist[1], candModeList[2]) (H-44)

2) IntraPredModeY[xPb][yPb] is derived by the following ordered steps:
i. IntraPredModeY[xPb][yPb] is set equal to rem_intra_luma_pred_mode[xPb][yPb].

ii. For i equal to 0 to 2, inclusive, when IntraPredModeY[xPb][yPb] is greater than or equal to
candModelL.ist[i], the value of IntraPredModeY[xPb][yPb] is incremented by one.

H.8.4.3 Derivation process for chroma intra prediction mode

The specifications in subclause 8.4.3 apply.
H.8.4.4 Decoding process for intra blocks

H.8.4.4.1 General decoding process for intra blocks
Inputs to this process are:

— asample location (xThO, yThO0) specifying the top-left sample of the current transform block relative to the top-left
sample of the current picture,

— avariable log2TrafoSize specifying the size of the current transform block,

— avariable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit,
— avariable predModelntra specifying the intra prediction mode,

— avariable cldx specifying the colour component of the current block.

Output of this process is a modified reconstructed picture before deblocking filtering.

The luma sample location (XTbY, yTbY) specifying the top-left sample of the current luma transform block relative to
the top-left luma sample of the current picture is derived as follows:

(XTbY, yTbY) =(cldx == 0)? (XTh0, yTh0) : (XThO << 1,yTh0 << 1) (H-45)
The variable splitFlag is derived as follows:
— Ifcldx is equal to 0, splitFlag is set equal to split_transform_flag[xTbY][yTbY][trafoDepth].
— Otherwise, if all of the following conditions are true, splitFlag is set equal to 1.
— cldx is greater than 0
— split_transform_flag[xTbY][yTbY][trafoDepth] is equal to 1
— log2TrafoSize is greater than 2
— Otherwise, splitFlag is set equal to 0.
Depending on the value of splitFlag, the following applies:
— If splitFlag is equal to 1, the following ordered steps apply:
1. The variables xTbh1 and yTb1 are derived as follows:
— The variable xTh1 is set equal to XTh0 + (1 << (log2TrafoSize —1)).
— The variable yTh1 is set equal to yTh0 + (1 << (log2TrafoSize —1)).

2. The general decoding process for intra blocks as specified in this subclause is invoked with the location
(XThO, yThO0), the variable log2TrafoSize set equal to log2TrafoSize — 1, the variable trafoDepth set equal to
trafoDepth + 1, the intra prediction mode predModelntra, and the variable cldx as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

3. The general decoding process for intra blocks as specified in this subclause is invoked with the location
(XTh1, yTh0), the variable log2TrafoSize set equal to log2TrafoSize — 1, the variable trafoDepth set equal to
trafoDepth + 1, the intra prediction mode predModelntra, and the variable cldx as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

3D-HEVC 39

4,

3D-HEVC

The general decoding process for intra blocks as specified in this subclause is invoked with the location
(XThO, yTh1), the variable log2TrafoSize set equal to log2TrafoSize — 1, the variable trafoDepth set equal to
trafoDepth + 1, the intra prediction mode predModelntra, and the variable cldx as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

The general decoding process for intra blocks as specified in this subclause is invoked with the location
(XTh1, yThl), the variable log2TrafoSize set equal to log2TrafoSize — 1, the variable trafoDepth set equal to
trafoDepth + 1, the intra prediction mode predModelntra, and the variable cldx as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

Otherwise (splitFlag is equal to 0), the following ordered steps apply:

1. The variable nTbS is set equal to 1 << log2TrafoSize.

2. The general intra sample prediction process as specified in subclause 8.4.4.2.1 is invoked with the transform
block location (XxThO0, yThO0), the intra prediction mode predModelntra, the transform block size nThS, and the
variable cldx as inputs, and the output is an (nThS)x(nTbS) array predSamples.

3. Depending on SdcFlag[xTh0][xThO0], the following applies:

— If SdcFlag[xThO J[yThO0] is equal to 0, following applies:

— The scaling and transformation process as specified in subclause 8.6.2 is invoked with the luma
location (XThY, yThY), the variable trafoDepth, the variable cldx, and the transform size trafoSize set
equal to nThS as inputs, and the output is an (n"ThS)x(nTbS) array resSamples.

[Ed. (GT):Meeting notes say: “Implement an enabling flag at (position t.b.d.)". However there seems to be

no decision on the position yet.]

— If DItFlag[nuh_layer id] is equal to 1 and predModelntra is equal to INTRA DC,
INTRA_ANGULAR10, INTRA_ANGULARZ26, INTRA_DMM_WFULL,
INTRA_DMM_WPREDTEX, INTRA_DMM_CPREDTEX, or INTRA _CHAIN, the following
applies, for i in the range of 0 to nTbS — 1, inclusive, and j in the range of 0 to nThS — 1, inclusive:

idx = DepthValue2ldx[predSamples[i][j]] + resSamples[i][j] (H-46)
SL[XTbO+i][yThO+j]=
Idx2DepthValue[clip3(0, NumDepthValuesInDIt[nuh_layer id]—1,idx)] (H-47)

— Otherwise, the following applies:

— The picture reconstruction process prior to in-loop filtering for a colour component as specified in
subclause 8.6.5 is invoked with the transform block location (XThO, yThO), the transform block
size nThS, the variable cldx, the (nTbS)x(nThS) array predSamples, and the (nThS)x(nTbS) array
resSamples as inputs.

— Otherwise (SdcFlag[xTh0 J[yThbO] is equal to 1) the following ordered steps apply:

— The depth value reconstruction process as specified in subclause H.8.4.4.3 is invoked with the location
(XTbO, yThO0), the transform size trafoSize set equal to nThS, the (nTbS)x(nTbS) array predSamples,
and the intra prediction mode predModelntra, as the inputs and the output is a (nTbS)x(nThS) array
resSamples.

4. For xin the range of 0 to nThS — 1 and y in the range of 0 to nThS — 1, the following applies:

— When cldx is equal to 0, ResSamples, [XTh0 + x][yTbO +y] is set equal to 0.

— When cldx is equal to 1, ResSamplescy[XTh0 + x][yThO + y] is set equal to 0.

— When cldx is equal to 2, ResSamplesc,[XTh0 + x][yTbO + y] is set equal to 0.
H.8.4.4.2 Intra sample prediction

H.8.4.4.2.1 General intra sample prediction

Inputs to this process are:

40

a sample location (XThCmp, yThCmp) specifying the top-left sample of the current transform block relative to the
top left sample of the current picture,

a variable predModelntra specifying the intra prediction mode,

a variable nTbS specifying the transform block size,

3D-HEVC

3D-HEVC

a variable cldx specifying the colour component of the current block.

Output of this process is the predicted samples predSamples[x][y], with x, y = 0..nThS — 1.

The nTbS * 4 + 1 neighbouring samples p[x][y] that are constructed samples prior to the deblocking filter process,
withx =-1,y=-1.nThS*2 —1and x =0..nTbS * 2 — 1, y = —1, are derived as follows:

The neighbouring location (xNbCmp, yNbCmp) is specified by:
(XNbCmp, yNbCmp) = (XThCmp + X, yThCmp +y) (8 27)

The current luma location (XTbY, yTbY) and the neighbouring luma location (xNbY, yNbY) are derived as
follows:

(XTbY, yTbY) =(cldx == 0)? (XTbCmp, yThCmp) : (XThCmp << 1,yThCmp << 1) (8 28)
(XNbY, yNbY)= (cldx == 0)? (xNbCmp, yNbCmp) : (XNbCmp << 1, yNbCmp << 1) (8 29)

The availability derivation process for a block in z-scan order as specified in subclause 6.4.1 is invoked with the
current luma location (xCurr, yCurr) set equal to (xTbY,yTbY) and the neighbouring luma location
(xNbY, yNbY) as inputs, and the output is assigned to availableN.

Each sample p[x][y] is derived as follows:

— If one or more of the following conditions are true, the sample p[x][y] is marked as "not available for intra
prediction™:

— The variable availableN is equal to FALSE.

— CuPredMode[xNbY][yNbY] is not equal to MODE_INTRA and constrained_intra_pred_flag is equal
to 1.

— Otherwise, the sample p[x][y] is marked as "available for intra prediction" and the sample at the location
(XNbCmp, yNbCmp) is assigned to p[x][Y].

When at least one sample p[x][y] withx=-1,y=-1.nThS*2 -1 and x=0..nThS * 2 — 1, y = —1 is marked as "not
available for intra prediction”, the reference sample substitution process for intra sample prediction in subclause 8.4.4.2.2
is invoked with the samples p[x][y] withx =-1,y=-1.nTbS*2—-1and x =0.nThS * 2 — 1, y = -1, nTbhS, and cldx
as inputs, and the modified samples p[x][y] withx=-1,y=-1.nTbS*2—-1and x=0..nThS*2-1,y=-1as
output.

Depending on the value of predModelntra, the following ordered steps apply:

1. When cldx is equal to O and predModelntra is in the range of 0 to 34, the filtering process of neighbouring
samples specified in subclause 8.4.4.2.3 is invoked with the sample array p and the transform block size nTbhS
as inputs, and the output is reassigned to the sample array p.

2. The intra sample prediction process according to predModelntra applies as follows:

— If predModelntra is equal to INTRA PLANAR, the corresponding intra prediction mode specified in
subclause 8.4.4.2.4 is invoked with the sample array p and the transform block size nTbS as inputs, and the
output is the predicted sample array predSamples.

— Otherwise, if predModelntra is equal to INTRA_DC, the corresponding intra prediction mode specified in
subclause 8.4.4.2.5 is invoked with the sample array p, the transform block size nTbS, and the colour
component index cldx as inputs, and the output is the predicted sample array predSamples.

— Otherwise, if predModelntra is in the range of INTRA_ANGULAR2..INTRA_ANGULAR34, the
corresponding intra prediction mode specified in subclause 8.4.4.2.6 is invoked with the intra prediction
mode predModelntra, the sample array p, the transform block size nThS, and the colour component index
cldx as inputs, and the output is the predicted sample array predSamples.

— Otherwise, if predModelntra is equal to INTRA_ DMM_WFULL, the corresponding intra prediction mode
specified in subclause H.8.4.4.2.7 is invoked with the location (XTbY, yTbY), the sample array p and the
transform block size nTbS as the inputs and the output are the predicted sample array predSamples.

— Otherwise, if predModelntra is equal to INTRA DMM_CPREDTEX, the corresponding intra prediction
mode specified in subclause H.8.4.4.2.8 is invoked with the location (XTbY, yTbY), with the sample array
p and the transform block size nTbhS as the inputs and the output are the predicted sample array
predSamples.

3D-HEVC 41

3D-HEVC

H.8.4.4.2.2 Reference sample substitution process for intra sample prediction

The specifications in subclause 8.4.4.2.2 apply.

H.8.4.4.2.3 Filtering process of neighbouring samples
The specifications in subclause 8.4.4.2.3 apply.

H.8.4.4.2.4 Specification of intra prediction mode INTRA_PLANAR
The specifications in subclause 8.4.4.2.4 apply.

H.8.4.4.2.5 Specification of intra prediction mode INTRA DC
The specifications in subclause 8.4.4.2.5 apply.

H.8.4.4.2.6 Specification of intra prediction mode in the range of INTRA_ANGULAR2.. INTRA_ANGULAR34
The specifications in subclause 8.4.4.2.6 apply.

H.8.4.4.2.7 Specification of intra prediction mode INTRA_DMM_WFULL
Inputs to this process are:

— a sample location (XTh, yTh) specifying the top-left sample of the current block relative to the top-left sample of
the current picture,

— the neighbouring samples p[x][y], withx=-1,y=-1.nThS*2-1andx=0.nThS*2 -1,y =-1,
— avariable nThS specifying the transform block size,

Output of this process is:

— the predicted samples predSamples[x][y], with X, y = 0..nThS — 1.

The values of the prediction samples predSamples[x][y], with x, y=0..nThS — 1, are derived as specified by the
following ordered steps:

1. The variable wedgePattern[x][y] with x, y =0..nTbS — 1, specifying a binary partition pattern is derived as.
wedgePattern = WedgePatternTable[Log2(nThS)][wedge_full_tab_idx[xTb][yTb 1] (H-48)

2. The depth partition value derivation and assignment process as specified in subclause H.8.4.4.2.9 is invoked
with the neighbouring samples p[x][y], the binary pattern wedgePattern[xTh][yTb], the transform size
nThS, the dcOffsetAvailFlag set equal to depth_dc flag[xTb][yTh], and the DC Offsets
DcOffset[xTb][yTb][0], and DcOffset xTh][yTb][1] as inputs and the output is assigned to
predSamples[x][v].

3. Forx,y=0..nThs — 1, inclusive the following applies:
— Wedgeldx[xTh + x][yTb +y] is set equal to wedge_full_tab_idx[xTb][yTb].

H.8.4.4.2.8 Specification of intra prediction mode INTRA_DMM_CPREDTEX
Inputs to this process are:

— asample location (xTb, yTh) specifying the top-left sample of the current block relative to the top-left sample of
the current picture,

— the neighbouring samples p[x][y], withx =—1,y=-1.nThS*2—-1and x=0..nThS*2 -1,y = -1,
— avariable nThS specifying the transform block size,

Output of this process is:

— the predicted samples predSamples[x][y], with X, y =0..nTbS — 1.

The values of the prediction samples predSamples[x][y], with x, y=0..nTbS — 1, are derived as specified by the
following ordered steps:

1. The variable recTextPic is set equal to the array of the reconstructed luma picture samples of TexturePic..

2. The variable textThresh specifying a threshold for the segmentation of recTextPic is derived as specified in the
following.

— The variable sumTextPicVals is set equal to 0.

42 3D-HEVC

3D-HEVC

— Forx=0..nTbS — 1 the following applies
— Fory=0..nTbhS — 1 the following applies
sumTextPicVals += recTextPic[XTh +x][yTh +y] (H-49)
— The variable textThresh is set equal to (sumTextPicVals >> (2 *log2(nThS)))

3. The variable wedgeletPattern[x][y] with x, y =0..nThS — 1 specifying a binary partition pattern is derived as
specified in the following.

— Forx=0..nTbS — 1 the following applies
— Fory=0.nThS — 1 the following applies
wedgeletPattern[x][y] = (recTextPic[XTh + x][yTh +y] > textThresh) (H-50)

4. The depth partition value derivation and assignment process as specified in subclause H.8.4.4.2.9 is invoked
with the neighbouring samples p[x][y], the binary pattern wedgeletPattern[x][y], the transform size nT, the
dcOffsetAvailFlag set equal to depth_dc_flag[xTb][yTb], and the DC Offsets DcOffset[xTb][yTb][0], and
DcOffset[xThb J[yTb][1] as inputs and the output is assigned to predSamples[x][y].

H.8.4.4.2.9 Depth partition value derivation and assignment process

Inputs to this process are:

the neighbouring samples p[x][y], withx=-1,y=-1.nTbS*2-1andx=0..nThS*2 -1,y =-1,

a binary array partitionPattern[x J[y], with x, y =0..nTbS — 1, specifying a partitioning of the prediction block in a
partition 0 and a partition 1.

a variable nThS specifying the transform block size,
a flag dcOffsetAvailFlag, specifying whether DC Offset values are available,
the variables dcOffsetP0 and dcOffsetP1, specifying the DC offsets for the block partitions

Output of this process is:

the predicted samples predSamples[x][y], with x, y = 0..nThS — 1.

The variables vertEdgeFlag and horEdgeFlag are derived as specified in the following:

vertEdgeFlag = (partitionPattern[0][0] != partitionPattern[nTbS—-1][0])?1:0 (H-51)
horEdgeFlag = (partitionPattern[0][0] != partitionPattern[0][nThS—-1])?1:0 (H-52)

The variables dcVal0 and dcVall are derived as specified in the following:

If vertEdgeFlag is equal to horEdgeFlag, the following applies:
dcValBR = horEdgeFlag ?

((p[-11[nTbS—1]+p[nTbS—-1][-1]) >> 1):(1 << (BitDepthy—1)) (H-53)

deValLT =(p[-1][0]+p[O][-1]) >> 1 (H-54)
Otherwise (horEdgeFlag is not equal to vertEdgeFlag), the following applies:

dcValBR = horEdgeFlag ? p[-1][nTbS—1]:p[nTbS—1][1] (H-55)

dcValLT = horEdgeFlag ? p[(nTbS—1) >> 1][-1]:p[-1]1[(nTbS-1) >> 1] (H-56)

The predicted sample values predSamples[x][y] are derived as specified in the following:

For x in the range of 0 to (nThS — 1), inclusive the following applies:
— Foryinthe range of 0 to (nThS — 1), inclusive the following applies:
— The variables predDcVal and dcOffset are derived as specified in the following:
predDcVal = (partitionPattern[x][y] = = partitionPattern[0][0]) ? dcValLT : dcValBR (H-57)
dcOffset = dcOffsetAvailFlag ? (partitionPattern[x][y] == 0 ? dcOffsetP0 : dcOffsetP1) : 0 (H-58)
— If DItFlag[nuh_layer_id] is equal to 0, the following applies:
predSamples[x][y] = predDcVal + dcOffset (H-59)

3D-HEVC 43

3D-HEVC

— Otherwise (intraChainFlag is equal to 0), the following applies:

predSamples[x][y] = 1dx2DepthValue[DepthValue2ldx[predDcVal] + dcOffset] (H-60)

H.8.4.4.2.10 Specification of tables WedgePatternTable

NOTE 1 — Tables and values resulting from the processes specified in the following are independent of any information
contained in the bitstream. Therefore the derivation process described in this subclause can be carried out once as part of the
initialization of the decoding process. Alternatively, the tables and values can be stored within the decoder (read-only)
memory as fixed lookup tables, such that the derivation process described in this section does not need to be implemented in
the decoder at all.

The list WedgePatternTable[log2BIkSize] of binary partition patterns of size
(1 << log2BIkSize)x(1 << log2BIlkSize), the variable NumWedgePattern[log2BIkSize] specifying the number of
binary partition patterns in list WedgePatternTable[log2BIkSize] are derived as specified in the following:

— For log2BIkSize ranging from 2 to Log2MaxDmmChbSize, inclusive, the following applies:

— Depending on log2BIkSize, the variable resShift is derived as specified in Table H—4.

Table H—4 — Specification of resShift

log2BIkSize resShift
2,3 1
4 0
Otherwise (5... Log2MaxDmmCbSize) -1

— The variable wBIkSize is set equal to (1 << (log2BIkSize + resShift))
— For wedgeOri in the range of 0 to 5, inclusive, the following ordered steps apply.

— Depending on wedgeOri the variables xPosS, yPosS, xPosE, yPosE, xIncS, yIncS, xIncE, yInckE are derived
as specified in Table H-5.

Table H-5 — Specification of xPosS, yPosS, xPosE, yPosE, xIncS, yIncS, xIncE, yIncE

wedgeOri 0 1 2 3 4 5
xPosS 0 wBIkSize — 1 | wBIlkSize — 1 0 0 wBIkSize — 1
yPosS 0 0 wBIkSize — 1 | wBlkSize — 1 0 0
XPosE 0 wBIkSize — 1 | wBIkSize— 1 0 0 0
yPosE 0 0 wBIkSize — 1 | wBlkSize — 1 | wBIlkSize — 1 0
xIncS 1 0 -1 0 1 0
yIncS 0 -1 0 1
xIncE 0 -1 0 1 1 0
yIncE 1 0 -1 0 0 1

— For min the range of 0 to wBIkSize — 1, inclusive, the following applies:
— For n in the range of 0 to wBlkSize — 1, inclusive, the following applies:

— The Wedgelet pattern generation process as specified in subclause H.8.4.4.2.10.1 is invoked with
patternSize being equal to (1 << log2BIkSize), the variable resShift, variable wedgeOri, xS
being equal to (xPosS + m * xIncS), yS being equal to (yPosS + m * yIncS), xE being equal to
(xPosE + n * xIncE) and yE being equal to (yPosE + n * yIncE) as inputs and the output is the
binary array curWedgePattern.

— The wedgelet pattern list insertion process as specified in subclause H.8.4.4.2.10.2 is invoked with
log2BIkSize, and the binary partition pattern curWedgePattern as inputs.

44 3D-HEVC

3D-HEVC

H.8.4.4.2.10.1 Wedgelet pattern generation process
Inputs to this process are:
— avariable patternSize specifying the binary partition pattern size,

— aresolution shift value resShift specifying the precision of the wedgelet partition start and end positions relative to
patternSize,

— avariable wedgeOri specifying the orientation identifier of the wedgelet pattern,
— avariable xS specifying the partition line start horizontal position,
— avariable yS specifying the partition line start vertical position,
— avariable xE specifying the partition line end horizontal position,
— avariable yE specifying the partition line end vertical position.
Output of this process is:
— binary array wedgePattern[x][y] of size (patternSize)x(patternSize)
The variable curSize specifying the size of the current partition pattern is derived as follows:.
curSize = (resShift == 1) ? (patternSize << 1) : patternSize (H-61)
When resShift is equal to —1 variables xS, yS, XE and yE are modified as specified in Table H-6.

Table H—6 — Specification of xS, yS, XE, yE

wedgeOri XS yS xE yE
0 xS <<1 yS << 1 xXE << 1 yE << 1
1 curSize—1 yS << 1 XE <<'1 VE <<'1
2 xS << 1 curSize —1 curSize —1 VE <<'1
3 xS << 1 yS << 1 XE <<'1 curSize —1
4 xS << 1 yS << 1 XE <<'1 curSize —1
5 curSize—1 yS << 1 XE <<'1 VE << 1

The values of variable curPattern[x][y], are derived as specified by the following ordered steps.
1. Forx,y=0..curSize — 1, curPattern[x][y] is set equal to 0.

2. The samples of the array curPattern that form a line between (xS, yS) and (XE, yE) are set equal to 1 as
specified in the following:

X0 =xS

y0=ysS

x1=xE

yl=yE

if(abs(yE —yS) >abs(xE—xS)){
(%0, y0) = Swap(x0, y0)
(x1,y1l)=Swap(x1,yl)

}
if(x0>x1){

(X0, x1) = Swap(x0, x1)
, (Y0, yl) =Swap(y0, y1)
SsumEerr =0
posY =y0

for(posX = x0; posX <= x1; posX + +) {

if(abs(yE —yS) >abs(XxE—xS))

curPattern[posY][posX]=1
else

curPattern] posX][posY] =1
SsumEerr +=(abs(yl—-y0) << 1)
if(sumErr >=(x1-x0)){

posY +=(y0<yl)?1:-1

3D-HEVC 45

46

3D-HEVC
sumerr —=(x1-x0) << 1

}

The samples of curPattern belonging to the smaller partition are set equal to 1 as specified in the following:

if(wedgeOri == 0)
for(iX=0;iX <xS;iX ++)
for(iY =0; curPattern[iX J[iY] == 0;iY++)
curPattern[iX][iY]=1
else if(wedgeOri == 1)
for(iY =0;1Y <yS; iY++)
for(iX = curSize — 1; curPattern[iX][iY] == 0;iX—)
curPattern[iIX][iY]=1
else if(wedgeOri == 2)
for(iX =curSize — 1; iX > XxS; iX—)
for(1Y = curSize — 1; curPattern[iX][iY] == 0;iY—)
curPattern[iX J[iY]=1
else if(wedgeOri == 3)
for(iY =curSize —1;iY >yS;iY—)
for(iX =0; curPattern[iX J[iY] == 0;iX++)
curPattern[iX][iY]=1
else if(wedgeOri == 4) && ((xS+ xE) <curSize))
for(iY =0;iY <curSize; iY ++)
for(iX =0; curPattern[iX][iY] ==0 ;iX+)
curPattern[iXJ[iY]=1
else if(wedgeOri == 4)
for(iY =0;iY <curSize; iY++)
for(iX = curSize — 1; curPattern[iX J[iY] == 0;iX—)
curPattern[iX J[iY]=1
else if(wedgeOri == 5) && ((yS+yE)<curSize))
for(iX =0;iX < curSize; iX ++)
for(iY =0; curPattern[iX][iY]==0;iY++)
curPattern[iX][iY]=1
else if(wedgeOri == 5)
for(iX =0; iX < curSize; iX++)
for(iY = curSize — 1; curPattern[iX J[iY] == 0;iY—)
curPattern[iXJ[iY]=1

The binary partition pattern wedgePattern[x][y], with x, y = 0..patternSize — 1, is derived as specified in the
following.

— IfresShift is equal to 1, the following applies.
— Depending on wedgeOri, the variables xOff and yOff are set as specified in Table H-7.

Table H-7 Specification of xOff, yOff

wedgeOri (xS + xE) < curSize xOff | yOff
0 0 0
1 1 0
2 1 1
3 0 1
4 0 1 0
4 1 0 0
5 0 0 1
5 1 0 0
— Forx, y=0 ..patternSize — 1 the following applies:
wedgePattern[x][y] = curPattern] (x << 1)+ xOff][(y << 1) + yOff] (H-62)

— Otherwise (resShift is not equal to 1), wedgePattern is set equal to curPattern.

3D-HEVC

3D-HEVC

H.8.4.4.2.10.2 Wedgelet pattern list insertion process

Inputs to this process are:

— avariable log2BIkSize specifying the binary partition pattern size as (1 << log2BIkSize),
— binary partition pattern wedgePattern[x][y], with x, y =0..(1 << log2BIkSize) — 1.

The variable isValidFlag specifying whether the binary partition pattern wedgePattern is added to the list
WedgePatternTable[log2BIkSize] not is set equal to 0.

The value of isValidFlag is derived as specified by the following ordered steps.
1. Forx,y=0.(1 << log2BIkSize) — 1 the following applies.
— When wedgePattern[x][y] is not equal to wedgePattern[0][0] the flag isValidFlag is set to 1.
2. For k =0..NumWedgePattern[log2BIkSize] — 1 the following applies.
— The flag patldenticalFlag is set equal to 1.
— Forx,y=0..(1 << log2BIkSize)1 the following applies.

— When wedgePattern[x][y] is not equal to WedgePatternTable[log2BIkSize][k][x]1[Vy],
patldenticalFlag is set to 0.

— When patldenticalFlag is equal to 1, isValidFlag is set to 0.

3. For k =0..NumWedgePattern[log2BIkSize] — 1 the following applies.
— The flag patinvidenticalFlag is set to 1.
— Forx,y=0..(1 << log2BIkSize) — 1 the following applies.

— When wedgePattern[x][y] is equal to WedgePatternTable[log2BIkSize J[k]I[x1[Y 1.
patinvidenticalFlag is set to 0.

— When patInvidenticalFlag is equal to 1, isValidFlag is set to 0.
When isValidFlag is equal to 1, the following applies.

— The pattern WedgePatternTable[log2BIkSize][NumWedgePattern[log2BIkSize]] is set equal to
wedgePattern.

— The value of NumWedgePattern[log2BIkSize] is increased by one.

H.8.4.4.3 Depth value reconstruction process
Inputs to this process are:

— a luma location (XTh, yTh) specifying the top-left luma sample of the current block relative to the top-left luma
sample of the current picture,

— avariable nTbS specifying the transform block size,

— predicted samples predSamples[x][y], with x, y =0..nTbS — 1

— the intra prediction mode predModelntra,

Output of this process is:

— reconstructed depth value samples resSamples[x][y], with x, y = 0.. nTbS — 1.

Depending on predModelntra the array wedgePattern[x J[y] with x, y =0..nTbS — 1 specifying the binary segmentation
pattern is derived as follows.

— If predModelntra is equal to INTRA_DMM_WFULL, the following applies.
wedgePattern = WedgePatternTable[Log2(nThS)][wedge_full_tab_idx[xTb][yTb]]
— Otherwise (predModelntra is not equal to INTRA_DMM_WFULL), the following applies.
— Forx, y=0..nThS — 1 wedgePattern[x][y] is set equal to 0.

Depending on DItFlag[nuh_layer_id] the reconstructed depth value samples resSamples[x][y] are derived as
specified in the following:

3D-HEVC 47

3D-HEVC

— If DItFlag[nuh_layer_id] is equal to 0, the following applies:

— For x,y=0..nTbS — 1, the reconstructed depth value samples resSamples[x][y] are derived as specified in the
following:

resSamples[x][y] = predSamples[x][y] + DcOffset[xTb][yTb][wedgePattern[x][y 11 (H-63)
— Otherwise (DItFlag[nuh_layer_id] is equal to 1), the following applies:
— The variables dcPred[0] and dcPred[1] are derived as specified in the following:
— If predModelntra is equal to INTRA_DC, the following applies:
dcPred[0] = predSamples[nTbS —1][nTbS — 1] (H-64)
— Otherwise, if predModelntra is equal to INTRA_PLANAR, the following applies:

dcPred[0] = (predSamples[0][0] + predSamples[O][nTbS — 1] + predSamples| nTbS —1][0]
+ predSamples[nTbS —1][nTbS—-1]+2) >> 2 (H-65)

— Otherwise, (predModelntra is equal to INTRA_DMM_WFULL), the following applies.

dcPred[wedgePattern[0][0]] = predSamples[0][0] (H-66)

dcPred[wedgePattern[nTbS — 1][0]] = predSamples[nTbS —1][0] (H-67)

dcPred[wedgePattern[0][nTbS — 1]] = predSamples[O][nTbS — 1] (H-68)

dcPred[wedgePattern[nTbS — 1][nTbS — 1]] = predSamples[nTbS —1][nThS — 1] (H-69)

— Forx,y=0..nTbS — 1, the reconstructed depth value samples resSamples[x][y] are derived as specified in the

following:

ditldxPred = DepthValue2ldx[dcPred[wedgePattern[x][y 111 (H-70)
ditldxResi = DcOffset[xTh][yTb][wedgePattern[x][y 11 (H-71)

resSamples[X][y] =predSamples[x][y] + ldx2DepthValue[ditidxPred + dltldxResi] —
dcPred[wedgePattern[x][y 1] (H-72)

H.8.5 Decoding process for coding units coded in inter prediction mode

H.8.5.1 General decoding process for coding units coded in inter prediction mode
Inputs to this process are:

— aluma location (xCh, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable log2CbSize specifying the size of the current coding block.
Output of this process is a modified reconstructed picture before deblocking filtering.

The derivation process for quantization parameters as specified in subclause 8.6.1 is invoked with the luma location
(XCb, yCb) as input.

The variable nCbS, is set equal to 1 << log2ChSize and the variable nCbS¢ is set equal to 1 << (log2ChSize —1).
The decoding process for coding units coded in inter prediction mode consists of following ordered steps:

1. When iv_mv_pred_flag[nuh_layer id] is equal to 1, or iv_res_pred_flag[nuh_layer_id] is equal to 1 or
view_synthesis_pred_flag[nuh_layer_id] is equal to 1, following applies:

— If DepthFlag is equal to O the derivation process for disparity vectors as specified in subclause H.8.5.5 is
invoked with the luma locations (XCb, yCb), the coding block size nCbS,_ as the inputs.

— Otherwise (DepthFlag is equal to 1), the derivation process for disparity vectors from neighouring depth
samples as specified in subclause H.8.5.6 is invoked with the luma locations (XCb, yCb), the coding block
size nCbS, as the inputs.

2. The inter prediction process as specified in subclause H.8.5.3 is invoked with the luma location (xCh, yCb) and
the luma coding block size log2CbSize as inputs, and the outputs are three arrays predSamples,, predSamplescy,
and predSamplesc;.

3. The decoding process for the residual signal of coding units coded in inter prediction mode specified in
subclause H.8.5.3.3.9 is invoked with the luma location (XCb, yCb) and the luma coding block size log2ChSize

48 3D-HEVC

3D-HEVC

as inputs, and the outputs are three arrays resSamples,, resSamplesc,, and resSamplesc;.
4. The reconstructed samples of the current coding unit are derived as follows:

— The picture reconstruction process prior to in-loop filtering for a colour component as specified in
subclause 8.6.5 is invoked with the luma coding block location (xCh, yCb), the variable nCurrS set equal
to nChS,, the variable cldx set equal to 0, the (nCbS)x(nChS,) array predSamples set equal to
predSamples,, and the (nCbS,)x(nChS,) array resSamples set equal to resSamples, as inputs.

— The picture reconstruction process prior to in-loop filtering for a colour component as specified in
subclause 8.6.5 is invoked with the chroma coding block location (XCb / 2, yCb / 2), the variable nCurrS
set equal to nChSc, the variable cldx set equal to 1, the (nChS¢c)x(nChSc) array predSamples set equal to
predSamplescy,, and the (nChSc)x(nCbS¢) array resSamples set equal to resSamplesc,, as inputs.

— The picture reconstruction process prior to in-loop filtering for a colour component as specified in
subclause 8.6.5 is invoked with the chroma coding block location (XCbh /2, yCb / 2), the variable nCurrS
set equal to nChSc, the variable cldx set equal to 2, the (nChS¢c)x(nChSc) array predSamples set equal to
predSamplesc,, and the (nChSc)x(nCbhS¢) array resSamples set equal to resSamplesc, as inputs.

H.8.5.2 Inter prediction process
The specifications in subclause 8.5.2 apply with the following modification:

— All invocations of the process specified in subclause 8.5.3 are replaced with invocations of the process specified in
subclause H.8.5.3.

H.8.5.3 Decoding process for prediction units in inter prediction mode

H.8.5.3.1 General
Inputs to this process are:

— aluma location (xCh, yChb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— aluma location (xBI, yBI) specifying the top-left sample of the current luma prediction block relative to the top-left
sample of the current luma coding block,

— avariable nCbS specifying the size of the current luma coding block,

— avariable nPbW specifying the width of the current luma prediction block,

— avariable nPbH specifying the width of the current luma prediction block,

— avariable partldx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are:

— an (nCbSL)x(nCbSL) array predSamplesL of luma prediction samples, where nCSL is derived as specified below,

— an (nCbSC)x(nChSC) array predSamplesCb of chroma prediction samples for the component Ch, where nCSC is
derived as specified below,

— an (nCbSC)x(nCbSC) array predSamplesCr of chroma prediction samples for the component Cr, where nCSC is
derived as specified below.

The variable nCbSL is set equal to nCbS and the variable nCbSC is set equal to nCbS >> 1.
The decoding process for prediction units in inter prediction mode consists of the following ordered steps:

1. The derivation process for motion vector components and reference indices as specified in subclause H.8.5.3.2
is invoked with the luma coding block location (xCb, yCb), the luma prediction block location (xBl, yBl), the
luma coding block size block nCbS, the luma prediction block width nPbW, the luma prediction block height
nPbH, and the prediction unit index partldx as inputs, and the luma motion vectors mvL0 and mvL1, the chroma
motion vectors mvCLO and mvCL1, the reference indices refldxLO and refldxL1, and the prediction list
utilization flags predFlagL0 and predFlagL1 as outputs.

2. Depending on subPbMotionFlag, the following applies:

— If subPbMotionFlag is equal to 0, the decoding process for inter sample prediction as specified in
subclause H.8.5.3.3.1 is invoked with the luma coding block location (xCh, yCb), the luma prediction
block location (xBl, yBl), the luma coding block size block nChS, the luma prediction block width nPbW,
the luma prediction block height nPbH, the luma motion vectors mvLO and mvL1, the chroma motion

3D-HEVC 49

3D-HEVC

vectors mvCLO and mvCL1, the reference indices refldxL0 and refldxL1, and the prediction list utilization
flags predFlagL0 and predFlagLl as inputs, and the inter prediction samples (predSamples) that are an
(nCbSL)x(nCbSL) array predSamplesL of prediction luma samples and two (nCbSC)x(nCbSC) arrays
predSamplesCr and predSamplesCr of prediction chroma samples, one for each of the chroma components
Cb and Cr, as outputs.

Otherwise (subPbMotionFlag is equal to 1), the decoding process for sub prediction block wise inter sample
prediction as specified in subclause H.8.5.3.3.9 is invoked with the luma coding block location
(XCb, yCb), the luma prediction block location (xBl, yBl), the luma coding block size block nCbS, the
luma prediction block width nPbW, the luma prediction block height nPbH as inputs, and the inter
prediction samples (predSamples) that are an (nCbSL)x(nCbSL) array predSamplesL of prediction luma
samples and two (nCbSC)x(nCbSC) arrays predSamplesCr and predSamplesCr of prediction chroma
samples, one for each of the chroma components Cb and Cr, as outputs.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made
for x = xBIl..xBl + nPbW — 1 and y = yBI..yBl + nPbH — 1:

MvLO[xCb + x][yCb + y] = subPbMotionFlag ? SubPbMvLO[xCb + X][yCb + y] : mvLO (H-73)
MvL1[xCb + x][yCb + y] = subPbMotionFlag ? SubPbMvL1[xCb + X][yCb + y] : mvL1 (H-74)
RefldxLO[xCb + x][yCb + y] = subPbMotionFlag ? SubPbRefldxLO[XCh + X][yCb + y] : refldxLO (H-75)
RefldxL1[xCb + x][yCb + y] = subPbMotionFlag ? SubPbRefldxL1[XCb + X][yCb + y] : refldxL1 (H-76)
PredFlagLO[xCb + x][yCb + y] = subPbMotionFlag ? SubPbPredFlagLO[XCb + x][yCb + y | : predFlagLO(H-77)
PredFlagL1[xCb + x][yCb + y] = subPbMotionFlag ? SubPbPredFlagL1[XCb + x][yCb + y | : predFlagL1(H-78)

H.8.5.3.2

Derivation process for motion vector components and reference indices

Inputs to this process are:

— a luma location (xCh, yChb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

— aluma location (xBl, yBl') of the top-left sample of the current luma prediction block relative to the top-left sample
of the current luma coding block,

— avariable nCbS specifying the size of the current luma coding block,

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

— avariable partldx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are:

the luma motion vectors mvL0 and mvL1,

— the chroma motion vectors mvCLO and mvCL1,

the reference indices refldxL0 and refldxL1,
the prediction list utilization flags predFlagL0 and predFlagL1.
the flag subPbMotionFlag, specifying, whether the motion data of the current PU has sub prediction block size

motion accuracy.

Let (xPb, yPb) specify the top-left sample location of the current luma prediction block relative to the top-left luma
sample of the current picture where xPb = xCb + xBl and yPb = yCb + yBlI.

Let the variable currPic and ListX be the current picture and RefPicListX, with X being 0 or 1, of the current picture,

respectively.

The function LongTermRefPic(aPic, aPb, refldx, LX), with X being 0 or 1, is defined as follows:

— If the picture with index refldx from reference picture list LX of the slice containing prediction block aPb in the
picture aPic was marked as "used for long term reference” at the time when aPic was the current picture,
LongTermRefPic(aPic, aPb, refldx, LX) is equal to 1.

— Otherwise, LongTermRefPic(aPic, aPb, refldx, LX) is equal to 0.

The variables vspModeFlag, ivpMvFlagL0, ivpMvFlagL1 and subPbMationFlag are set equal to 0.

50 3D-HEVC

3D-HEVC

For the derivation of the variables mvLO and mvL1, refldxLO and refldxL1, as well as predFlagL0 and predFlagL1, the
following applies:

— If merge_flag[xPb][yPb] is equal to 1, the derivation process for luma motion vectors for merge mode as specified
in subclause H.8.5.3.2.1 is invoked with the luma location (xCh, yCbh), the luma location (xPb, yPb), the variables
nChS, nPbW, nPbH, and the partition index partldx as inputs, and the output being the luma motion vectors mvLO,
mvL1, the reference indices refldxLO0, refldxL1, and the prediction list utilization flags predFlagL0 and predFlagL1,,
the disparity vector availability flags ivpMvFlagLO and ivpMvFlagLl, the flag vspModeFlag, and the flag
subPbMotionFlag.

— Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, and refldxLX, in PRED_LX,
and in the syntax elements ref_idx_IX and MvdLX, the following applies:

1. The variables refldxLX and predFlagLX are derived as follows:
— Ifinter_pred_idc[xPb][yPb] is equal to PRED_LX or PRED_BI,

refldxLX = ref_idx_IX[xPb][yPb] (H-79)
predFlagLX =1 (H-80)
— Otherwise, the variables refldxLX and predFlagLX are specified by:
refldxLX = -1 (H-81)
predFlagLX = 0 (H-82)
2. The variable mvdLX is derived as follows:
mvdLX[0] = MvdLX[xPb][yPb][0] (H-83)
mvdLX[1]=MvdLX[xPb][yPb][1] (H-84)

3. When predFlagLX is equal to 1, the derivation process for luma motion vector prediction in
subclause 8.5.3.2.5 is invoked with the luma coding block location (xCb, yCb), the coding block size
nCbs, the luma prediction block location (xPb, yPb), the variables nPbW, nPbH, refldxLX, and the
partition index partldx as inputs, and the output being mvpLX.

4. When predFlagLX is equal to 1, the luma motion vector mvLX is derived as follows:

ULX[0] = (mvpLX[0]+ mvdLX[0]+ 2°) 9 2 (H-85)
mvLX[0]=(uLX[0] >= 2)? (uLX[0]—-2%):uLX[0] (H-86)
ULX[1] = (mvpLX[1]+ mvdLX[1]+2%)% 2 (H-87)
mvLX[1]=(uLX[1] >= 2®) 2 (uLX[1]-2"):uLX[1] (H-88)

NOTE — The resulting values of mvLX[0] and mvLX[1] as specified above will always be in the range of —2°
to 2%° - 1, inclusive.

When ChromaArrayType is not equal to 0 and predFlagLX, with X being 0 or 1, is equal to 1, the derivation process for
chroma motion vectors in subclause 8.5.3.2.9 is invoked with mvLX as input, and the output being mvCLX.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made
for x = xPb.. (xPb + nPbW - 1), y = yPb..(yPb + nPbH- 1) (with X being either 0 or 1):

IvpMvFlagLX[x][y] = ivpMvFlagLX (H-89)
VspModeFlag[x][y] = vspModeFlag (H-90)

H.8.5.3.2.1 Derivation process for luma motion vectors for merge mode

This process is only invoked when merge_flag[xPb][yPb] is equal to 1, where (xPb, yPb) specify the top-left sample
of the current luma prediction block relative to the top-left luma sample of the current picture.

Inputs to this process are:

— a luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

— aluma location (xPb, yPb) of the top-left sample of the current luma prediction block relative to the top-left luma
sample of the current picture,

— avariable nChS specifying the size of the current luma coding block,

3D-HEVC 51

3D-HEVC

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

— avariable partldx specifying the index of the current prediction unit within the current coding unit.
Outputs of this process are:

— the luma motion vectors mvL0 and mvL1,

— the reference indices refldxL0 and refldxL1,

— the prediction list utilization flags predFlagL0 and predFlagL1,

— the disparity vector availability flags ivpMvFlagLO0 and ivpMvFlagL1,

— the flag vspModeFlag, specifying, whether the current PU is coded using view synthesis prediction,

— the flag subPbMotionFlag, specifying, whether the motion data of the current PU has sub prediction block size
motion accuracy.

[Ed. (GT): In particular two things need to be check in this process: 1.) Are the limits on candidates in the list correct
(e.g. MaxNumMergeCand vs. 5+ NumExtraMergeCand) 2.) Is (xOrigP, yOrigP) and (xPb, yPb) used correctly in
all places?]

The function differentMotion(N, M) is specified as follows:

— If one of the following conditions is true, differentMotion(N, M) is equal to 1:
— predFlagLXN != predFlagLXM (with X being replaced by 0 and 1),
— mvLXN !'= mvLXM (with X being replaced by 0 and 1),
— refldxLXN = refldxLXM (with X being replaced by 0 and 1),

— Otherwise, differentMotion(N, M) is equal to 0.

The motion vectors mvLO and mvL1, the reference indices refldxLO and refldxL1, and the prediction utilization flags
predFlagL0 and predFlagL1 are derived by the following ordered steps:

1. The derivation process for the base merge candidate list as specified in subclause H.8.5.3.2.18 is invoked with
the luma location (xCb, yCb), the luma location (xPb, yPb), the variables nCbS, nPbW, nPbH, and the
partition index partldx as inputs, and the output being a modified luma location (xPb, yPb), the modified
variables nPbW and nPbH, the modified variable partldx, the luma location (xOrigP, yOrigP), the variables
nOrigPbW and nOrigPbH, the merge candidate list baseMergeCandList, the luma motion vectors mvLON and
mvL1N, the reference indices refldxLON and refldxL1N, and the prediction list utilization flags predFlagLON
and predFlagL1N, with N being replaced by all elements of baseMergeCandL.ist.

2. For N being replaced by A;, By, By, Ag and B,, the following applies:
— If Nis an element in baseMergeCandList, availableFlagN is set equal to 1.
— Otherwise (N is not an element in baseMergeCandList), availableFlagN is set equal to 0.
3. Depending on iv_mv_pred_flag[nuh_layer_id], the following applies:
— If iv_mv_pred_flag[nuh_layer_id] is equal to 0, the flags availableFlaglvMC, availablelvMCShift and
availableFlaglvDC are set equal to 0.

— Otherwise (iv_mv_pred_flag[nuh_layer_id] is equal to 1), the derivation process for the inter-view merge
candidates as specified in subclause H.8.5.3.2.10 is invoked with the luma location (xPb,yPb), the
variables nPbW and nPbH, as the inputs and the output is assigned to the availability flags
availableFlaglvMC, availablelvMCShift and availableFlaglvDC, the reference indices refldxLXIvMC,
refldxLXIvMCShift and refldxLXIvDC, the prediction list utilization flags predFlagLXIvMC,
predFlagLXivMCShift and predFlagLXIvDC, and the motion vectors mvLXIvMC, mvLXIvMCShift and
mvLXIvDC (with X being 0 or 1, respectively).

4. Depending on view_synthesis_pred_flag[nuh_layer_id], the following applies:
— If view_synthesis_pred_flag[nuh_layer_id] is equal to O, the flag availableFlagVSP is set equal to 0.

— Otherwise (view_synthesis_pred_flag[nuh_layer_id] is equal to 1), the derivation process for a view
synthesis prediction merge candidate as specified in subclause H.8.5.3.2.13 is invoked with the luma
locations (xCh, yCb) as input and the outputs are the availability flag availableFlagVSP, the reference
indices refldxLOVSP and refldxL1VSP, the prediction list utilization flags predFlagLOVSP and
predFlagL1VSP, and the motion vectors mvLOVSP and mvL1VSP.

52 3D-HEVC

3D-HEVC

5.

Depending on mpi_flag[nuh_layer_id], the following applies:

If mpi_flag[nuh_layer_id] is equal to 0, the variable availableFlagT is set equal to 0.

Otherwise (mpi_flag[nuh_layer_id] is equal to 1), the derivation process for the texture merging candidate
as specified in subclause H.8.5.3.2.14 is invoked with the luma location (xPb, yPb), the variables nPbW
and nPbH as the inputs and the outputs are the flag availableFlagT, the prediction utilization flags
predFlagLOT and predFlagL1T, the reference indices refldxLOT and refldxL1T, and the motion vectors

mvLOT and mvL1T.

6. The merging candidate list, extMergeCandList, is constructed as follows:

i=0

if(availableFlagT)
extMergeCandList[i++]=T

if(availableFlagivMC && (lavailableFlagT || differentMotion(T, IvMC)))
extMergeCandList[i++] = IvMC

N = DepthFlag ? T : IvMC

if(availableFlagA; && (lavailableFlagN || differentMotion(N, A;)))
extMergeCandList[i++] = A;

if(availableFlagB; && ('availableFlagN || differentMotion(N, B;y)))
extMergeCandList[i++] =B,

if(availableFlagBy)
extMergeCandList[i++] =By

if(availableFlaglvDC && (lavailableFlagA; || differentMotion(Ay, IVvDC)) &&

('availableFlagB; || differentMotion(By, IvDC)))

extMergeCandList[i++] = IvDC

if(availableFlagVSP && lic_flag && iv_res_pred_weight idx == 0)
extMergeCandList[i++] = VSP

if(availableFlagA,)
extMergeCandList[i++] = Ag

if(availableFlagB,)
extMergeCandList[i++] =B,

if(availableFlaglvMCShift && i< (5 + NumExtraMergeCand) &&

('availableFlaglvMC || differentMotion(IvMC, IvMCShift)))

extMergeCandList[i++] = IvMCShift

(H-91)

The variable availableFlaglvDCShift is set equal to 0, and when availableFlaglvMCShift is equal to 0, and i is
less than (5 + NumExtraMergeCand), the derivation process for the shifted disparity merging candidate as
specified in subclause H.8.5.3.2.15 is invoked with the luma location (xPb, yPb), the variables nPbW and
nPbH, and the availability flags availableFlagN, the reference indices refldxLON and refldxL1N, the prediction
list utilization flags predFlagLON and predFlagL1N, the motion vectors mvLON and mvL1N, of every candidate
N being in extMergeCandList, extMergeCandList, and i as the inputs and the outputs are the flag
availableFlaglvDCShift, the prediction utilization flags predFlagLOIvDCShift and predFlagL1lvDCShift, the
reference indices refldxLOIvDCShift and refldxL1lvDCShift, and the motion vectors mvLOlvDCShift and
mvL1IvDCShift.

The merging candidate list, extMergeCandL.ist, is constructed as follows:

if(availableFlaglvDCShift)
extMergeCandList[i++] = lvDCShift
j=0
while(i < MaxNumMergeCand) {
N = baseMergeCandList[j++]
if(N 1= A, && N 1= B; && N 1= By && N 1= A; && N I= B,)
extMergeCandList[i++]=N
}

9. The variable N is set equal to extMergeCandList[merge_idx[xOrigP][yOrigP] 1.

10. The variable subPbMotionFlag is set equal to (N == IvMC).

11. The following assignments are made with X being replaced by 0 or 1:

mvLX = subPbMotionFlag ? 0 : mvLXN
refldxLX = subPbMotionFlag ? —1 : refldxLXN
predFlagLX = subPbMotionFlag ? 0 : predFlagLXN

3D-HEVC

(H-92)

(H-93)
(H-94)
(H-95)

53

12.

13.

14.

15.

3D-HEVC

When predFlagLO is equal to 1 and predFlagL1 is equal to 1, and (nOrigPbW + nOrigPbH) is equal to 12, the
following applies

refldxLL1 = -1 (H-96)

predFlagL1 = 0 (H-97)

The derivation process for a view synthesis prediction flag as specified in subclause H.8.5.3.2.17 is invoked
with the luma location (xPb, yPb), the variables nPbW and nPbH, the merge candidate indicator N as the
inputs, and the output is the mergeCandlsVspFlag.

The variable vspModeFlag is derived as specified in the following:
vspModeFlag = mergeCandlIsVspFlag && lic flag && (iv_res_pred weight idx ==0) (H-98)
The disparity availability flag ivpMvFlagLX is derived as follows (with X being replace by 0 or 1).
— If DepthFlag is equal to 0 and one of the following conditions is true, ivpMvFlagLX is set equal to 1
[Ed. (GT) There is some redundancy in draft and software since disparities equal for both lists.(#7)]
— predFlagLXIVMC && extMergeCandList] merge_idx[xPb][yPb]] = = IvMC
— predFlagLXIVMCShift && extMergeCandList[merge_idx[xPb][yPb]] == IvMCShift

[Ed. (GT): PredMode[XCb][yCb] == MODE_SKIP might be added here instead of testing it in the
disparity vector derivation process]

— Otherwise, ivpMvFlagLX is set equal to O.

H.8.5.3.2.2 Derivation process for spatial merging candidates

The specifications in subclause 8.5.3.2.2 apply.

H.8.5.3.2.3 Derivation process for combined bi-predictive merging candidates

The specifications in subclause 8.5.3.2.3 apply.

H.8.5.3.2.4 Derivation process for zero motion vector merging candidates

The specifications in subclause 8.5.3.2.4 apply.

H.8.5.3.2.5 Derivation process for luma motion vector prediction

The specifications in subclause 8.5.3.2.5 apply.

H.8.5.3.2.6 Derivation process for motion vector predictor candidates

The specifications in subclause 8.5.3.1.6 apply.

H.8.5.3.2.7 Derivation process for temporal luma motion vector prediction

The specifications in subclause 8.5.3.2.7 apply, with the following modifications:

All invocations of the process specified in subclause 8.5.3.2.8 are replaced with invocations of the process specified
in subclause H.8.5.3.2.8.

H.8.5.3.2.8 Derivation process for collocated motion vectors

Inputs to this process are:

a variable currPb specifying the current prediction block,

a variable colPic specifying the collocated picture,

a variable colPb specifying the collocated prediction block inside the collocated picture specified by colPic,

a luma location (xColPb, yColPb) specifying the top-left sample of the collocated luma prediction block specified
by colPb relative to the top-left luma sample of the collocated picture specified by colPic,

a reference index refldxLX, with X being 0 or 1.

Outputs of this process are:

54

the motion vector prediction mvLXCol,

3D-HEVC

3D-HEVC

the availability flag availableFlagLXCol.

The variable currPic specifies the current picture.

The arrays predFlagLXCol[x][y], mvLXCol[x][y], and refldxLXCol[x][y] are set equal to the corresponding
arrays of the collocated picture specified by colPic, PredFlagLX[x][y], MVLX[x][y], and RefldxLX[x][y],
respectively, with X being the value of X this process is invoked for.

The variables mvLXCol and availableFlagLXCol are derived as follows:

If colPb is coded in an intra prediction mode, both components of mvLXCol are set equal to O and
availableFlagLXCol is set equal to 0.

Otherwise, the motion vector mvCol, the reference index refldxCol, and the reference list identifier listCol are
derived as follows:

If predFlagLOCol[xColPb J[yColPb] is equal to 0, mvCol, refldxCol, and listCol are set equal to
mvL1Col[xColPb][yColPb], refldxL1Col[xColPb][yColPb], and L1, respectively.

Otherwise, if predFlagLOCol[xColPb][yColPb] is equal to 1 and predFlagL1Col[xColPb][yColPb] is equal
to 0, mvCol, refldxCol, and listCol are set equal to mvLOCol[xColPb][yColPb],
refldxLOCol[xColPb][yColPb], and LO, respectively.

Otherwise (predFlagLOCol[xColPb][yColPb] is equal to 1 and predFlagL1Col[xColPb][yColPb] is equal
to 1), the following assignments are made:

— If DiffPicOrderCnt(aPic, currPic) is less than or equal to 0 for every picture aPic in every reference picture
list of the current slice, mvCol, refldxCol, and listCol are set equal to mvLXCol[xColPb][yColPb],
refldxLXCol[xColPb][yColPb] and LX, respectively.

— Otherwise, mvCol, refldxCol, and listCol are set equal to mvLNCol[xColPb][yColPb],
refldXLNCol[xColPb J[yColPb], and LN, respectively, with N being the value of
collocated_from_l0_flag.

and mvLXCol and availableFlagL XCol are derived as follows:

— The variables curlvFlag and collvFlag, specifying whether inter-view prediction is utilized for the current
and collocated PU are derived as:

curlvFlag = LongTermRefPic(currPic, currPb, refldxLX, LX) (H-99)
collvFlag = LongTermRefPic(colPic, colPb, refldxCol, listCol) (H-100)

— When MvHevcCompatibilityFlag is equal to 0, curlvFlag is not equal to collvFlag, and AltRefldxLX is not
equal to —1, the variables refldxCol and collvFlag are modified as follows:

refldxLX = AltRefldxLX (H-101)
curlvFlag = LongTermRefPic(currPic, currPb, refldxLX, LX) (H-102)
— The motion vector mvLXCol is modified as follows.

— If curlvFlag is not equal to collvFlag, both components of mvLXCol are set equal to 0 and
availableFlagLXCol is set equal to 0.

— Otherwise, the variable availableFlagLXCol is set equal to 1, refPicListCol[refldxCol] is set to be the
picture with reference index refldxCol in the reference picture list listCol of the slice containing prediction
block currPb in the picture colPic, and the following applies:

— The variables colDiff and currDiff specifying a POC or Viewld difference are derived as follows.

— If curlvFlag is equal to 0 or ((Viewldx !=0) && iv_mv_scaling_flag) is equal to 0, the
following applies.

colDiff = DiffPicOrderCnt(colPic, refPicListCol[refldxCol]) (H-103)
currDiff = DiffPicOrderCnt(currPic, RefPicListX[refldxLX]) (H-104)

— Otherwise, (curlvFlag is equal to 1 and ((Viewldx =0) && iv_mv_scaling_flag) is equal
to 1), the following applies.

colDiff = DiffViewld(colPic, refPicListCol[refldxCol]) (H-105)
currDiff = DiffViewld(currPic, RefPicListX[refldxLX]) (H-106)

3D-HEVC 55

3D-HEVC

— If colDiff is equal to currDiff, mvLXCol is derived as follows:

mvLXCol = mvCol (H-107)
— Otherwise, mvLXCol is derived as a scaled version of the motion vector mvCol as follows:

tx = (16384 + (Abs(td) >> 1))/t (H-108)
distScaleFactor = Clip3(—4096, 4095, (tb *tx +32) >> 6) (H-109)
mvLXCol = Clip3(—32768, 32767, Sign(distScaleFactor * mvCol) *

((Abs(distScaleFactor * mvCol) + 127) >> 8)) (H-110)

where td and tb are derived as follows:

td = Clip3(—128, 127, colDiff) (H-111)
tb = Clip3(—128, 127, currDiff) (H-112)

H.8.5.3.2.9 Derivation process for chroma motion vectors

The specifications in subclause 8.5.2.1.9 apply.

H.8.5.3.2.10 Derivation process for inter-view merge candidates
This process is not invoked when iv_mv_pred_flag[nuh_layer_id] is equal to 0.
Inputs to this process are:

— a luma location (xPh, yPb) of the top-left luma sample of the current prediction unit relative to the top-left luma
sample of the current picture,

— variables nPbW and nPbH specifying the width and the height, respectively, of the current prediction unit,
Outputs of this process are (with X being 0 or 1, respectively)

— the availability flags availableFlaglvMC, availableFlaglvMCShift and availableFlaglvDC specifying whether the
inter-view merge candidates are available,

— the reference indices refldxLXIvMC, refldxLXIvMCShift and refldxLXIvDC,

— the prediction list utilization flags predFlagLXIvMC, predFlagLXIvMCShift and predFlagLXIvDC,
— the motion vectors mvLXIVMC, mvLXIvMCShift and mvLXIvDC,

The temporal inter-view motion vector merging candidate is derived by the following ordered steps.

1. The derivation process for a sub prediction block temporal inter-view motion vector candidate as specified in
subclause H.8.5.3.2.16 is invoked with the luma location (xPb, yPb), the variables nPbW and nPbH, the view
order index RefViewldx[xPb][yPb] and the disparity vector MvRefinedDisp[xPb][yPb] as the inputs and
the outputs are, with X being in the range of 0 to 1, inclusive, the flag availableFlagLXIvMC, the motion vector
mvLXIvMC and the reference index refldxLXIvMC.

2. The availability flag availableFlaglvMC, and the prediction utilization flags predFlagLOIVMC and
predFlagL1lvMC are derived by

availableFlaglvMC = availableFlagLOIVMC | | availableFlagL1IlvMC (H-113)
predFlagLOIvMC = availableFlagLOIvMC (H-114)
predFlagL1IvMC = availableFlagL1lvMC (H-115)

The shifted temporal inter-view motion vector merging candidate is derived by the following ordered steps.
1. For the prediction list indication X being 0 and 1 the following applies.

— The derivation process for a temporal inter-view motion vector candidate as specified in
subclause H.8.5.3.2.11 is invoked with the luma location (xPb, yPb), the variables nPbW and nPbH, the
prediction list indication X , the view order index RefViewldx[xPb][yPb], the disparity vector
MvRefinedDisp[xPb][yPb] + (nPbW *2 + 4, nPbH *2 + 4), and the reference index refldxLX being
equal to —1, and as the inputs and the outputs are the flag availableFlagLXIvMCShift, the motion vector
mvLXIvMCShift and the reference index refldxLXIvMCShift.

2. The availability flag availableFlaglvMCShift, and the prediction utilization flags predFlagLOIvMCShift and
predFlagL1lvMCShift are derived by

56 3D-HEVC

3D-HEVC

availableFlaglvMCShift = availableFlagLOIvMCShift | | availableFlagL1lvMCShift (H-116)
predFlagLOIvMCShift = availableFlagLOlvMCShift (H-117)
predFlagL1IvMCShift = availableFlagL1IvMCShift (H-118)

The disparity inter-view motion vector merging candidate is derived by the following ordered steps.
1. For the prediction list indication X being 0 and 1 the following applies.

— The derivation process for a disparity inter-view motion vector candidate as specified in
subclause H.8.5.3.2.12 is invoked with the luma location (xPb, yPb), the variables nPbW and nPbH, the
view order index RefViewldx[xPb][yPb], the disparity vector MvRefinedDisp[xPb][yPb], and the
prediction list indication X, as the inputs and the outputs are the flag availableFlagLXIvDC, the motion
vector mvLXIvDC, and the reference index refldxLXIvDC.

2. The availability flag availableFlaglvDC, and the prediction utilization flags predFlagLOIlvDC and
predFlagL1IvDC are derived by

availableFlaglvDC = availableFlagLOIvDC | | availableFlagL1IvDC (H-119)
predFlagLOIvDC = availableFlagLOlvDC (H-120)
predFlagL1lvDC = availableFlagL1IvDC (H-121)

H.8.5.3.2.11 Derivation process for a temporal inter-view motion vector candidate
This process is not invoked when iv_mv_pred_flag[nuh_layer_id] is equal to O.
Inputs to this process are:

— a luma location (xPh, yPb) of the top-left luma sample of the current prediction unit relative to the top-left luma
sample of the current picture,

— variables nPbW and nPbH specifying the width and the height, respectively, of the current prediction unit,

— aprediction list indication X,

— areference view index refViewldx.

— adisparity vector mvDisp,

Outputs of this process are:

— aflag availableFlagLXInterView specifying whether the temporal inter-view motion vector candidate is available,
— atemporal inter-view motion vector candidate mvLXInterView,

— areference index refldxLX specifying a reference picture in the reference picture list RefPicListLX,

The flag availableFlagLXInterView is set equal to O, the variable refldxLX is set equal to —1, and both components of
mvLXInterView are set equal to 0.

When X is equal to 1 and the current slice is not a B slice the whole decoding process specified in this subclause
terminates.

The reference layer luma location (xRef, yRef) is derived by

XRefFull = xPb + (nPbW >> 1)+ ((mvDisp[0] +2) >> 2) (H-122)
yRefFull = yPb + (nPbH >> 1)+ ((mvDisp[1]+2) >> 2) (H-123)
xRef = Clip3(0, PicWidthinSamples, — 1, (xRefFull >> 3) << 3) (H-124)
yRef = Clip3(0, PicHeightInSamples, — 1, (yRefFull >> 3) << 3) (H-125)

The variable ivRefPic is set equal to the picture with Viewldx equal to refViewldx in the current access unit.

The variable ivRefPb specifies the luma prediction block covering the location given by (xRef, yRef) inside the inter-
view reference picture specified by ivRefPic.

The luma location (xlvRefPb, ylvRefPb) is set equal to the top-left sample of the inter-view reference luma prediction
block specified by ivRefPb relative to the top-left luma sample of the inter-view reference picture specified by ivRefPic.

When ivRefPb is not coded in an intra prediction mode, the following applies, for Y in the range of X to (1 - X),
inclusive:

3D-HEVC 57

3D-HEVC

— The variables refPicListLYIvRef, predFlagLYIvRef[x][y], mvLYIvRef[x][y], and refldxLYIvRef[x][y] are
set equal to the corresponding variables of the inter-view reference picture specified by ivRefPic, RefPicListLY,,
PredFlagLY[x][y], MVLY[x][y], and RefldxLY[x][y], respectively.

— When predFlagLYIvRef[xlvRefPb][ylvRefPb] is equal to 1, the following applies for each i from 0 to
num_ref_idx_IX_active_minusl, inclusive:

— When PicOrderCnt(refPicListLY IvRef[refldxLY IvRef[xIvRefPb][ylvRefPb] 1) is equal to
PicOrderCnt(RefPicListLX[i]) and availableFlagL XInterView is equal to 0, the following applies.

availableFlagLXInterView = 1 (H-126)
mvLXInterView = mvLY IvRef[xlvRefPb][ylvRefPb] (H-127)
refldxLX =i (H-128)

H.8.5.3.2.12 Derivation process for a disparity inter-view motion vector candidate
This process is not invoked when iv_mv_pred_flag[nuh_layer_id] is equal to 0.
Inputs to this process are:

— aluma location (xPb, yPb) of the top-left luma sample of the current prediction unit relative to the top-left luma
sample of the current picture,

— variables nPbW and nPbH specifying the width and the height, respectively, of the current prediction unit,

— aprediction list indication X,

— a reference view index refViewldx,

— adisparity vector mvDisp,

Outputs of this process are:

— aflag availableFlagLXInterView specifying whether the disparity inter-view motion vector candidate is available,
— adisparity inter-view motion vector candidate mvLXInterView,

— areference index refldxLX specifying a reference picture in the reference picture list RefPicListLX.

The flag availableFlagL XInterView is set equal to 0, both components of mvLXInterView are set equal to 0.

When X is equal to 1 and the current slice is not a B slice the whole decoding process specified in this subclause
terminates.

For each i from 0 to num_ref_idx_IX_active_minusl, inclusive, the following applies:

— When PicOrderCnt(RefPicListX[i]) is equal to the PicOrderCntVal, Viewldx(RefPicListX[i]) is equal to
refViewldx and availableFlagLXInterView is equal to 0 the following applies:

availableFlagLXInterView = 1 (H-129)
mvLXInterView[0] = DepthFlag ? (mvDisp[0]+2) >> 2 : mvDisp[0] (H-130)
mvLXInterView[1] =0 (H-131)
refldxLX =i (H-132)

H.8.5.3.2.13 Derivation process for a view synthesis prediction merge candidate
Inputs to this process are:

— a luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

Outputs of this process are

— the availability flag availableFlagVVSP whether the VSP merge candidate is available,

— the reference indices refldxLOVSP and refldxL1VSP ,

— the prediction list utilization flags predFlagLOVSP and predFlagL1VSP,

— the motion vectors mvLOVSP and mvL1VSP.

The variable availableFlagVSP is set equal to 1, the variables predFlagLOVSP and predFlagL1VSP are set equal to 0, the

58 3D-HEVC

3D-HEVC

variables refldxLOVSP and refldxL1VSP are set equal to —1 and the variable refViewAvailableFlag is set equal to 0.
— For X'in the range of 0 to 1, inclusive, the following applies:
— Fori in the range of 0 to NumRefPicsLX — 1, inclusive, the following applies:

— When refViewAvailableFlag is equal to 0 and Viewldx(RefPicListX[i]) is equal to
RefViewldx[xCb][yCb], the following applies:

refViewAvailableFlag = 1 (H-133)
predFlagLXVSP = 1 (H-134)
mvLXVSP = MvDisp[xCb][yCb] (H-135)
refldxLXVSP = i (H-136)
Y=1-X (H-137)

When the current slice is a B slice and refViewAvailableFlag is equal to 1, refViewAvailableFlag is set equal to 0 and
the following applies:

— Fori in the range of 0 to NumRefPicsLY — 1, inclusive, the following applies.

— When refViewAvailableFlag is equal to 0 and Viewldx(RefPicListY[i]) is not equal to
RefViewldx[xCb][yCb] and Viewldx(RefPicListY[i]) is not equal to Viewldx, the following applies:

— The variables refViewAvailableFlag, predFlagLYVSP, mvLYVSP, and refldxLYVSP are derived as
specified in the following:

refViewAvailableFlag = 1 (H-138)
predFlagLYVSP =1 (H-139)
mvLYVSP = MvDisp[xCb][yCb] (H-140)
refldxLYVSP = i (H-141)
— When iv_mv_scaling_flag is equal to 1, mvLYVSP is modified as specified in the following:

td = Clip3(=128, 127, Viewld — view_id_val[RefViewldx[xCb][yCb 1)] (H-142)
tb = Clip3(—128, 127, Viewld — Viewld(RefPicListY[i])) (H-143)
tx = (16384 + (Abs(td) >> 1))/td (H-144)
distScaleFactor = Clip3(—4096, 4095, (tb *tx + 32)>>6) (H-145)

mvLYVSP[0] = Clip3(—32768, 32767, Sign2(distScaleFactor * mvLYVSP[0])
* ((Abs(distScaleFactor * mvLYVSP[0]) +127) >> 8)) (H-146)

mvLYVSP[1] = Clip3(—32768, 32767, Sign2(distScaleFactor * mvLYVSP[1])
* ((Abs(distScaleFactor * mvLYVSP[1]) +127) >> 8)) (H-147)

H.8.5.3.2.14 Derivation process for the texture merging candidate
This process is not invoked when mpi_flag[nuh_layer_id] is equal to O.
Inputs to this process are:

— a luma location (xPb, yPb) of the top-left luma sample of the current prediction unit relative to the top-left luma
sample of the current picture,

— variables nPbW and nPbH specifying the width and the height, respectively, of the current prediction unit,
Outputs of this process are:

— aflag availableFlagT specifying whether the texture merging candidate is available,

the prediction utilization flags predFlagLOT and predFlagL1T,
— the reference indices refldxLOT and refldxL1T (when availableFlagT is equal to 1),

the motion vectors mvLOT and mvL1T (when availableFlagT is equal to 1).

The variable availableFlagT is set equal to 0. The variables predFlagLOT and predFlagL1T are set equal to 0. The
variables refldxLOT and refldxL1T are set equal to —1. Both components of the motion vectors mvLOT and mvLIT are

3D-HEVC 59

3D-HEVC

set equal to 0.

The texture luma location (xRef, yRef) is derived by:

xRefFull = xPb + ((nPbW -1) >> 1) (H-148)
yRefFull = yPb + ((nPbH-1) >> 1) (H-149)
xRef = Clip3(0, PicwWidthInSamples, — 1, (xRefFull >> 3) << 3) (H-150)
yRef = Clip3(0, PicHeightInSamples, — 1,(yRefFull >> 3) << 3) (H-151)

[Ed. (GT): Is clipping necessary?]

Let textPic be the picture with PicOrderCntVal and Viewldx equal to PicOrderCnt and Viewldx of the current picture
and DepthFlag being equal to 0 and let textPU be the PU at covering the position (XRef, yRef) in textPic.

For X in the range of 0 to 1, inclusive, the following applies:

1. The variable textPredFlagLX is set equal to PredFlagLX of textPU. The variable textRefldxLX is set equal to
RefldxLX of textPU. The variable textMvLX is set equal to the MvLX of textPU. The variable availableFlag is
set equal to 0.

2. When X is equal to 0 or the current slice is a B slice, for i in the range of 0 to NumRefPicsLX — 1, inclusive, the
following applies:

— When all of the following conditions are true, availableFlag is set equal to 1,
— textPredFlagLX[xRef][yRef] is equal to 1
— PicOrderCnt(RefPicListX[i]) is equal to PicOrderCnt(textPic)
— Viewldx(RefPicListX[i]) is equal to Viewldx(textPic)
— When predFlagLXT is equal to 0 and availableFlag is equal to 1, the following applies:

mvLXT[0] = (textMvLX[xRef [[yRef][0]+2) >> 2 (H-152)
mvLXT[1] = (textMVLX[xRef J[yRef][1]+2) >> 2 (H-153)
refldxLX = i (H-154)
predFlagLXT =1 (H-155)
availableFlagT =1 (H-156)

H.8.5.3.2.15 Derivation process for the shifted disparity merging candidate

This process is not invoked when DepthFlag is equal to 1.

Inputs to this process are:

a luma location (xPb, yPb) of the top-left luma sample of the current prediction unit relative to the top-left luma
sample of the current picture,

variables nPbW and nPbH specifying the width and the height, respectively, of the current prediction unit,
the availability flags availableFlagN,

the reference indices refldxLON and refldxL1N,

the prediction list utilization flags predFlagLON and predFlagL1N,

the motion vectors mvLON and mvL1N,

a merging candidate list mergeCandList,

the variable numMergeCand specifying the number of merge candidates in list mergeCandList

Outputs of this process are:

60

the flag availableFlaglvDCShift, specifying whether shifted disparity merging candidate is available
the prediction utilization flags predFlagLOIvDCShift and predFlagL1IvDCShift,

the reference indices refldxLOIvDCShift and refldxL11vDCShift,

the motion vectors mvLOIvDCShift and mvL1lvDCShift.

3D-HEVC

3D-HEVC

The variable availableFlaglvDCShift is set equal to 0 and for i in the range of 0 to numMergeCand - 1, inclusive, the
following applies:

— The variable N is set equal to mergeCandList[i].

— The derivation process for a view synthesis prediction flag as specified in subclause H.8.5.3.2.17 is invoked
with the luma location (xPb, yPb), the variables nPbW and nPbH, the merge candidate indicator N as the
inputs, and the output is the mergeCandlsVspFlag.

— When availableFlaglvDCShift is equal to 0 and availableFlagN is equal to 1, the candidate N is not equal to
IVMC or IvDC, and mergeCandIsVspFlag is not equal to 0O, predFlagLON is equal to 1 and
Viewldx(RefPicListO[refldxLON]) is not equal to Viewldx, the following applies:

— availableFlaglvDCShift is set equal to 1

— predFlagLXIvDCShift is set equal to predFlagLXN, (with X being replaced by 0 and 1)

— refldxLXIvDCShift is set equal to refldxLXN, (with X being replaced by 0 and 1)

— mvLOIvDCShift[0] is set equal to mvLON[0] + 4

— mvLOIvDCShift[1] is set equal to (view_synthesis_pred_flag[nuh_layer_id]? 0: mvLON[1])
— mvL1lIvDCShift = mvL1N

When availableFlaglvDCShift is equal to 0 and availableFlaglvDC is equal to 1, availableFlaglvDCShift is set to 1 and
the following applies for X being 0 to 1, inclusive:

— predFlagLXIvDCShift is set equal to predFlagLXIvDC,
— refldxLXIvDCShift is set equal to refldxLXIvDC,

— mvLXIvDCShift[0] is set equal to mvLOIVDC[0] + 4
— mvLXIvDCShift[1] is set equal to mvLOIVDC[1]

H.8.5.3.2.16 Derivation process for a sub prediction block temporal inter-view motion vector candidate
This process is not invoked when iv_mv_pred_flag[nuh_layer_id] is equal to 0.
Inputs to this process are:

— a luma location (xPb, yPb) of the top-left luma sample of the current prediction unit relative to the top-left luma
sample of the current picture,

— variables nPbW and nPbH specifying the width and the height, respectively, of the current prediction unit,
— areference view index refViewldx.

— adisparity vector mvDisp,

Outputs of this process are:

— the flags availableFlagLXInterView, with X in the range of 0 to 1, inclusive, specifying whether the temporal inter-
view motion vector candidate is available,

— the temporal inter-view motion vector candidate mvLXInterView, with X in the range of 0 to 1, inclusive.

— the reference index refldxLXInterView, with X in the range of 0 to 1, inclusive, specifying a reference picture in the
reference picture list RefPicListLX,

For X in the range of 0 to 1, inclusive, the following applies:

— The flag availableFlagL XInterView is set equal to 0.

— The motion vector mvLXInterView is set equal to (0, 0).

— The reference index refldxLXInterView is set equal to —1.

The variables nSbW and nSbH are derived as:
nSbW = nPbW / SubPbSize[nuh_layer_id] <= 1 ? nPbW : SubPbSize[nuh_layer_id] (H-157)
nSbH = nPbH / SubPbSize[nuh_layer_id] <= 1 ? nPbH : SubPbSize[nuh_layer_id] (H-158)

The variable ivRefPic is set equal to the picture with Viewldx equal to refViewldx in the current access unit, the variable
curSubBlockldx is set equal to 0 and the variable lastAvailableFlag is set equal to 0.

3D-HEVC 61

3D-HEVC

For yBIk in the range of 0 to (nPbH / nSbH — 1), inclusive, the following applies:
— For xBIk in the range of 0 to (nPbW / nSbW — 1), inclusive, the following applies:

— For X in the range of 0 to 1, inclusive, the derivation process for a temporal inter-view motion vector candidate
as specified in subclause H.8.5.3.2.11 is invoked with the luma location
(xPb + xBIk*nSbW, yPb + yBIk * nSbH), the variables nSbW and nSbH, the prediction list indication X, the
view order index refViewldx, and the disparity vector mvDisp as the inputs and the outputs are the flag
spPredFlagLX[xBlk][yBlk], the motion vector spMvLX[xBIk][yBlk] and the reference index
spRefldxLX[xBIk][yBlk].

— The variable curAvailableFlag is set equal to (spRefldxLO[xBIk][yBlk] || spRefldxL1[xBIk][yBlk]).
— Depending on curAvailableFlag, the following applies:
— If curAvailableFlag is equal to 1, the following ordered steps apply:
1. When lastAvailableFlag is equal to 0, the following applies:

— For X in the range of 0 to 1, inclusive, the following applies:

mvLXInterView = spMvLX[xBIk][yBIk] (H-159)
refldxLXInterView = spRefldxLX[xBlk][yBIk] (H-160)
availableFlagLXInterView = spPredFlagLX[xBIk][yBIk] (H-161)

— When curSubBlockldx is greater than 0, the following applies for k in the range of 0 to
(curSubBlockldx — 1), inclusive:

— The variables i and k are derived as specified in the following:

i =k % (nPbW /nSbw) (H-162)

j=k/(nPbW /nShW) (H-163)
— For Xin the range of 0 to 1, inclusive, the following applies:

SpMVLX[i]1[j]=spMVLX[xBlk][yBIk] (H-164)

spRefldxLX[i][j] = spRefldxLX[xBIk][yBlk] (H-165)

spPredFlagLX[i][j] = spPredFlagLX[xBlk][yBIk] (H-166)

2. The variable lastAvailableFlag is set equal to 1.
3. The variables xLastAvail and yLastAvail are set equal to xBlk and yBIKk, respectively.

— Otherwise (curAvailableFlag is equal to 0), when lastAvailable Flag is equal to 1, the following applies for
X in the range of 0 to 1, inclusive:

spMVLX[xBIk][yBIk] = spMvLX[xLastAvail][yLastAvail] (H-167)
spRefldxLX[xBIk][yBIk] = spRefldxLX[xLastAvail][yLastAvail] (H-168)
spPredFlagLX[xBlk][yBIk] = spPredFlagLX[xLastAvail][yLastAvail] (H-169)

— The variable curSubBlockldx is set equal to curSubBlockldx + 1.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made
for x=0..nPbW —1 and y = 0.. nPbH — 1:

— For X'in the range of 0 to 1, inclusive, the following applies:

— The variables SubPbPredFlagL X, SubPbMvLX and SubPbRefldxLX are derived as specified in following:

SubPbPredFlagLX[xPb + x][yPb + y] = spPredFlagLX[x / nSbW][y / nSbW] (H-170)
SubPbMVLX[xPb + x][yPb +y] = spMVLX[x / nSbW][y / nSbW] (H-171)
SubPbRefldxLX[xPb + x][yPb + y] = spRefldxLX[x / nSbW][y / nSbW] (H-172)

— The derivation process for chroma motion vectors in subclause 8.5.3.2.9 is invoked with
SubPbMVLX[xPb + x][yPb + y] as input and the output is SuUbPbMvCLX[xPb + x][yPb +y].

62 3D-HEVC

3D-HEVC

H.8.5.3.2.17 Derivation process for a view synthesis prediction flag

Inputs to this process are:

a luma location (xPb, yPb) of the top-left luma sample of the current prediction unit relative to the top-left luma
sample of the current picture,

variables nPbW and nPbH specifying the width and the height, respectively, of the current prediction unit,

a merge candidate indicator N, specifying the merge candidate.

Outputs of this process are:

a variable mergeCandIsVspFlag specifying, whether the merge candidate is a view synthesis prediction merge
candidate.

The variable mergeCandIsVspFlag is derived as specified in the following:

If N is equal to VSP, mergeCandlsVspFlag is set equal to 1,

Otherwise, if N is equal to A;, mergeCandIsVspFlag is set equal to VspModeFlag[xPb — 1][yPb + nPbH - 11,

Otherwise, if N is equal to Ay, mergeCandIsVspFlag is set equal to VspModeFlag[xPb — 1][yPb + nPbH],

Otherwise, mergeCandlsVspFlag is set equal to 0.

H.8.5.3.2.18 Derivation process for the base merge candidate list

The specifications in subclause 8.5.3.2.1 apply, with the following modifications:

Steps 9 and 10 are removed.

“When slice_type is equal to B, the derivation process for combined bi-predictive merging candidates” is replaced
by “When slice_type is equal to B and numMergeCand is less than 5, the derivation process for combined bi-
predictive merging candidates”

“temporal luma motion vector prediction in subclause 8.5.3.2.7 is invoked” is replaced by “temporal luma motion
vector prediction in subclause H.8.5.3.2.7 is invoked”

The outputs of the process are replaced by:

a modified luma location (xPb, yPb) of the top-left sample of the current luma prediction block relative to the
top-left luma sample of the current picture,

two variables nPbW and nPbH specifying the modified width and the height of the luma prediction block,

a modified variable partldx specifying the modified index of the current prediction unit within the current
coding unit.

an original luma location (xOrigP, yOrigP) of the top-left sample of the current luma prediction block relative
to the top-left luma sample of the current picture,

two variables nOrigPbW and nOrigPbH specifying the original width and the height of the luma prediction
block,

the merge candidate list, mergeCandList,
the luma motion vectors mvLON and mvL1N, with N being replaced by all entries of mergeCandL.ist
the reference indices refldxLON and refldxL1N, with N being replaced by all entries of mergeCandList

the prediction list utilization flags predFlagLON and predFlagL1N, with N being replaced by all elements of
mergeCandList

H.8.5.3.3 Decoding process for inter prediction samples

H.8.5.3.3.1 General

Inputs to this process are:

a luma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

a luma location (xBl, yBI') specifying the top-left sample of the current luma prediction block relative to the top-left
sample of the current luma coding block,

3D-HEVC 63

3D-HEVC

— avariable nChS specifying the size of the current luma coding block,

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

— the luma motion vectors mvL0 and mvL1,

— the chroma motion vectors mvCLO and mvCL1,

— the reference indices refldxL0 and refldxL1,

— the prediction list utilization flags, predFlagLO0, and predFlagL1.

Outputs of this process are:

— an (nChS)x(nCbS,) array predSamples,_ of luma prediction samples, where nChS__is derived as specified below,

— an (nCbS¢)x(nChSc) array predSamplesc, of chroma prediction samples for the component Cb, where nChS¢ is
derived as specified below,

— an (nChS¢)x(nChSc) array predSamplesc, of chroma residual samples for the component Cr, where nCbSc is derived
as specified below.

The variable nCbS, is set equal to nCbS and the variable nCbS¢ is set equal to nChS >> 1.

— If VspModeFlag[xCb + xBI][yCb + yBI] is equal to 0, the following ordered steps apply:

1.

Let predSamplesLO, and predSamplesL1, be (nPbW)x(nPbH) arrays of predicted luma sample values and
predSampleLO¢p, predSampleL1c,, predSampleLOc,, and predSampleLlc, be (nPbW / 2)x(nPbH / 2) arrays of
predicted chroma sample values.

For X being each of 0 and 1, when predFlagLX is equal to 1, the following applies:

— When predFlagLX is equal to 1, the following applies.

The variable resPredFlag is derived as specified in the following: [Ed. (CY): Based on F0123, the only
check for resPredFlag is the iv_res_pred_weight_idx, however F105 introduces other checks for ARP,
which may apply to temporal residual prediction. The additional checks in H-195 need to be closely
inspected.]

resPredFlag = (iv_res_pred_weight idx != 0) && RpRefPicAvailFlagLX &&
RefRpRefAvailFlagLX[RefViewldx[xP][yP] 1] (H-173)

If resPredFlag is equal to 1, the bilinear sample interpolation and residual prediction process as
specified in subclause H.8.5.3.3.7 is invoked with the luma locations (XCb, yCb), (xBl, yBl), the size
of the current luma coding block nChS, the width and the height of the current luma prediction block
nPbW, nPbH, the prediction list indication X, the prediction list utilization flag predFlagLX, the
reference index refldxLX, and the motion vectors mvLX, mvCLX, as the inputs and the outputs are the
arrays predSamplesLX, predSamplesL X¢p, and predSamplesLXc;.

Otherwise, (resPredFlag is equal to 0), the following applies:

— The reference picture consisting of an ordered two-dimensional array refPicLX_ of luma samples
and two ordered two-dimensional arrays refPicLXc, and refPicLXc, of chroma samples is derived
by invoking the process specified in subclause 8.5.3.3.2 with refldxLX as input.

=~ If DepthFlag is equal to O, the arrays predSamplesLX,, predSamplesLXcy,, and predSamplesLXc,
are derived by invoking the fractional sample interpolation process specified in subclause 8.5.3.3.3
with the luma locations (XCb, yCb) and (xBlI, yBI), the luma prediction block width nPbW, the
luma prediction block height nPbH, the motion vectors mvLX and mvCLX, and the reference
arrays refPicL X, refPicLXcyp, and refPicL X, as inputs.

— Otherwise, (DepthFlag is equal to 1), arrays predSamplesLX,, predSamplesLXc, and
predSamplesL X, are derived by invoking the full sample interpolation process specified in
subclause H.8.5.3.3.5 with the luma locations (XCb, yCb), (xBI, yBl), the width and the height
of the current luma prediction block nPbW, nPbH, the motion vectors mvLX, mvCLX, and the
reference arrays with refPicL X, refPicLXc, and refPicLXc, given as input.

3. Depending on ic_flag, the array predSamples, is derived as specified in the following:

64

— Ific_flag is equal to O, the following applies.

The array predSample_ of the prediction samples of luma component is derived by invoking the
weighted sample prediction process specified in subclause 8.5.3.3.4 with the luma prediction block

3D-HEVC

3D-HEVC

4,

width nPbW, the luma prediction block height nPbH, and the sample arrays predSamplesLO_ and
predSamplesL1,, and the variables predFlagLO0, predFlagL1, refldxLO, refldxL1, and cldx equal to O as
inputs. [Ed. (GT): There seems to be an issue with the base spec. In this subclause predSample, s is of
size (nChS,)x(nCbS,), whereas the output of 8.5.3.3.4 is of size (nPbW)x(nPbH).]

— Otherwise (ic_flag is equal to 1), the following applies.

— The array predSample_ of the prediction samples of luma component is derived by invoking the
illumination compensated sample prediction process specified in subclause H.8.5.3.3.6, with the luma
location (XCh, yCb), the size of the current luma coding block nChS, the luma location (xBI, yBI),
the width and the height of the current luma prediction block nPbW, nPbH, and the sample arrays
predSamplesL0,_ and predSamplesL1, as well as predFlagLO0, predFlagL1, refldxLO, refldxL1, mvLO,
mvL1 and cldx equal to 0 given as input.

Depending on ic_flag and nPbW, the arrays predSamplec,, and predSamplec; are derived as specified in the
following:

— Ific_flag is equal to 0 or nPbW is not greater than 8, the following applies:

— The array predSamplec, of the prediction samples of component Cb is derived by invoking the
weighted sample prediction process specified in subclause 8.5.3.3.4 with the chroma prediction block
width nPbW(¢y, set equal to nPbW / 2, the chroma prediction block height nPbH¢y, set equal to nPbH / 2,
the sample arrays predSamplesLO¢, and predSamplesL1cy, and the variables predFlagL0, predFlagLl,
refldxLO, refldxL1, and cldx equal to 1 as inputs.

— The array predSamplec, of the prediction samples of component Cr is derived by invoking the weighted
sample prediction process specified in subclause 8.5.3.3.4 with the chroma prediction block width
nPbWc, set equal to nPbW / 2, the chroma prediction block height nPbH¢, set equal to nPbH / 2, the
sample arrays predSamplesLOc, and predSamplesLlc,, and the variables predFlagL0, predFlagLl,
refldxLO, refldxL1, and cldx equal to 2 as inputs.

— Otherwise (ic_flag is equal to 1 and nPbW is greater than 8), the following applies:

— The array predSamplec, of the prediction samples of component Cb is derived by invoking the
illumination compensated sample prediction process specified in subclause H.8.5.3.3.6, with the luma
location (xCb, yCb), the size of the current luma coding block nCbS, with the chroma location
(xBl/2, yBl/2), the width and the height of the current chroma prediction block nPbW(¢, set equal to
nPbW / 2, nPbH, set equal to nPbH / 2, and the sample arrays predSamplesLO¢, and predSamplesL1cy
as well as predFlagL0, predFlagL1, refldxLO0, refldxL1, mvCLO, mvCL1, and cldx equal to 1 given as
input.

— The array predSamplec, of the prediction samples of component Cr is derived by invoking the
illumination compensated sample prediction process specified in subclause H.8.5.3.3.6, with the luma
location (xCb, yCb), the size of the current luma coding block nCbS, with the chroma location
(xBI/2,yBl/2), the width and the height of the current chroma prediction block nPbW(¢, set equal to
nPbW / 2, nPbHc, set equal to nPbH / 2, and the sample arrays predSamplesLO¢, and predSamplesL1c,
as well as predFlagL0, predFlagLl, refldxL0, refldxL1, mvCLO, mvCL1, and cldx equal to 2 given as
input.

— Otherwise, (VspModeFlag[xCb + xBI][yCb + yBI] is equal to 1), the following applies:

For X in the range of 0 to 1, inclusive, the following applies.

— When predFlagLX is equal to 1, the arrays predSamples, ,predSamplecy,, and predSamplec, are derived by
invoking the view synthesis prediction process as specified in subclause H.8.5.3.3.7.3, with the luma
locations (xCb, yCb), (xBI, yBl), the width and the height of the current luma prediction block nPbW,
nPbH, the prediction list indicator X and the reference index refldxLX as the inputs and the outputs are the
sample arrays predSamplesLX,, predSamplesLXcy,, and predSamplesLXc;.

The array predSample, of the prediction samples of luma component is derived by invoking the weighted
sample prediction process specified in subclause 8.5.2.2.3 with the luma location (xBl, yBl), the width and the
height of the current luma prediction block nPbW, nPbH, and the sample arrays predSamplesLO, and
predSamplesL1, as well as predFlagL0, predFlagL1, refldxLO, refldxL1 and cldx equal to O given as input.

The array predSamplecy, of the prediction samples of component Cb is derived by invoking the weighted sample
prediction process specified in subclause 8.5.2.2.3 with the chroma location (xBl/2, yBl/2), the width and the
height of the current chroma prediction block nPbW(¢j, set equal to nPbW / 2, nPbH, set equal to nPbH / 2, and
the sample arrays predSamplesLOq, and predSamplesL1c, as well as predFlagLO, predFlaglLl, refldxLO,
refldxL1, and cldx equal to 1 given as input.

3D-HEVC 65

3D-HEVC

— The array predSamplec, of the prediction samples of component Cr is derived by invoking the weighted sample
prediction process specified in subclause 8.5.2.2.3 with the chroma location (xBI / 2, yBl / 2), the width and the
height of the current chroma prediction block nPbW(¢, set equal to nPbW / 2, nPbH, set equal to nPbH / 2, and
the sample arrays predSamplesLOc, and predSamplesL1c, as well as predFlagL0, predFlagll, refldxLO,
refldxL1, and cldx equal to 2 given as input.

H.8.5.3.3.2 Reference picture selection process

The specifications in subclause 8.5.3.3.2 apply.

H.8.5.3.3.3 Fractional sample interpolation process

The specifications in subclause 8.5.3.3.3 apply.

H.8.5.3.3.4 Weighted sample prediction process
The specifications in subclause 8.5.3.3.4 apply.

H.8.5.3.3.5 Full sample interpolation process
Inputs to this process are:

— aluma location (xCh, yCb) specifying the top-left sample of the current luma coding block relative to the top left
luma sample of the current picture,

— aluma location (xBl, yBI) specifying the top-left sample of the current luma prediction block relative to the top left
sample of the current luma coding block,

— the width and height of the prediction block, nPbW and nPbH, in luma-sample units,

— aluma motion vector mvLX given in quarter-luma-sample units,

— achroma motion vector mvCLX given in eighth-chroma-sample units,

— the reference picture sample arrays refPicL X, refPicLX¢y,, and refPicLXc,.

Outputs of this process are:

— a(nPbW)x(nPbH) array predSampleL X of prediction luma sample values,

— two (nPbW/2)x(nPbH/2) arrays predSampleLXcy, and predSampleL X, of prediction chroma sample values.

The location (xP, yP) given in full-sample units of the upper-left luma samples of the current prediction block relative
to the upper-left luma sample location of the given reference sample arrays is derived by

XP = xCb + xBI (H-174)
yP =yCb + yBI (H-175)

Let (xInt., yInt,) be a luma location given in full-sample units specifying sample locations inside the reference sample
arrays refPicLX,.

For each luma sample location (x_=0..(nPbW —1),y, =0..(nPbH-1)) inside the prediction luma sample array
predSampleLX,, the corresponding prediction luma sample value predSampleLX [x_][y.] is derived as follows:

— The variables xInt,, yInt,, are derived as specified in the following:
xInt, =xP + mvLX[0] + x_ (H-176)
yint, =yP+mvLX[1] +y_ (H-177)
— The prediction luma sample value predSampleLX, [x_][y.] is derived as specified in the following:
predSampleLX [x,][y.] = refPicLX.[xInt_][yInt_] (H-178)

For each chroma sample location (Xc = 0..(nPbW /2 —1),yc =0..(nPbH /2 -1) inside the prediction chroma sample
arrays predSampleLXc, and predSampleLXc, the corresponding prediction chroma sample values
predSampleLXcp[Xc 1[Yc] and predSampleLX¢,[Xc][Yc] are set to be equal to (1 << (BitDepthc —1)).

[Ed. (GT): In current software and draft chroma planes are also present for depth. A general discussion is needed to
specify how chroma planes are handled. (#12)]

H.8.5.3.3.6 lllumination compensated sample prediction process

Inputs to this process are:

66 3D-HEVC

3D-HEVC

— alocation (xCh, yCb) specifying the top-left sample of the current luma coding block relative to the top left sample
of the current picture,

— the size of current luma coding block nChS,

— alocation (xBl, yBI) specifying the top-left sample of the current prediction block relative to the top left sample of
the current coding block,

— the width and height of this prediction block, nPbW and nPbH,

— two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1,

— prediction list utilization flags, predFlagL0 and predFlagL1,

— reference indices, refldxL0 and refldxL1,

— motion vector mvLO and mvL1

— colour component index, cldx,

Outputs of this process are:

— the (NnPbW)x(nPbH) array predSamples of prediction sample values.

Variables shiftl, shift2, offsetl and offset2 are derived as follows.

— The variable shiftl is set equal to 14 — bitDepth and the variable shift2 is set equal to 15 — bitDepth,

— The variable offsetl is derived as follows.
— I shiftl is greater than 0, offsetl set equal to 1 << (shiftl —1).
— Otherwise (shiftl is equal to 0), offsetl is set equal to 0.

— The variable offset2 is set equal to 1 << (shift2—1).

The variable bitDepth is derived as follows.

— Ifcldx is equal to 0, bitDepth is set equal to BitDepthy .

— Otherwise (cldx is equal to 1 or 2), bitDepth is set equal to BitDepthc.

The derivation process for illumination compensation mode availability and parameters as specified in subclause
H.8.5.3.3.6.1 is invoked with the luma location (XCb, yCb), the size of the current luma coding block nCbS, prediction
list utilization flags, predFlagLO and predFlagLl, reference indices refldxLO and refldxL1, motion vectors mvLO and
mvL1, the bit depth of samples, bitDepth, a variable cldx specifying colour component index as the inputs and the
outputs are the flags pulcFlagLO and pulcFlagL1 and the variables icWeightLO and icWeightL1 specifying weights for
illumination compensation, the variables icOffsetL0 and icOffsetL1 specifying offsets for illumination compensation.

Depending on the value of predFlagLO and predFlagLl, the prediction samples predSamples[x][y] with
x=0.(nPbW)—1andy=0..(nPbH) —1 are derived as follows:

— For X'in the range of 0 to 1, inclusive, the following applies:

— When predFlagLX is equal to 1 the following applies:

clipPredVal =

Clip3(0, (1 << bitDepth) — 1, (predSamplesLX[x][y] + offsetl) >> shiftl) (H-179)
predValX = !pulcFlagLX ? clipPredVal :

(Clip3(0, (1 << bitDepth) — 1, (clipPredVal * icWeightLX) >> 5)+ icOffsetLX) (H-180)

— If predFlagLO is equal to 1 and predFlagL1 is equal to 1, the following applies:

predSamples[x][y]1=Clip3(0, (1 << bitDepth) — 1, (predVval0 + predVall + offset2) >> shift2) (H-181)
— Otherwise (predFlagLO is equal to O or predFlagL1 is equal to 0), the following applies:

predSamples[x][y] = predFlagL0 ? predValO : predVall (H-182)
H.8.5.3.3.6.1 Derivation process for illumination compensation mode availability and parameters
Inputs to this process are:

— aluma location (xCh, yCb) specifying the top-left sample of the current coding block relative to the top left sample
of the current picture,

3D-HEVC 67

3D-HEVC

— the size of the current luma coding block, nCbsS,

— prediction list utilization flags, predFlagL0 and predFlagL1,

— reference indices refldxL0 and refldxL1,

— motion vectors mvLO and mvL1

— a bit depth of samples, bitDepth.

— avariable cldx specifying colour component index.

Outputs of this process are:

— flags pulcFlagL0 and pulcFlagL1 specifying whether illumination compensation is enabled.
— variables icWeightL0 and icWeightL1 specifying weights for illumination compensation

— variables icOffsetL0 and icOffsetL1 specifying offsets for illumination compensation

The variables pulcFlagLO0 and PulcFlagL 1 are set equal to 0, the variables icWeightL0 and icWeightL 1 are set equal to 1,
and the variables icOffsetL0 and icOffsetL1 are set equal to 0.

The variables nCS specifying the current luma or chroma coding block size, and the location (XC, yC) specifying the
top left sample of the current luma or chroma coding block is derived as follows.

nCS=(cldx==0)7?nCbS:nChS/2 (H-183)
(xC,yC)= (cldx==0)?(xCh,yCb):(xCh/2,yCbh/2) (H-184)

The variable availFlagCurAboveRow specifying the availability of above neighbouring row samples is derived by
invoking the availability derivation process for a block in z-scan order as specified in subclause 6.4.1 with the location
(XCurr, yCurr) set equal to (xCh, yCb) and the neighbouring location (XN, yN) set equal to (xCh, yCb — 1) as the
input and the output is assigned to availFlagCurAboveRow.

The variable availFlagCurLeftCol specifying the availability of left neighbouring column samples is derived by invoking
the availability derivation process for a block in z-scan order as specified in subclause 6.4.1 with the location
(XCurr, yCurr) set equal to (xCh, yCb) and the neighbouring location (XN, yN) set equal to (xCb —1, yCh) as the
input and the output is assigned to availFlagCurLeftCol.

[Ed. (GT) The availability derivation is specified as performed in the software. However, the check of the availability of
left and above PU might not be sufficient to guarantee the availability of the whole left column or above row. A check of
availability similar to that used for intra prediction might be a better solution.]

When availFlagCurAboveRow is equal to 0 and availFlagCurLeftCol is equal to 0 the whole derivation process of this
subclause terminates.

For X being replaced by 0 and 1, when predFlagLX is equal to 1, the variable pulcFlagLX is derived by the following
ordered steps.

1. The variable refPicLX specifying the reference picture from reference picture list X is set equal to
RefPicListX[refldxLX] .

2. If Viewldx(refPicLX) is not equal to Viewldx, the variable pulvPredFlagLX specifying whether inter-view
prediction from list X is utilized is set equal to 1, otherwise (predFlagLX is equal to 0 or
Viewldx(RefPicListX[refldxLX]) is equal to Viewldx), pulvPredFlagLX is set equal to 0.

3. If pulvPredFlagLX is equal to O, the variable pulcFlagLX is set equal to 0, otherwise (pulvPredFlagLX is equal
to 1) the following applies:

— The luma location (XRLX, yRLX) specifying the top-left sample of the reference block in refPicLX is

derived as
XRLX =xC+ ((mvLX[0]+ (cldx?4:2)) >> (2+(cldx?1:0))) (H-185)
YRLX =yC+ ((mvLX[1]+(cldx?4:2)) >> (2+(cldx?1:0))) (H-186)

— The variable availFlagAboveRowLX specifying whether the above neighbouring row samples of the
current block and the reference block are available is derived as specified in the following:

availFlagAboveRowLX = (yRLX >0) && availFlagCurAboveRow (H-187)

— The variable availFlagLeftColLX specifying whether the left neighbouring column samples of the current
block and the reference block are available is derived as specified in the following:

68 3D-HEVC

3D-HEVC

availFlagLeftColLX = (xRLX >0) && availFlagCurlLeftCol (H-188)
— The variable pulcFlagLX is derived as follows:
pulcFlagLX = availFlagAboveRowLX || availFlagLeftColLX (H-189)

Depending on the colour component cldx, the variable curRecSamples specifying the reconstructed picture samples of
the current picture is derived as

curRecSamples = (!cidx) ? RecSamplesL : ((icdx == 1) ? RecSamplesCb : RecSamplesCr) (H-190)

[Ed. (GT). The reconstructed samples before deblocking filter RecSamplesL, RecSamplesCh and RecSamplesCr as used
above although not explicitly defined. However, they should be defined in the base spec.]

For X being replaced by 0 and 1, when pulcFlagLX is equal to 1, the variables icWeightLX, and icOffsetL X are derived
by the following ordered steps:

1. Depending on the colour component cldx, the variable refRecSamples specifying the reconstructed picture
samples of the reference picture is derived as specified in the following.

— If cldx is equal to 0, refRecSamples is set equal to reconstructed picture sample array S, of picture
refPicLX.

— Otherwise, if cldx is equal to 1, refRecSamples is set equal to the reconstructed chroma sample array Sc;, of
picture refPicLX.

— Otherwise (cldx is equal to 2), refRecSamples is set equal to the reconstructed chroma sample array S, of
picture refPicLX.

2. The lists curNeighSampleListLX and refNeighSampleListLX specifying the neighbouring samples in the
current picture and the reference picture are derived as specified in the following.

— The variable numNeighSamplesLX specifying the number of elements in curNeighSampleListLX and in
refNeighSampleLX is set equal to 0.

— The variable leftNeighOffLX specifying the offset of the left neighbouring samples in
curNeighSampleListLX and refNeighSampleLX is derived as

leftNeighOffLX = availFlagAboveRowLX ? 0 : nCS (H-191)
— Foriranging from 0 to nCS — 1, inclusive the following applies.

— When availFlagAboveRowL X is equal to 1 the following applies.

curNeighSampleListLX[i] = curRecSamples[xC +i][yC — 1] (H-192)

refNeighSampleListLX[i] = refRecSamples] xRLX + i J[yRLX —1] (H-193)

numNeighSamplesLX += 1 (H-194)
— When availFlagLeftColLX is equal to 1 the following applies

curNeighSampleListLX[i + leftNeighOffLX] = curRecSamples[xC — 1][yC + i] (H-195)

refNeighSampleListLX[i + leftNeighOffLX] = refRecSamples[xRLX —1][yRLX +i] (H-196)

numNeighSamplesLX += 1 (H-197)

3. The derivation process for illumination compensation parameters as specified in subclause H.8.5.3.3.6.2 is
invoked, with the list of neighbouring samples in the current picture curNeighSampleList, the list of
neighbouring samples in the reference picture refNeighSample list, the number of neighbouring samples
numNeighSamlesLX and the size of the current luma coding block nCSI as inputs and the illumination
parameters icWeightLX, and icOffsetLX as outputs.

H.8.5.3.3.6.2 Derivation process for illumination compensation parameters
Inputs to this process are:

a list curSampleL.ist specifying the current samples, ,

— alist refSampleList specifying the reference samples,

a variable numSamples specifying the number of elements in curSampleList and refSampleL.ist.

— a bit depth of samples, bitDepth.

3D-HEVC 69

3D-HEVC

— the size of the current luma coding block nCSI

Outputs of this process are:

— avariable icWeight specifying a weight for illumination compensation,
— avariable icOffset specifying a offset for illumination compensation,
The variable precShift is set equal to Max(0, bitDepth — 12).

The variables sumRef, sumCur, sumRefSquare and sumProdRefCur are set equal to 0 and the following applies for i
ranging from 0 to numSamples / 2— 1, inclusive:

sumRef += refSampleList[2 *i] (H-198)

sumCur += curSampleList[2 *i] (H-199)

sumRefSquare += (refSampleList][2 *i] * refSampleList[2 *i]) >> precShift (H-200)

sumProdRefCur += (refSampleList[2 *i] * curSampleList[2 *i]) >> precShift (H-201)
The variable avgShift and avgOffset are derived as follows:

avgsShift = Log2(numSamples / 2) (H-202)

avgOffset=1 << (avgShift—1) (H-203)

The variables numerDiv and denomDiv are derived as follows:

denomDiv= ((sumRefSquare + (sumRefSquare >> 7)) << avgShift)
— (sumRef * sumRef) >> precShift (H-204)

numerDiv= Clip3(0, 2 * denomDiv, ((sumProdRefCur + (sumRefSquare >> 7)) << avgShift)
— (sumRef * sumCur) >> precShift) (H-205)

The variables shiftNumer and shiftDenom are derived as follows:

shiftDenom = Max(0, Floor(Log2(Abs(denomDiv)))—5) (H-206)

shiftNumer = Max(0, shiftDenom — 12) (H-207)
The variables sNumerDiv and sDenomDiv are derived as follows:

sDenomDiv = denomDiv >> shiftDenom (H-208)

sNumerDiv = numerDiv >> shiftNumer (H-209)

The value of variable divCoeff is derived from Table H-8 depending on sDenomDiv and the variables icWeight, and
icOffset are derived as follows:

icWeight = (sSNumerDiv * divCoeff) >> (shiftDenom — shiftNumer + 10) (H-210)
icOffset = (sumCur — ((icWeight * sumRef) >> 5) + avgOffset) >> avgShift (H-211)

70 3D-HEVC

3D-HEVC

Table H-8 — Specification of divCoeff depending on sDenomDiv

sDenomDiv 0 1 2 3 4 5 6 7 8 9 10 11 12
divCoeff 0 |32768|16384|10923 | 8192 | 6554 | 5461 | 4681 | 4096 | 3641 | 3277 | 2979 | 2731
sDenomDiv 13 14 15 16 17 18 19 20 21 22 23 24 25
divCoeff 2521 | 2341 | 2185 | 2048 | 1928 | 1820 | 1725 | 1638 | 1560 | 1489 | 1425 | 1365 | 1311
sDenomDiv 26 27 28 29 30 31 32 33 34 35 36 37 38
divCoeff 1260 | 1214 | 1170 | 1130 | 1092 | 1057 | 1024 | 993 | 964 | 936 | 910 | 886 | 862
sDenomDiv 39 40 41 42 43 44 45 46 47 48 49 50 51
divCoeff 840 | 819 | 799 | 780 | 762 | 745 | 728 | 712 | 697 | 683 | 669 | 655 | 643
sDenomDiv 52 53 54 55 56 57 58 59 60 61 62 63
divCoeff 630 | 618 | 607 | 596 | 585 | 575 | 565 | 555 | 546 | 537 | 529 | 520

H.8.5.3.3.7 Bilinear sample interpolation and residual prediction process
The process is only invoked if res_pred_flag is equal to 1.
Inputs to this process are:

— aluma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top left
luma sample of the current picture,

— aluma location (xBI, yBI) specifying the top-left sample of the current luma prediction block relative to the top-left
sample of the current luma coding block,

— avariable nCbS specifying the size of the current luma coding block,

— variables nPbW and nPbH specifying the width and the height, respectively, of the current prediction unit, prediction
list utilization flags, predFlagL0 and predFlagL1,

— the prediction list indication X,

— the prediction list utilization flag predFlagLX,

— the reference index refldxLX,

— the motion vectors mvLX, mvCLX

Outputs of this process are:

— the (NnPbW)x(nPbH) array predSamplesLX,,

— the (NPbW / 2)x(nPbH / 2) arrays predSamplesL X¢, and predSamplesLXc;.

The location (xP, yP) is derived by:
XP =xCb + xBl (H-212)
yP =yCb + yBI (H-213)

The variable ivRefFlag is set equal to (DiffPicOrderCnt(currPic, RefPicListX[refldxLX]) == 0), and the variable
availFlag is set equal to 0.

Depending on ivRefFlag and RpRefldxLX, the following applies:

— If ivRefFlag is equal to 0 and RpRefldxLX is not equal to —1, the variable availFlag is set equal to 1, the variable
refldxLX is set equal to RpRefldxLX and the residual prediction motion vector scaling process as specified in
subclause H.8.5.3.3.7.3 is invoked with the prediction list utilization variable equal to X, the motion vector mvLX,
and the RefPicListX[refldxLX] and as inputs and modified mvLX as output.

— Otherwise, when ivRefFlag is equal to 1, the following applies:

— The derivation process for a motion vector from a reference block for residual prediction as specified in
subclause H.8.5.3.3.7.4 is invoked with (xP, yP), nPbW and nPbH, RefPicListX[refldxLX], and mvLX, as
inputs, and availFlag, motion vector mvT and prediction list utilization variable Y as outputs.

— When availFlag is equal to 0 and RpRefldxLX is not equal to —1, availFlag is set equal to 1, mvT is set equal to

3D-HEVC 71

3D-HEVC

(0,0), Y is set equal to X.

The motion vector mvCLX is set equal to mvLX.

The arrays predSamplesL X, predSamplesLXc,, and predSamplesL X, are derived as specified in the following:

The reference picture consisting of an ordered two-dimensional array refPicLX_ of luma samples and two ordered
two-dimensional arrays refPicLXc, and refPicLXc, of chroma samples is derived by invoking the process specified
in subclause 8.5.2.2.1 with currRefldx as input.

The arrays predSamplesL X, predSamplesLXcy,, and predSamplesLXc, are derived by invoking the bilinear sample
interpolation process specified in subclause H.8.5.3.3.7.1 with the luma locations (xCb, yCb), (xBI, yBl), , the
luma prediction block width nPbW, the luma prediction block height nPbH,, the motion vectors mvLX, mvCLX, and
the reference arrays with refPicL X, refPicLXc, and refPicLXc,, as the inputs.

When availFlag is equal to 1 and iv_res_pred_weight_idx is not equal to 0, the following applies:

72

Depending on ivRefFlag, the variables rpPic, rpRefPic, mvRp and curRefldx are derived as specified in the
following:

— IfivRefFlag is equal to 0, the following applies:

— Let rpPic be the picture with PicOrderCnt(rpPic) equal to PicOrderCntVal and Viewldx equal to
RefViewldx[xP][yP]

— Let rpRefPic be the picture with PicOrderCnt(rpRefPic) equal to RefPicListX[RpRefldxLX]) and
Viewldx equal to RefViewldx[xP][yP],

— The variable mvRp is set equal to MvDisp[xP][yP].
— The variable curRefldx is set equal to RpRefldxLX.
— Otherwise (ivRefFlag is equal to 1), the following applies:

— Let rpPic be the picture RefPicListY[RpRefldxLY]. [Ed. (CY): here the interaction with FO105 needs to
be further studied.]

— Let rpRefPic be the picture with PicOrderCnt(rpRefPic) equal to PicOrderCnt(rpPic) and Viewldx equal
to RefViewldx[xP][yP]

— The variable mvRp is set equal to mvT.
— The variable currRefldx is set equal to RpRefldxLY.
The arrays rpSamplesLXL, rpSamplesLXCb, and rpSamplesLXCr are derived as specified in the following:

— Let the reference picture sample arrays rpPicLXL, rpPicLXCb, and rpPicLXCr corresponding to decoded
sample arrays SL, SCh, SCr derived in subclause 8.7 for the previously-decoded picture rpPic.

— The arrays rpSamplesLXL, rpSamplesLXCb, and rpSamplesLXCr are derived by invoking the bilinear sample
interpolation process specified in subclause H.8.5.3.3.7.1 with the luma locations (xCb, yCb) and (xBlI, yBI),
the luma prediction block width nPbW, the luma prediction block height nPbH, the motion vectors mvLX equal
to mvRp and mvCLX equal to mvRp, and the reference arrays with rpPicLXL, rpPicLXCb and rpPicLXCr as
the inputs.

The arrays rpRefSamplesLXL, rpRefSamplesLXCb, and rpRefSamplesLXCr are derived as specified in the
following:

— Let the reference picture sample arrays rpRefPicLXL, rpRefPicLXCb, and rpRefPicLXCr corresponding to
decoded sample arrays SL, SCb, SCr derived in subclause 8.7 for the previously-decoded picture rpRefPic.

— The arrays rpRefSamplesLXL, rpRefSamplesLXCbh, and rpRefSamplesLXCr are derived by invoking the
bilinear sample interpolation process specified in subclause H.8.5.3.3.7.1 with the luma locations (xCb, yCb),
(xBlI, yBl'), the luma prediction block width nPbW, the luma prediction block height nPbH,, the motion vector
mvLX equal to (mvLX + mvRp) and the motion vector mvCLX equal to (mvCLX +mvRp), and the
reference arrays with rpRefPicLXL, rpRefPicLXCb and rpRefPicLXCr as the inputs.

The variable shiftVal is set equal to (iv_res_pred_weight_idx —1).

The modified prediction samples predSamplesLX, [x][y] with x=0..(nPbW)—-1 and y=0..(nPbH)—1 are
derived as specified in the following:

predSamplesLX, [x][y]= predSamplesLX.[x][y]+

3D-HEVC

3D-HEVC

((rpSamplesLX [x][y] — rpRefSamplesLX [x][y]) >> shiftval) (H-214)

— The modified prediction samples predSamplesLXc,[x][y] with x =0..(nPbW /2) —1 and y = 0..(nPbH /2)—1 are
derived as specified in the following:

predSamplesLXcp[X][y 1= predSamplesLXc [X[y] +
((rpSamplesLXcy[X][y] — rpRefSamplesLXcp[X][y]) >> shiftval) (H-215)

— The modified prediction samples predSamplesLX¢ [x][y] with x=0..(nPbW /2)—1 and y=0..(nPbH /2) -1
are derived as specified in the following:

predSamplesLXc [x][y]1= predSamplesLXc [x][y]+
((rpSamplesLXc [x [y] — rpRefamplesLX [x][y]) >> shiftVal) (H-216)

H.8.5.3.3.7.1 Bilinear sample interpolation process
The specifications in subclause 8.5.3.3.3.1 apply with the following modifications:

— All invocations of the process specified in subclause 8.5.3.3.3.2 are replaced with invocations of the process
specified in subclause H.8.5.3.3.7.2 with chromaFlag equal to 0 as additional input.

— All invocations of the process specified in subclause 8.5.3.3.3.3 are replaced with invocations of the process
specified in subclause H.8.5.3.3.7.2 with chromaFlag equal to 1 as additional input.

H.8.5.3.3.7.2 Bilinear luma and chroma sample interpolation process
Inputs to this process are:

— alocation in full-sample units (xInt, yint),

— alocation offset in fractional-sample units (xFrac, yFrac),

— asample reference array refPicLX,

— aflag chromaFlag.

Output of this process is a predicted sample value predPartLX[x][y].

In Figure H-1, the positions labelled with A, B, C, and D represent samples at full-sample locations inside the given two-
dimensional array refPicLX of samples.

H.264(09) F8-5

Figure H-1 Fractional sample position dependent variables in bi-linear interpolation
and surrounding integer position samples A, B, C, and D

The variable picWidthInSamples is set equal to pic_width_in_luma_samples and the variable picHeightinSamples is set
equal to pic_height_in_luma_samples.

— If chromaFlag is equal 0, xFrac is set equal to (xFrac << 1) and yFrac is set equal to (yFrac << 1).

— Otherwise (chromaFlag is equal to 1), picWidthinSamples is set equal to (picWidthInSamples / SubWidthC) and
picHeightInSamples is set equal to (picHeightinSamples / SubHeightC).

The coordinates of positions A, B, C and D are derived as follows:.

XA = Clip3(0, picWidthinSamples — 1, xInt) (H-217)
xB = Clip3(0, picWidthInSamples — 1, xInt + 1) (H-218)
XxC = Clip3(0, picWidthInSamples — 1, xInt) (H-219)

3D-HEVC 73

xD = Clip3(0, picWidthInSamples — 1, xInt + 1)
yA = Clip3(0, picHeightInSamples — 1, yiInt)
yB = Clip3(0, picHeightInSamples — 1, yInt)
yC = Clip3(0, picHeightInSamples — 1, yInt + 1)
yD = Clip3(0, picHeightInSamples — 1, yint + 1)
The value of predPartLX[x][y] is derived as specified in the following:

predPartLX[x][y] = (refPicLX[xA][yA]1* (8 —xFrac) * (8 —yFrac) +

refPicLX[xB][yB] * (8 — yFrac) * xFrac +
refPicLX[XxC J[yC] * (8 — xFrac) * yFrac +
refPicLX[xD][yD] * xFrac * yFrac) >> 6

H.8.5.3.3.7.3 Residual prediction motion vector scaling process
Inputs to this process are:
— A prediction list utilization variable X,
— A motion vector mvLX,
— Avrreference picture (associated with the motion vector mvLX) refPicLX,
Output of this process is a scaled motion vector mvLX.
The motion vector mvLX is scaled as specified in the following:
tx = (16384 + (Abs(td) >> 1)) /td
distScaleFactor = Clip3(—4096, 4095, (tb *tx + 32)>>6)

my = Clip3(32768, 32767, Sign(distScaleFactor * mvLX) *
((Abs(distScaleFactor * mvLX) +127)>>8))

where td and tb are derived as:
td = Clip3(—128, 127, DiffPicOrderCnt(currPic, refPicLX))

tb = Clip3(—128, 127, DiffPicOrderCnt(currPic, RefPicListX[RpRefldxLX]))
[Ed. (CY): need to update the equation numbers for those from H-241 to this sub-clause.]

H.8.5.3.3.7.4 Derivation process for a motion vector from a reference block for residual prediction

Inputs to this process are:

3D-HEVC
(H-220)
(H-221)
(H-222)
(H-223)
(H-224)

(H-225)

(H-226)
(H-227)

(H-228)

(H-229)
(H-230)

— a luma location (xP, yP) of the top-left luma sample of the current prediction unit relative to the top-left luma

sample of the current picture,

— variables nPbW and nPbH specifying the width and the height, respectively, of the current prediction unit,

— areference picture refPic,

a motion vector mvDisp
Outputs of this process are:
— aflag availFlag

— amotion vector mvT

— prediction list utilization variable Y.

The variable availFlag is set to 0 and the reference luma location (xRef, yRef) in refPicLX is derived by

xRef = Clip3(0, PicwWidthinSamples, — 1, xP + (nPSW >> 1)+ ((mvDisp[0]+2) >> 2))
yRef = Clip3(0, PicHeightInSamples, — 1, yP + (nPSH >> 1)+ ((mvDisp[1]+2) >> 2))

(H-231)
(H-232)

Let variable refCU and refPU be the coding unit and prediction unit that cover the luma location (xRef, yRef) in refPic,

respectively.

When the variable PredMode for the coding unit refCU is equal to MODE_SKIP or MODE_INTER, the following

ordered steps apply for X in the range of 0 to 1, inclusive:

74 3D-HEVC

3D-HEVC

— The variable refPredFlagLX is set equal to the prediction utilization flag predFlagLX of the prediction unit
refPU.

— When availFlag is equal to 0 and refPredFlagLX is equal to 1, the following applies:
— LetrefPicListRefX be the reference picture list X of refPic.

— Let mvLX and refldxLX be the motion vector and reference index of the prediction unit refPU
corresponding to refPicListRefX, respectively. [Ed. (GT): What happens when predFlagLX is equal to 0?
Ed. (CY): motion information not available, if both predFlagLO and predFlagLl are O, the zero motion
vector with ref index equal to RpRefldxLX is used.]

— When refPicListRefX[refldxLX] is a temporal reference picture of refPic and RpRefldxLX is not equal
to -1, availFlag is set to 1, Y is set equal to X and the residual prediction motion vector scaling process as
specified in subclause H.8.5.3.3.7.3 is invoked with the prediction list utilization variable equal to X, the
motion vector mvLX, and the reference picture refPicListRefX[refldxLX] as the inputs, and the output
being mvT.

H.8.5.3.3.8 View synthesis prediction process
Inputs to this process are:

— alocation (xCh, yCb) specifying the top-left sample of the current luma coding block relative to the top left sample
of the current picture,

— alocation (xBI, yBI') specifying the top-left sample of the current prediction block relative to the top left sample of
the current coding block,

— the width and height of this prediction block, nPbW and nPbH,

— the prediction list indicator X

— the reference index refldxLX

Outputs of this process are:

— an array predSamples,_ of luma prediction samples,

— anarray predSamplesc, of chroma prediction samples for the component Ch
— anarray predSamplesc, of chroma prediction samples for the component Cr

The location (xP, yP) given in full-sample units of the upper-left luma samples of the current prediction block relative
to the upper-left luma sample location of the current picture is derived by:

xP = xCb + xBI (H-233)
yP = yCb + yBl (H-234)

The reference picture consisting of an ordered two-dimensional array refPic, of luma samples and two ordered two-
dimensional arrays refPicc, and refPicc, of chroma samples is derived by invoking the process specified in
subclause 8.5.2.2.1 with refldxLX as input.

The variable refViewldx is set equal to the Viewldx(RefPicListX[refldxLX]) and the variable depthViewldx is set
equal to RefViewldx[xCb + xBI][yCb + yBI]. The variable mvDisp is set equal to MvDisp[xCb + xBI][yCb + yBI]

The derivation process for a disparity sample array as specified in section H.8.5.5.2 is invoked with the luma location
(xP, yP), the disparity vector mvDisp, the variable refViewldx, the variable depthViewldx, the variable nPSW, the
variable nPSH, and the variable splitFlag equal to 1 as the inputs, and the output is the array disparitySamples of size
(NPSW)x(nPSH).

Let (xInty, yInt_) be a luma location given in full-sample units and (xFrac,, yFrac,) be an offset given in quarter-
sample units.

For each luma sample location (x_=0.nPbW —1,y, =0..nPbH —1) inside the prediction luma sample array
predSamples, the corresponding prediction luma sample value predSamples, [x_][y.] is derived as follows:

— The variables xInt,, yInt_, xFrac,, and yFrac, are derived by

xInt, = xP + x+ disparitySamples[x_ 1] y.] (H-235)
yint, =yP +y, (H-236)
xFrac, = disparitySamples[x_ [[y.] &3 (H-237)

3D-HEVC 75

3D-HEVC

yFrac, =0 (H-238)

— The prediction luma sample value predSamples, [x.][y.] is derived by invoking the process specified in subclause
8.5.3.3.3.2 with (xInt,, yInt,), (XFrac,, yFrac,) and refPic_ given as input.

[Ed. (GT): As for inter prediction the treatment of colour planes for depth needs to be discussed. In software colour
planes are set to 128 in VVSP process. (#12)]

Let (xIntc, yIntc) be a chroma location given in full-sample units and (XFracc, yFracc) be an offset given in one-eighth
sample units.

For each chroma sample location (Xc = 0..nPbW / 2—1, yc = 0..nPbH /2 —1) inside the prediction chroma sample arrays
predSamplesc, and predSamplese,, the corresponding prediction chroma sample values predSampleLXc,[Xc][yc] and
predSamplesc [Xc][Yc] are derived as follows:

— The variables xIntc, yIntc, XFracc, and yFracc are derived by

xIntc = (XP / 2) + x¢ + disparitySamples[xc << 1][yc << 1] (H-239)
yinte=(yP/2)+yc (H-240)
xFracc = disparitySamples[x¢ << 1][yc << 1]1&7 (H-241)
yFracc =0 (H-242)

— The prediction sample value predSamplescy[Xc][Yc] is derived by invoking the process specified in subclause
8.5.3.3.3.3 with (xIntc, yIntc), (XFrace, yFracc) and refPicey, given as input.

— The prediction sample value predSamplesc,[Xc][yc] is derived by invoking the process specified in subclause
8.5.3.3.3.3 with (xIntc, yIntc), (XFrace, yFracc) and refPice, given as input.

H.8.5.3.3.9 Decoding process for sub prediction block wise inter sample prediction
Inputs to this process are:

— aluma location (XCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— aluma location (xBI, yBI) specifying the top-left sample of the current luma prediction block relative to the top-left
sample of the current luma coding block,

— avariable nCbS specifying the size of the current luma coding block,

— two variables nPbW and nPbH specifying the width and the height of the luma prediction block,

Outputs of this process are:

— an (nCbS)x(nChS,) array predSamples,_ of luma prediction samples, where nCbS, is derived as specified below,

— an (nCbSc)x(nChSc) array predSamplesc, of chroma prediction samples for the component Cb, where nCbS¢ is
derived as specified below,

— an (nCbS¢)x(nChSc) array predSamplesc, of chroma residual samples for the component Cr, where nCbSc is derived
as specified below.

The variables nSbW and nSbH are derived as:
nSbW = nPbW / SubPbSize[nuh_layer_id] <= 1? nPbW : SubPbSize[nuh_layer_id] (H-243)
nSbH = nPbH / SubPbSize[nuh_layer_id] <= 1? nPbH : SubPbSize[nuh_layer_id] (H-244)
For x in the range of 0 to (NnPbW / nSbW — 1), inclusive, the following applies:
— Fory inthe range of 0 to (nPbH / nSbH — 1)), inclusive, the following applies:

— The luma location (xSb, ySb) specifying the top-left sample of the current luma sub prediction block relative to
the top-left sample of the current luma coding block is derived as specified in the following:

XSh = xBl + x * nSbwW (H-245)
ySh = yBl +y * nSbH (H-246)

— For X in the range of 0 to 1, inclusive, the variables mvLX, mvCLX, refldxLX, and predFlagLX are derived as
specified in the following:

mvLX = SubPbMvLX[xSb][ySb] (H-247)

76 3D-HEVC

3D-HEVC

mvCLX = SubPbMvCLX][xSb][ySb] (H-248)
refldxLX = SubPbRefldxLX[xSb][ySb] (H-249)
predFlagLX = SubPbPredFlagLX[xSb][ySb] (H-250)

— The decoding process for inter sample prediction as specified in subclause H.8.5.3.3.1 is invoked with the luma
coding block location (XCh, yCb), the luma prediction block location (xBl, yBl) equal to (xSh, ySb), the
luma coding block size block nChsS, the luma prediction block width nPbW equal to nSbW, the luma prediction
block height nPbH equal to nSbH, the luma motion vectors mvLO and mvL1, the chroma motion vectors
mvCLO and mvCL1, the reference indices refldxLO and refldxL1, and the prediction list utilization flags
predFlagL0 and predFlagLl as inputs, and the inter prediction samples (predSamples) that are an
(nCbSL)x(nCbSL) array predSamplesL of prediction luma samples and two (nChSC)x(nChSC) arrays
predSamplesCr and predSamplesCr of prediction chroma samples, one for each of the chroma components Ch
and Cr, as outputs.

H.8.5.4 Decoding process for the residual signal of coding units coded in inter prediction mode

H.8.54.1 General
Inputs to this process are:

— aluma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable log2CbSize specifying the size of the current luma coding block.
Outputs of this process are:
— an (nCbS)x(nCbS\) array resSamples, of luma residual samples, where nCbS, is derived as specified below,

— an (nCbS¢)x(nChS¢) array resSamplesc, of chroma residual samples for the component Cb, where nCbS¢ is derived
as specified below,

— an (nCbS¢c)x(nChSc) array resSamplesc, of chroma residual samples for the component Cr, where nChSc is derived
as specified below.

The variable nCbS,_ is set equal to 1 << log2ChSize and the variable nChSc is set equal to nChS, >> 1.

Let resSamples_ be an (nCbS_)x(nCbS,) array of luma residual samples and let resSamplesc, and resSamplesc, be two
(nCbS¢)x(nChSc) arrays of chroma residual samples.

— Ifinter_sdc_flag is equal to 0, the following applies, depending on the value of rqt_root_cbf, the following applies:

— If rgt_root_cbf is equal to 0 or skip_flag[xCb][yCb] is equal to 1, all samples of the (nCbS_)x(nCbS,) array
resSamples, and all samples of the two (nCbhSc)x(nCbS¢) arrays resSamplesc, and resSamplesc, are set equal to
0.

— Otherwise (rqt_root_cbf is equal to 1), the following ordered steps apply:

1. The decoding process for luma residual blocks as specified in subclause H.8.5.4.2 below is invoked with
the luma location (xCb, yCb), the luma location (xBO0,yB0) set equal to (0,0), the variable
log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to O, the variable nCbS set equal to
nCbhS,, and the (nCbhS,)x(nChS,) array resSamples, as inputs, and the output is a modified version of the
(nCbS)X(nChbS,) array resSamples,.

2. The decoding process for chroma residual blocks as specified in subclause H.8.5.4.3 below is invoked with
the luma location (xCh, yCb), the luma location (xBO0,yB0) set equal to (0,0), the variable
log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the variable cldx set equal to
1, the variable nCbS set equal to nChSc, and the (nChSc)x(nCbS¢) array resSamplescy, as inputs, and the
output is a modified version of the (NChS¢c)x(nChSc) array resSamplescy,.

3. The decoding process for chroma residual blocks as specified in subclause H.8.5.4.3 below is invoked with
the luma location (xCbh, yCb), the luma location (xBO0,yB0) set equal to (0,0), the variable
log2TrafoSize set equal to log2ChSize, the variable trafoDepth set equal to 0, the variable cldx set equal to
2, the variable nCbS set equal to nChSc, and the (nChSc)x(nCbS¢) array resSamplesc, as inputs, and the
output is a modified version of the (nCbhS¢)x(nChSc) array resSamplesc,.

— Otherwise (inter_sdc_flag is equal to 1), the decoding process for simplified depth coded residual blocks as specified
in subclause H.8.5.4.4 is invoked with the luma location (XCh, yCb), the luma location (xBO, yB0) set equal to
(0, 0), the variable log2TrafoSize set equal to log2ChSize, the variable trafoDepth set equal to 0, the variable nCbS

3D-HEVC 77

3D-HEVC

set equal to nCbS, and the (nCbS,)x(nCbS,) array resSamples, as inputs, and the output is a modified version of the
(nCbS)x(nChbS,) array resSamples, .

For x in the range of 0 to nCbS, — 1 and y in the range of 0 to nChS_ — 1, the following applies:
— ResSamples [xCb + x][yCb + y] is set equal to resSamples, [X][y 1.

For x in the range of 0 to nCbS¢c — 1 and y in the range of 0 to nCbS¢ — 1, the following applies:
— ResSamplescy[XCb /2 + x][yCb /2 + X] is set equal to resSamplescy[X I[v 1.
— ResSamplesc[XCh /2 + x][yCb /2 + x] is set equal to resSamplesc,[X][¥ 1.

H.8.5.4.2 Decoding process for luma residual blocks

The specification in subclause 8.5.4.2 applies.

H.8.5.4.3 Decoding process for chroma residual blocks

The specification in subclause 8.5.4.3 applies.

H.8.5.4.4 Decoding process for simplified depth coded residual blocks
Inputs to this process are:

— a luma location (xChb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable nChS specifying the size of the current luma coding block,

— a(nCbS)x(nCbS) array resSamples of luma residual samples.

Output of this process is:

— amodified version of the (nCbS)x(nCbS) array of luma residual samples.

The values of the variables xOff, yOff, and interSdcResildx[i] for i in the range of 0 to 3, inclusive, depending on the
value of PartMode are specified in Table H-9.

Table H-9 — Specification of the variables xOff, yOff, and interSdcResildx][i]

PartMode xOff yOff interSdcResildx[i]
i=0 i=1 i=2 i=3
PART_2Nx2N | nChS nChS 0 0 0 0
PART_2NxN | nCbS (nCbS >> 1) 0 0 1 1
PART_2NxnU | nChS (nCbS >> 2) 0 0 1 1
PART_2NxnD | nChS (nCbS >> 1)+ 0 0 1 1
(nCbS >> 2)
PART_Nx2N | (nCbS >> 1) nChS 0 1 0 1
PART_nLx2N | (nCbS >> 2) nChS 0 1 0 1
PART_nRx2N | (nCbS >> 1)+ nChS 0 1 0 1
(nChS>> 2)
PART_NxN | (nCbS >> 1) (nChS >> 1) 0 1 2 3

For x in the range of 0 to nChS the following applies:
— Fory in the range of 0 to nCbS the following applies:
— The variable i is derived as specified in the following:
— Ifxis less than xOff and y is less than yOff, i is set equal to 0.
— Otherwise, if x greater than or equal to xOff and y is less than to yOff, i is set equal to 1.
— Otherwise, if x less than xOff and y is greater than or equal to yOff, i is set equal to 2.

— Otherwise, (x is greater than or equal to xOff and y is greater than or equal to yOff), i is set equal to 3.

78 3D-HEVC

3D-HEVC

— The value of resSamples[x][y] is set equal to InterSdcResi[XCb][yCb][interSdcResildx[i]]

H.8.5.5 Derivation process for disparity vectors
Inputs to this process are:

— a luma location (xCh, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

— avariable nCbS specifying the size of the current luma coding block,
The flag availableDV is set equal to 0, and both components of the disparity vector mvDisp are set equal to 0.
The variable checkParallelMergeFlag is derived as follows:
— If one or more of the following conditions are true, checkParallelMergeFlag is set equal to 1.
— PredMode[xCb][yCb] is equal to MODE_SKIP.
— PredMode[xCb][yCb] is equal to MODE_INTER and merge_flag[xCb][yCb] is equal to 1.
— Otherwise, checkParallelMergeFlag is set equal to 0.

The derivation process for a disparity vector from temporal neighbour block as specified in subclause H.8.5.5.1 is
invoked with the luma location (XCb, yCb), and the variable nCbS as inputs, and the outputs are the flag availableDV,
the disparity vector mvDisp and the reference view order index refViewldx.

When availableDV is equal to 0, for each N being A;, B; and (XN, yN) being (xCb—-1, yCb+nCbhS—-1),
(XCb +nCbS — 1, yCh — 1), respectively, the following ordered steps apply.

1. WhenyCb — 1islessthan ((yCb >> Log2CtbSizeY) << Log2CthSizeY), the following applies.
XB;=((xBy >> 3) << 3)+((xB; >> 3)&1)*7 (H-251)

2. The derivation process for z-scan order block availability as specified in subclause 6.4.1 is invoked with
(XCurr, yCurr) set equal to the (xCh, yCb) and the luma location (XN, yN) as the input and the output
assigned to availableN.

3. When availableN is equal to 1 and PredMode[xN][yN] is equal to MODE_INTRA, availableN is set equal
to 0. [Ed. (GT): 2+3 correspond to 6.4.2 for CU when (XN, yN) outside CU. Cross-check appreciated.]

4. When all of the following conditions are true, availableN is set equal to 0.
— checkParallelMergeFlag is equal to 1

— (xCb >> (log2_parallel_merge_level_minus2 + 2)) is equal to
(XN >> (log2_parallel_merge_level_minus2 + 2))

— (yCb >> (log2_parallel_merge_level_minus2 + 2)) is equal to
(yN >> (log2_parallel_merge_level_minus2 + 2)).

5. The flag availablelvpMvSearchFlagN is set equal to availableN.

6. When one of the following conditions is true, N is equal to B; and
((yN >> Log2CtbSizeY) << Log2CtbSizeY) is less than ((yCb >> Log2CtbSizeY) << Log2CtbSizeY),
availablelvpMvSearchFlagN is set equal to 0.

7. The flag availableFlaglvpMvN is set equal to 0.
8. Foreach X from 0 to 1, the following applies:

— When availableDV is equal to 0, availableN is equal to 1, RefldxLX[xN][yN] is greater than or equal to
0, and PredFlagLX[XN J[yN] is equal to 1, the following applies:

— If RefPicListX[RefldxLX[xN]J[yN]] is an inter-view reference picture of the current picture, the
following applies:

refViewldx = Viewldx(RefPicListX[RefldXLX[xN]J[yN]1]) (H-252)
mvDisp = MVLXN[XN][yN] (H-253)
availableDV =1 (H-254)

— Otherwise (RefPicListX[RefldxLX[xN][yN]] is not an inter-view reference picture), the following
applies:

3D-HEVC 79

3D-HEVC

— When availablelvpMvSearchFlagN is equal to 1, availableFlaglvpMvN is equal to 0, and
PredMode[XN J[yN] is equal to MODE_SKIP and IvpMvFlagLX[XN][yN] is equal to 1, the
following applies:

ivpMvDispN = MvRefinedDisp[XN][yN] (H-255)
refViewldxN = RefViewldx[XN][yN] (H-256)
availableFlaglvpMvN = 1 (H-257)

When availableDV is equal to 0 for each N being A; and By, the following applies.
— When availableDV is equal to 0 and availableFlaglvpMvN is equal to 1, the following applies:

mvDisp = ivpMvDispN (H-258)
refViewldx = refViewldxN (H-259)
availableDV =1 (H-260)

When availableDV is equal to 0, refViewldx is set equal to DefaultViewldx, and mvDisp is set equal to (0,0). The
variable mvRefinedDisp is set equal to mvDisp.

When depth_refinement_flag[nuh_layer_id] is equal to 1, the following ordered steps apply:

1. The derivation process for a disparity sample array as specified in subclause H.8.5.5.2 is invoked with the luma
locations xCb, yCb, the disparity vector mvDisp, the view identifier refViewldx, the variable nPSW equal to
nChS, the variable nPSH equal to nCbS, and the variable splitFlag equal to 0 as the inputs, and the output is the
array disparitySamples of size (nCbS)x(nCbS).

2. The horizontal component of the disparity vector mvRefinedDisp[0] is set equal to disparitySamples[0][0].

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made
for x =xCh.. (XCb + nCbS — 1), y =yCb..(yCh + nCbS—1):

MvDisp[x][y] = mvDisp (H-261)

MvRefinedDisp[x][y] = mvRefinedDisp (H-262)

RefViewldx[x][y] = refViewldx (H-263)

DefaultDispFlag[x][y] = 'availableDV (H-264)
H.8.5.5.1 Derivation process for a disparity vector from temporal neighbour blocks

Inputs to this process are

— aluma location (xCb, yCb) specifying the top-left sample of the current luma coding block relative to the top-left
luma sample of the current picture,

— avariable nCbS specifying the size of the current luma coding block.

Outputs of this process are

— the disparity vector mvDisp,

— the reference view order index refViewldx,

— the availability flag availableFlag.

The luma location (XCCtr , yCCtr) specifying the centre position of the current luma coding block is derived as follows:
XCCtr =xCh + (nCbS >> 1) (H-265)
yCCtr=yCh + (nChS >> 1) (H-266)

The flag availableFlag is set equal to 0, and mvDisp is set equal to (0, 0).

For i from 0 to NumDdvCandPics — 1, inclusive, the following ordered steps apply and the whole decoding process of
this sub-clause terminates once availableFlag is set to 1.

1. Let colPu the prediction unit in DdvCandPicsList[i] covering the position
((xCCtr >> 4) << 4, (YyCCtr >> 4) << 4).

2. The position (xPCol, yPCol) is set equal to the position of the top-left sample of colPu relative to the top-left
luma sample of the DdvCandPicsList[i].

80 3D-HEVC

3D-HEVC

3. [Ifslice_type is equal to B, the variable dir is set equal to collocated_from_I0_flag, otherwise, dir is set equal to
1 —collocated_from_10_flag. [Ed. (GT) In software LO is always checked first. Moreover the number of checks
depends on the slice_type the of collocated slice.]

4. For each X from dir to 1 — dir, inclusive, the following applies:

— The variables candPicRefPicList, candPredFlag, candRefldx, and candMV are set equal to the variables
RefPicListX, RefldxLX, and MvLX of DdvCandPicsList[i], respectively.

— When colPu is not coded in an intra prediction mode and candPredFlag[xPCol][yPCol] is equal to 1, the
following applies:

— The variable candRefViewldx is set equal to the
Viewldx(candPicRefPicList[candRefldx[xPCol][yPCol]]).

— When candRefViewldx is not equal to the Viewldx(DdvCandPicsList[i]) and there is an inter-view
reference picture with Viewldx equal to candViewldx in RefPicList0 or RefPicListl, the following

applies:
refViewldx = candRefViewldx (H-267)
mvDisp = candMV[xPCol][yPCol] (H-268)
availableFlag = 1 (H-269)
H.8.5.5.2 Derivation process for a disparity sample array

Inputs to this process are:

— aluma location (xP, yP) relative to the top-left luma sample of the current picture,

— adisparity vector mvDisp,

— aview order index refViewldx specifying a reference view,

— aview order index depthViewldx specifying the view the depth should be derived from
— variables nPSW and nPSH specifying a width and a height, respectively

— avariable splitFlag.

Outputs of this process are:

— a(nPSW)x(nPSH) array disparitySamples of disparities values.

Let refDepPic the picture in the current access unit with Viewldx(refDepPic) equal to Viewldx and
DepthFlag(refDepPic) equal to 1.

Let refDepPels be an array of reconstructed depth samples refDepPic. The luma location (Xy., yr.) of top-left luma
sample of a block in refDepPels is derived by

Xt =XP + ((mvDisp[0] +2) >> 2) (H-270)
yrL=yP + ((mvDisp[1]+2) >> 2) (H-271)
The variables nSubBIkW and nSubBIkH are set equal to nPSW and nPSH, respectively.
When splitFlag is equal to 1, nSubBIkW, nSubBIkH are modified as specified in the following:
— The variable minSubBIkSizeFlag is derived as specified in the following:
minSubBIlkSizeFlag = (nPSW % 8 1= 0) || (nPSH% 8 !=0) (H-272)
— Depending on the value of minSubBIkSizeFlag, the following applies.

— If minSubBIkSizeFlag is equal to 1, the following applies:

horSplitFlag= (nPSH %8 !'= 0) (H-273)
— Otherwise (minSubBIkSizeFlag is equal to 0), the following applies:

xP0 = Clip3(0, pic_width_in_luma_samples — 1, Xy.) (H-274)

yP0 = Clip3(0, pic_height_in_luma_samples — 1, y1.) (H-275)

xP1 = Clip3(0, pic_width_in_luma_samples — 1, Xy + nPSW — 1)) (H-276)

3D-HEVC 81

yP1 = Clip3(0, pic_height_in_luma_samples — 1, yr. + nPSH - 1)

horSplitFlag = (refDepPels[xP0][yPO] < refDepPels[xPL][yP11])
== (refDepPels[xP1][yPO] < refDepPels[xPO][yP1]))

The variables nSubBIkW and nSubBIkH are modified as specified in the following:
nSubBIkW = horSplitFlag ? 8 : 4
nSubBIkH = horSplitFlag ? 4 : 8

The array disparitySamples is derived as specified in the following:

For sBy in the range of 0 to ((nPSH / nSubBIkH) -1), inclusive, the following applies:

For sBx in the range of 0 to ((nPSW / nSubBIkW) -1), inclusive, the following applies:

The variable maxDep is set equal to —1 and modified as specified in the following.

XSubB = sBx * nSubBIkW

ySubB = sBy * nSubBIkH

xP0 = Clip3(0, pic_width_in_luma_samples — 1, X1+ xSubB)

yP0 = Clip3(0, pic_height_in_luma_samples — 1, yr_ + ySubB)

xP1 = Clip3(0, pic_width_in_luma_samples — 1, X7 + xSubB + nSubBIKW — 1))
yP1 = Clip3(0, pic_height_in_luma_samples — 1, yr_ + ySubB + nSubBIkH — 1)
maxDep = Max(maxDep, refDepPels[xPO][yPO])

maxDep = Max(maxDep, refDepPels[xP0][yP1])

maxDep = Max(maxDep, refDepPels[xP1][yPO])

maxDep = Max(maxDep, refDepPels[xP1][yP11])

The values of the array depthSamples are modified as specified in the following:

for (yOff = 0; yOff < nSubBIkH; yOff++)
for(xOff = 0; xOff < nSubBIKW; xOff++) {
X = XxSubB + xOff
y = ySubB + yOff
disparitySamples[x][y] = DepthToDisparityB[refViewldx][maxDep]
}

H.8.5.6 Derivation process for disparity vectors from neighbouring depth samples

Inputs to this process are:

3D-HEVC

(H-277)

(H-278)

(H-279)
(H-280)

a luma location (xCb, yCb) of the top-left sample of the current luma coding block relative to the top-left luma
sample of the current picture,

a variable nCbS specifying the size of the current luma coding block.

Let p be the array of constructed samples prior to the deblocking filter process.

The disparity vector mvDisp is set equal to (0, 0). and modified as specified in the following:

[Ed. (GT): The derivation process below is e.g. not compatible with tiles, since a reasonable availability check (as e.g.
for intra sample prediction is not applied.]

82

1.

The variable avgDep is derived as follows:

If xCb is greater than 0 and yCb is greater than 0, the following applies:
avgDep= (5*p[xCb—1][yCb—1]+5*p[xCb—-1][yCh +nCbS—1]

+6*p[xCb+nChS—-1][yCb-1]1+8) >> 4)

Otherwise, if xCb is greater than 0 and yCb is equal to 0, the following applies:
avgDep =p[xCb —1][yCb + nCbS — 1]

Otherwise, if XCb is equal to 0 and yCb is greater than 0, the following applies:
avgDep = p[xCb +nChS - 1][yCb—1]

Otherwise, (XCb is equal to 0 and yCb is equal to 0), the following applies:
avgDep = -1

When avgDep is not equal to —1, mvDisp[0] is modified as specified in the following:

3D-HEVC

(H-281)

(H-282)

(H-283)

(H-284)

3D-HEVC

mvDisp[0] = DepthToDisparityB[0][avgDep]

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made
for x =xC..(xCb +nChS—-1),y=yCh..(yCbh + nCbS—-1):

MvRefinedDisp[X][y] = mvDisp (H-285)
RefViewldx[x][y]=0 (H-286)
H.8.6 Scaling, transformation and array construction process prior to deblocking filter process

The specifications in subclause 8.6 apply.

H.8.7 In-loop filter process

The specifications in subclause 8.7 apply.

H.9 Parsing process

H.9.1 General
The specifications in clause 9.1 apply with the following modifications

— All references to the process specified in subclause 7.3 are replaced with references to the process specified in
subclause H.7.3 .

— All invocations of the process specified in subclause 9.1 are replaced with invocations of the process specified in
subclause H.9.1.

H.9.2 Parsing process for 0-th order Exp-Golomb codes

H.9.2.1 General
The specifications in subclause 9.2.1 apply with the following modifications .

— All references to the process specified in subclause 7.3 are replaced with references to the process specified in
subclause H.7.3.

— All invocations of the process specified in subclause 9.2.2 are replaced with invocations of the process specified in
subclause H.9.2.2.

H.9.2.2 Mapping process for signed Exp-Golomb codes
The specifications in subclause 9.2.1 apply with the following modifications.

— All references to the process specified in subclause 9.2 are replaced with references to the process specified in
subclause H.9.2.1. [Ed. (GT) Reference in base spec to 9.2 is wrong.]

H.9.3 CABAC parsing process for slice segment data
H.9.3.1 General

The specifications in subclause 9.3.1 apply with the following modifications.

— All references to the process specified in subclauses 7.3.8.1 to through 7.3.8.11 are replaced with references to the
process specified in subclauses H.7.3.8.1 to H.7.3.8.11

— All invocations of the process specified in subclause 9.3.2 are replaced with invocations of the process specified in
subclause H.9.3.2.

— All invocations of the process specified in subclause 9.3.3 are replaced with invocations of the process specified in
subclause H.9.3.3.

— All invocations of the process specified in subclause 9.3.4 are replaced with invocations of the process specified in
subclause H.9.3.4 .

— All invocations of the process specified in subclause 9.3.2.3 are replaced with invocations of the process specified
in subclause H.9.3.2.3.

3D-HEVC 83

3D-HEVC

H.9.3.2 Initialization process

H.9.3.2.1 General
The specifications in subclause 9.3.1 apply with the following modifications.

— All invocations of the process specified in subclause 9.3.2.2 are replaced with invocations of the process specified
in subclause H.9.3.2.2.

— All invocations of the process specified in subclause 9.3.2.4 are replaced with invocations of the process specified
in subclause H.9.3.2.4.

H.9.3.2.2 Initialization process for context variables
The specifications in subclause 9.3.2.2 apply with the following modifications.

— All references to the process specified in subclauses7.3.8.1 through 7.3.8.11 are replaced with references to the
process specified in subclauses H.7.3.8.1 to H.7.3.8.11.

— Table H-10 is appended to the end of Table 9-4.
— Table H-11 to Table H-19 are appended to the end of the subclause.

Table H-10 — Association of ctxldx and syntax elements for each initializationType in the initialization process

initType
Syntax structure Syntax element ctxTable
0 1 2
coding_unit() depth_intra_mode Table H-15 0.7 8..15 16..23
depth_mode_parameters()
wedge_full_tab_idx Table H-11 0 1 2
depth_dc_flag Table H-16 0 1 2
depth_dc_abs Table H-12 0 1 2
iv_res_pred_weight_idx Table H-13 0.3 4.7
ic_flag Table H-14 0.2 3.5
inter_sdc_flag Table H-17 0 1 2
inter_sdc_resi_abs_minusl Table H-18 0 1 2
inter_sdc_resi_sign_flag Table H-19 0 1 2

[Ed (GT). Tables need to be sorted.].

84 3D-HEVC

3D-HEVC

Table H-11 — Values of initValue for wedge_full_tab_idx ctxldx

Initialization
variable

ctxldx of

wedge_full_tab_idx

0 1 2

initValue

154 154 154

Table H-12 — Values of initValue for depth_dc_abs ctxldx

Initialization
variable

ctxldx of depth_dc_abs

0 1 2

initValue

154 154 154

Table H-13 — Values of initValue for iv_res_pred_weight_idx ctxldx

Initialization ctxldx of iv_res_pred_weight_idx
variable 0 1 2 3 4 5 6 7
initValue 162 153 154 162 162 153 154 162

Table H-14 — Values of initValue for ic_flag ctxldx

Initialization ctxldx of ic_flag
variable
0 1 2 3 4 5
initValue 154 | 154 | 154 | 154 | 154 | 154

Table H-15 — Values of initValue for depth_intra_mode ctxldx

ctxldx of depth_intra_mode
Initialization variable
0 1 2 3 4 5 6 7
initValue 0 0 64 | 168 | 168 | 124 | 154 | O
8 9 10 11 12 13 14 15
initValue 0|64] O 183 | 154 | 108 0 0
16 | 17 18 19 20 21 22 | 23
initValue 64 | 0 | 154 | 154 | 168 | 109 0 0

3D-HEVC

85

3D-HEVC

Table H-16 — Values of initValue for depth_dc_flag ctxldx

Initialization ctxldx of depth_dc_flag
variable 0 1 5
initValue 0 0 64

Table H-17 — Values of initValue for inter_sdc_flag ctxldx

ctxldx of inter_sdc_flag

Initialization
variable 0 1)
initValue 154 154 154

Table H-18 — Values of initValue for inter_sdc_resi_abs_minusl ctxldx

ctxldx of
Initialization inter_sdc_resi_abs_minusl
variable
0 1 2
initValue 154 154 154

Table H-19 — Values of initValue for inter_sdc_resi_sign_flag ctxldx

ctxldx of
Initialization inter_sdc_resi_sign_flag
variable
0 1 2
initValue 154 154 154
H.9.3.2.3 Storage process for context variables

The specifications in subclause 9.3.2.3 apply with the following modifications

— All references to the process specified in subclauses 7.3.8.1 through 7.3.8.11 are replaced with references to the
process specified in subclauses H.7.3.8.1 to H.7.3.8.11

H.9.3.24 Synchronization process for context variables

The specifications in subclause 9.3.2.4 apply with the following modifications

— All references to the process specified in subclauses 7.3.8.1 through 7.3.8.11 are replaced with references to the
process specified in subclauses H.7.3.8.1 to H.7.3.8.11

H.9.3.2.5 Initialization process for the arithmetic decoding engine
The specifications in subclause 9.3.2.5 apply.
H.9.3.3 Binarization process

H.9.3.3.1 General
The specifications in subclause 9.3.3.1 apply with the following modifications.

— Table H-20 is appended to the end of Table 9-32.

86 3D-HEVC

3D-HEVC

Table H-20 — Syntax elements and associated binarizations

Syntax structure Syntax element Binarization
Process Input parameters
coding_unit() iv_res_pred_weight_idx TR cMax =2, cRiceParam =0
ic_flag FL cMax =1
inter_sdc_flag FL cMax =1
inter_sdc_resi_abs_minusl UEGO [Ed. (GT) To be specified]
inter_sdc_resi_sign_flag FL cMax =1
depth_intra_mode TR cMax = depthintraModeMaxLen, cRiceParam = 0
wedge_full_tab_idx FL ((:('j\g;)riezdviv:('jr%ﬁg IL'I:&;bll)deits[log2PbSize]
depth_mode_paramet
ers() depth_dc_flag FL cMax =1
depth_dc_abs UEGO [Ed. (GT) To be specified]
depth_dc_sign_flag FL cMax =1

Table H-21 —Values of wedgeFull TabldxBits[log2PUSize]

|n|t|a|_|zat|on wedgeFull TabldxBits

variable
log2PbSize 3 4 5 6
Value 10 11 11 13

H.9.3.3.2
The specifications in subclause 9.3.3.2 apply.
H.9.3.3.3
The specifications in subclause 9.3.3.3 apply.
H.9.3.34
The specifications in subclause 9.3.3.4 apply.
H.9.3.3.5
The specifications in subclause 9.3.3.5 apply.
H.9.3.3.6
The specifications in subclause 9.3.3.6 apply.
H.9.3.3.7
The specifications in subclause 9.3.3.7 apply.
H.9.3.3.8
The specifications in subclause 9.3.3.8 apply.

H.9.3.3.9

The specifications in subclause 9.3.3.9 apply.

Truncated Rice (TR) binarization process

Fixed-length (FL) binarization process

Binarization process for part_mode

Binarization process for inter_pred_idc

Binarization process for cu_qp_delta_abs

k-th order Exp-Golomb (EGK) binarization process

Binarization process for intra_chroma_pred_mode

Binarization process for coeff_abs_level remaining

3D-HEVC

87

3D-HEVC

H.9.3.3.10 Binarization process for sdc_residual_abs_minusl

Input to this process is a request for the a syntax element sdc_residual_abs_minus1,

Output of this process is the binarization of the syntax element.

The bin string is a concatenation of a prefix bin string and, when present, a suffix bin string.
The variable numDepthValues is derived as follows:

numDepthValues = DItFlag[nuh_layer_id] ? (H-287)
num_depth_values_in_dIt[nuh_layer id]: (1 << BitDepthy) -1

The variable cMaxPrefix is derived as follows:
cMaxPrefix = (numDepthValues * 3) >> 2)
For the derivation of the prefix bin string, the following applies:

— If sdc_residual_abs _minusl is less than cMaxPrefix, the prefix bin string is a bit string of length
sdc_residual_abs_minusl+ 1 indexed by binldx. The bins for binldx less than sdc_residual_abs_minusl are equal to
1. The bin with binldx equal to sdc_residual_abs_minusl is equal to 0.

— Otherwise, the prefix bin string is a bit string of length cMaxPrefix with all bins being equal to 1.

When sdc_residual_abs_minusl is greater than cMaxPrefix, the suffix of the bin string is present and it is derived as
follows:

— The suffix value suffixVal, is derived as follows:
suffixVal = sdc_residual_abs_minusl — cMaxPrefix (H-288)

— The suffix of the bin string is specified by Fixed-length (FL) binarization process as specified in subclause with
suffixVal and cMax equal to (numDepthValues — cMaxPrefix) as the inputs.

H.9.3.4 Decoding process flow
H.9.3.4.1 General

The specifications in subclause 9.3.4.1 apply. with the following modifications.

— All references to the process specified in subclause 9.3.3 are replaced with references to the process specified in
subclause H.9.3.3.

— All invocations of the process specified in subclause 9.3.4.2 are replaced with invocations of the process specified
in subclause H.9.3.4.2.

— All invocations of the process specified in subclause 9.3.4.3 are replaced with invocations of the process specified
in subclause H.9.3.4.3.

H.9.3.4.2 Derivation process for ctxTable, ctxldx and bypassFlag

H.9.3.4.2.1 General
The specifications in subclause 9.3.4.2.1 apply with the following modifications:
— Table H-22 is appended to the end of Table 9-37.

88 3D-HEVC

3D-HEVC

Table H-22 —Assignment of ctxInc to syntax elements with context coded bins

binldx
Syntax element
0 1 2 3 4 >=5
wedge_full_tab_idx 0 0 0 0 0 0
depth_dc_flag 0 na na na na na
depth_dc_abs 0 0 0 0 0 0
depth_dc_sign_flag bypass 0 0 0 0 0
res_pred_flag 0 na na na na na
ic_flag 0 na na na na na
inter_sdc_flag 0 0 0 0 0 0
inter_sdc_resi_abs_minusl 0 0 0 0 0 0
inter_sdc_resi_sign_flag 0 0 0 0 0 0

H.9.3.4.2.2 Derivation process of ctxInc using left and above syntax elements
The specifications in subclause 9.3.4.2.2 apply with the following modifications.
— Table H-23 is appended to the end of Table 9-38.

Table H-23 — Specification of ctxInc using left and above syntax elements

Syntax element condL condA ctxldxlnc
iv_res_pred_weight_idx iv_res_pred_weight_idx iv_res_pred_weight_idx (condL && availableL) +
[xL][yL] [xAllyA] (condA && availableA)
ic_flag ic_flag[xL][yL] ic_flag[xA][YA] (condL && availableL) +
(condA && availableA)

H.9.3.4.2.3 .Derivation process of ctxinc for the syntax elements last sig_coeff x_prefix and
last_sig_coeff_y prefix

The specifications in subclause 9.3.4.2.3 apply.

H.9.3.4.2.4 Derivation process of ctxlnc for the syntax element coded_sub_block_flag

The specifications in subclause 9.3.4.2.4 apply.

H.9.3.4.2.5 Derivation process of ctxlnc for the syntax element sig_coeff_flag

The specifications in subclause 9.3.4.2.5 apply.

H.9.3.4.2.6 Derivation process of ctxInc for the syntax element coeff_abs_level greaterl flag

The specifications in subclause 9.3.4.2.6 apply.

H.9.3.4.2.7 Derivation process of ctxInc for the syntax element coeff_abs_level greater2_flag

The specifications in subclause 9.3.4.2.7 apply.

H.9.3.4.3 Arithmetic decoding process
The specifications in subclause 9.3.4.3 apply. with the following modifications.

— All references to the process specified in subclause 9.3.4.2 are replaced with references to the process specified in
subclause H.9.3.4.2.

H.9.3.5 Arithmetic encoding process (informative)
The specifications in subclause 9.3.5 apply with the following modifications.

— All references to the process specified in subclause 9.3.4.3 are replaced with references to the process specified in
subclause H.9.3.4.3.

3D-HEVC 89

H.10 Sub-bitstream extraction process

The specifications in clause 10 apply.

H.11 Profiles and levels

The specifications in Annex A apply, with the following modification:

TBD

H.12 Byte stream format

The specifications in Annex B apply.

H.13 Hypothetical reference decoder

The specifications in clause F.13 apply.

H.14 Supplemental enhancement information

H.14.1 General

The specifications in clause F.14 apply.

H.14.2 SEI payload syntax

3D-HEVC

The specifications in subclause G.14.2 together with the extensions and modifications specified in this subclause apply.

H.14.2.1 Alternative depth information SEI message syntax

90 3D-HEVC

3D-HEVC

alternative_depth_info (payloadSize) { Descriptor
alternative_depth_info_cancel_flag u(1)
if(alternative_depth_info_cancel flag == 0){
depth_type u(2)
if(depth_type == 1){
min_offset_x_int se(v)
min_offset_x_frac u(8)
max_offset_x_int se(v)
max_offset_x_frac u(8)
offset_y present flag u(1)
if(offset_y_present_flag){
min_offset_y_int se(v)
min_offset_y frac u(s)
max_offset_y_int se(v)
max_offset_ y frac u(s)
}
warp_map_size present_flag u(l)
if(warp_map_size present_flag) {
warp_map_width_minus2 ue(v)
warp_map_height_minus2 ue(v)
}
}
if(depth_type == 0) {
num_residual_texture_views_minusl ue(v)
residual_depth_flag u(l)
}
}
}

H.14.3 SEI payload semantics

The specifications in subclause G.14.3 together with the extensions and modifications specified in this subclause apply.

H.14.3.1 Alternative depth information SEI message semantics

The alternative depth information SEI message indicates that decoded depth samples have to be interpreted as an
alternative depth format. To discriminate different alternative depth formats, a depth_type syntax element is used. The
information of the alternative depth information SEI message persists in output order until any of the following are true:

— Anew CVS begins.

— The bitstream ends.

— A picture in an access unit containing an alternative depth information SEI message is output having
PicOrderCntVal greater than PicOrderCnt(CurrPic).

alternative_depth_info_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any previous
alternative depth information SEI message in output order. alternative_depth_info_cancel_flag equal to 0 indicates that
alternative depth information follows.

depth_type identifies an alternative depth type according to Table H-24. A value of depth_type is equal to O indicates
that this SEI message signals Global View and Depth (GVD) information. A value of depth_type is equal to 1 indicates
that decoded depth samples can be used to derive a warp map and view synthesis can be performed by image-domain
warping. .

Values of depth_type that are not listed in Table H-24 are reserved for future use by ITU-T | ISO/IEC and shall not be
present in bitstreams conforming to this version of this Specification. Decoders shall ignore alternative depth information

3D-HEVC 91

3D-HEVC
SEI messages that contain reserved values of depth_type.

Table H-24 — Interpretation of depth_type

Value Description
0 Global view and depth
1 Warp map

NOTE 2 — When depth_type is equal to 0, decoding processes for inter-view prediction and decoding processes with depth-
texture interaction should be disabled.

min_offset_x_int, min_offset x_frac specify the integer and the fractional part of the minimum offset for the horizontal
direction of a warp map.

The variable minOffsetX is derived as follows:
minOffsetX = min_offset x_int + min_offset x_frac + 256 (H-289)

max_offset_x_int, max_offset_x_frac specify the integer and the fractional part of the maximum offset for the
horizontal direction of a warp map.

The variable maxOffsetX value is derived as follows:
maxOffsetX = max_offset_x_int + max_offset_x_frac + 256

offset_y present flag equal to 1 specifies that min_offset_y int, min_offset y frac, max_offset y int and
max_offset_y frac are present. offset_y present flag equal to O specifies that min_offset y int, min_offset y frac,
max_offset_y int and max_offset_y frac are not present.

min_offset_y_int, min_offset_y frac specify the integer and the fractional part of the minimum offset for the vertical
direction of a warp map. When not present, min_offset_y int and min_offset_y frac are inferred to be equal to 0.

The variable minOffsetY value is derived as follows:
minOffsetY = min_offset_y_int + min_offset_y frac + 256 (H-290)

max_offset_y_int, max_offset_y frac specify the integer and the fractional part of the maximum offset for the vertical
direction of a warp map. When not present, max_offset_y int and max_offset_y frac are inferred to be equal to 0.

The variable maxOffsetY value is derived as follows:
maxOffsetY = max_offset_y_int + max_offset_y frac + 256 (H-291)

warp_map_size_present_flag equal to 1 specifies that a new warp map size is present, which is valid for the current and
all following warp maps in output order until a new message with warp_map_size_present_flag equal to 1 is received or
alternative_depth_info_cancel_flag is equal to.. warp_map_size_present_flag equal to 0 specifies that the warp map size
is not changed.

warp_map_width_minus2 plus 2 specifies the width of the warp map. The value of warp_map_width_minus2 shall be
in the range of 0 to pic_width_in_luma_samples — 2, inclusive. The variable warpMapWidth is set equal to
(warp_map_width_minus2 + 2)

warp_map_height_minus2 plus 2 specifies the height of the warp map. The value of warp_map_height_minus2 shall be
in the range of 0 to (pic_height_in_luma_samples >> offset_y present flag) —2, inclusive. The variable
warpMapHeight is set equal to (warp_map_height_minus2 + 2)

The variables deltaX, deltaY, scaleX and scale Y are derived as specified in the following:

deltaX = pic_width_in_luma_samples + (warpMapWidth — 1) (H-292)
deltaY = pic_height_in_luma_samples + (warpMapHeight — 1) (H-293)
scaleX = (maxOffsetX — minOffsetX) / ((1 << BitDepthy)—1) (H-294)
scaleY = (maxOffsetY — minOffsetY) / ((1 << BitDepthy)—1) (H-295)

Let recSamples[x][y] correspond to the reconstructed sample array S, of a depth view component. The corresponding
horizontal warp map component w[x][y][0] and the corresponding vertical warp map component w[x][y][1] for
recSamples[x][y] are derived as specified in the following:

for(x = 0; x < warpMapWidth ; x++)

92 3D-HEVC

3D-HEVC

for(y = 0; y < warpMapHeight; y++){
W[x][y1[0]=x™*deltaX + minOffsetX + scaleX * recSamples[x][y]
if(offset_y_present_flag)
W[x][yl[1]= y *deltaY + minOffsetY +
scaleY * recSamples[x][y + pic_height_in_luma_samples / 2]
else
W[x][yl[1]= y*deltay

A warp map w[x][y] is derived for each input view using reconstructed samples of its corresponding depth view
component, i.e. each input view has an associated warp map and vice versa. A warp map specifies a sparse set of
positional correspondences. These correspondences identify semantically corresponding image locations between two
views of the same time instance, i.e. the associated input view and a neighbouring input view which is identified as
follows.

When the warp map w[x][y] is associated with the leftmost input view, then the warp map specifies for each sub-pel
position (x*deltaX, y*deltaY) in this input view a corresponding sub-pel position 2 * W[x][y1[0],2*w[x]1[y1[1])
in the closest input view on the right.

When the warp map w[x][y] is associated with an input view different to the leftmost input view, then the warp map
specifies for each sub-pel position (x * deltaX, y*deltaY) in this input view a corresponding sub-pel position
(2*W[x]J[yJ[0],2*w[x][y][1]) in the closest input view on the left.

NOTE 3 — A sample dense set of positional correspondences can be derived e.g. by bilinear interpolation.

num_residual_texture_views_minusl plusl specifies the number of sub-residual texture views packed in the residual
texture layer. num_residual_texture_views_minusl shall be in the range of 0 to 3, inclusive.

residual_depth_flag equal to 1 specifies that the number of sub-residual depth views packed in the residual depth layer
is equal to num_residual_texture_views_minusl + 1. residual_depth_flag equal to 0 specifies the number of sub-residual
depth views is equal to 0 and that no residual depth layer is present in the bitstream.

When GVD information are signalled by the SEI message, information of multiple texture views are packed into two
layers and information of multiple depth views is packed into one or two layers.

The two layers containing the texture views are the base texture layer and the residual texture layer. The base texture
layer contains a base texture view in full resolution (e.g. the view from a central camera position) and is the layer with
Viewldx equal to 0 and DepthFlag equal to 0. The residual texture layer contains packed information of up to four
additional views in quarter resolution (sub-residual texture views) and is the layer with Viewldx equal to 1 and
DepthFlag equal to 0.

Each sub-residual texture view is derived by applying the following to an additional texture input view:

— Project the base texture view to the position of the additional texture input view using the decoded base depth
view (and the decoded residual depth view, when residual_depth_flag is equal to 1).

— Create a picture containing samples of the additional texture view that are located at positions not covered by
projected sample positions of the base texture view.

— Decimate the created picture by a factor of two in horizontal and vertical direction by discarding odd sample
positions.

With increasing order of camera IDs (which are specified by external means), the order of sub-residual texture views
within the residual texture layer is top-right, top-left, bottom-left, bottom-right.

NOTE 4 — An example is shown in Figure H-2. The variable N is set equal to (num_residual_texture_views_minusl +2).
The base texture view (B) is the input from central camera (camera ID = 3). In the case N =2, camera ID =2 and 3 are
used. In the case N = 3, camera ID = 2, 3 and 4 are used. In the case N =4, camera ID =1, 2, 3 and 4 are used. In the case
N =5, camera ID =1, 2, 3, 4 and 5 are used. The N — 1 input texture views with camera ID not equal to 3 are converted to
N — 1 quarter-size sub-residual texture views (R-x) and packed in the residual texture layer in order top-left (R-2), bottom-
left (R-4), top-right (R-1) and bottom-right (R-5). Their top-left co-ordinates in the residual texture layer of width = W and
height = H is shown in Table H-25. The residual texture layer represents occluded area or out-of-frame area of the base
texture view when it is projected to the N — 1 input texture views by GVD process.

3D-HEVC 93

3D-HEVC

camera ID base texture layer residual texture layer
or base depth layer or residual depth layer
1 2 3 4 5
VVVVYV v | o
—t———
B

R-1 R-2 B R4 R-S
GVD view

R-4 R-5

Figure H-2 Relation between camera ID and GVD texture/depth and packing of texture/depth views to the base
and residual texture/depth layer

Table H-25- Top-left corner co-ordinates of GVD sub-residual views packed in a residual layer
of width = W and height=H.

R-1 R-2 R-4 R-5
(W/2,0) (0, 0) (0,H/2) | (WI2,HI2)

The two layers containing the depth views are the base depth layer and the residual depth layer. The base depth layer
contains a depth map in full resolution (base depth view) and is the layer with Viewldx equal to 0 and DepthFlag equal
to 1. The base depth view is generated as specified in the following:

— Project all depth maps associated with the additional texture views to the position of the base view.
— Derive the median of samples values projected to the same position.

When residual_depth_flag is equal to 0 and the number of input texture views is even (2 or 4), the position of the base
depth view is the center of input views (e.g. camera ID = 2.5 when only cameras 2 and 3, or cameras 1, 2, 3 and 4 are
present in the above example) and all depth maps are projected to this position, when the base depth view is generated.

When residual_depth_flag is equal to 1, the residual depth layer contains packed information derived from up to four
depth views associated with the additional texture views in quarter resolution (sub-residual depth views). The residual
depth layer is the layer with Viewldx equal to 1 and DepthFlag equal to 1.

Each sub-residual depth view is derived by applying the following to an additional depth input view:
— Project the base depth view to the position of the additional depth input view using the decoded base depth view.

— Create a picture containing samples of the additional depth view that are located at positions not covered by
projected sample positions of the base depth view.

— Decimate the created picture by a factor of two in horizontal and vertical direction by discarding odd sample
positions.

The order of sub-residual depth views within the residual depth layer corresponds to the order of sub-residual texture
layers in the residual texture layer.

H.15 Video usability information

The specifications in clause G.15 apply.

94 3D-HEVC

