
Massively Parallel CPU-based
Virtual View Synthesis with Atomic Z-test

Jakub Stankowski

Institute of Multimedia Telecommunications
Poznań University of Technology

Polanka 3
61-131 Poznań, Poland

 jakub.stankowski@put.poznan.pl

Adrian Dziembowski

Institute of Multimedia Telecommunications
Poznań University of Technology

Polanka 3
61-131 Poznań, Poland

adrian.dziembowski@put.poznan.pl

ABSTRACT

In this paper we deal with the problem of real-time virtual view synthesis, which is crucial in practical immersive

video systems. The majority of existing real-time view synthesizers described in literature require using dedicated

hardware. In the proposed approach, the view synthesis algorithm is implemented on a CPU increasing its usability

for users equipped with consumer devices such as personal computers or laptops. The novelty of the proposed

algorithm is based on the atomic z-test function, which allows for parallelization of the depth reprojection step,

what was not possible in previous works. The proposal was evaluated on a test set containing miscellaneous

perspective and omnidirectional sequences, both in terms of quality and computational time. The results were

compared to the state-of-the-art view synthesis algorithm – RVS.

Keywords

Virtual view synthesis, immersive video systems, real-time video processing.

1. INTRODUCTION

The basic idea of an immersive video system is to

allow a user for immersing into the scene by giving a

possibility of free virtual navigation within a scene

captured by a multicamera system [Goo12], [Sta18],

equipped with perspective or omnidirectional cameras

(Fig. 1). In a typical scenario, where the scene is

represented using the multiview plus depth (MVD)

representation [Mül11], such a possibility is provided

by the synthesis (i.e., rendering) of virtual viewpoints.

There are multiple good-quality virtual view synthesis

methods described in the literature, e.g., [Dzi19],

[Fac18] or [Sen18]. However, these methods cannot

be used in the real-time scenario, making them not

suitable for practical immersive video systems, where

the system’s response to user’s change of position

should be immediate, and the virtual view should be

synthesized with possibly smallest delay [Dzi18].

2. FAST VIRTUAL VIEW SYNTHESIS

In the literature, several real-time virtual view

synthesis methods are described. However, the vast

majority of them require dedicated hardware, such as

powerful graphic cards (e.g., [Non18], [Zha17]),

FPGA devices (e.g., [Aki15], [Li19]) or even VLSI

devices [Hua19].

Figure 1. Idea of an immersive video system.

In this paper, we present a significant improvement of

the methods we have described in [Sta20] and [Sta22],

designed for real-time handling of perspective and

omnidirectional content, respectively.

The general scheme of our fast CPU-based virtual

view synthesis algorithm is presented in Fig. 2. It can

be divided into three major steps: synthesis of the

depth map corresponding to the virtual view (orange

blocks in Fig. 2), synthesis of the virtual view itself

(blue block), and postprocessing of synthesized view

(grey blocks). The reprojection of depth and texture is

performed differently for perspective views (using

homography matrices [Sta20]) and omnidirectional

ones (using equations described in [Sta22]). The

postprocessing step is identical, independently on the

video type and includes operations like filtering and

inpainting.

Figure 2. Overview of the fast virtual view

synthesis algorithm. Figure from [Sta22].

As described in [Sta20] and [Sta22], the algorithm

provides good-quality virtual views and allows to

achieve real-time processing even for very high-

resolution video, i.e., synthesizing of Full HD (or

2K×2K) virtual views based on two 4K input views.

The improvement presented in this paper allows to

decrease this time even more, allowing for real-time

synthesis of 4K sequences.

3. PARALLELIZATION LIMITATION

As described in [Sta20], the computational time of the

view synthesis algorithm can be significantly

decreased by using the multithread implementation

and exploiting computing capabilities of modern

multicore processors.

The stages related to texture reprojection and virtual

view postprocessing (blue and grey blocks in Fig. 2)

can be freely parallelized by dividing picture area into

rows, slices, tiles, etc. and processing each one using

separate thread.

However, this simple divide-and-process approach

cannot be applied to the most complex stage – depth

reprojection. The location of reprojected depth is

unpredictable and may induce a situation where two

threads try to write data into the same memory

location. This can lead to race condition and

corruption of reprojected depth.

A solution for above mentioned issue was proposed in

[Sta20] and further developed in [Sta22]. A technique

presented in [Sta20] introduced using of the algorithm

called Independent Projection Targets (IPT). When

using IPT, different slices of depth (processed in

separate threads) are reprojected into separate target

buffers and then merged (Fig. 3). Unfortunately, the

IPT algorithm has scalability limitations. Each

processing thread requires a dedicated set of

intermediate target buffers which leads to increased

memory complexity. To make things worse, the

intermediate buffers have to be merged causing the

merge operation to become more time consuming

when higher number of processing threads is used.

The overhead related to added complexity of

intermediate buffers merging offsets the gain from

using higher number of depth reprojection threads.

Figure 3. The idea of the independent projection

targets (IPT) with data flow and intermediate

data structures.

4. ATOMIC Z-TEST

In order to overcome the IPT scalability issues, we

have developed a new algorithm called atomic z-test

(AZT). The idea behind AZT is to use a special type

of memory access operation called “atomic” [Zhu84]

to share single target buffer between processing

threads in order to avoid excessive memory usage and

intermediate buffers merging overhead. The atomic

instruction allows to perform a single load-modify-

write operation which cannot be interrupted by

another core [Sch15].

In order to use the atomic z-test the data layout has to

be changed. In previous implementations [Sta20],

[Sta22] separate target depth and source index buffers

were used. Since atomic instructions operate on single

memory location, we had to combine target depth and

source index buffers into single buffer. Therefore, the

reprojected data buffer contains pairs of concatenated

values – depth on more significant bits and index on

least significant bits, both stored as 32-bit unsigned

integer.

The idea behind z-test in depth reprojection is to select

closest object (which corresponds to lowest depth /

highest disparity value). Since one depth and index

pair occupies a 64-bit memory location with depth

placed on most significant bits, a 64-bit unsigned

integer maximum operation can be used during z-test

and depth merging. This allows us to perform z-test by

updating a single 64-bit value as one atomic operation.

Different CPU (and GPU) architectures allow for a

variety of atomic operations. The most common is

compare-and-exchange also called compare-and-swap

(CAS), however more sophisticated operations like

addition, subtraction, etc., are sometimes available. In

our case the desired instruction would be 64-bit atomic

maximum. Unfortunately, no general-purpose CPU

offers such an instruction. This leads us to necessity of

simulating it by using compare-and-swap (CAS)

operation. Implementation details are provided in

section 5.

Fig. 4 illustrates simplified data flow in AZT

algorithm (only two processing threads are drawn for

clarity reasons). The presented diagram shows that

AZT allows for using single reprojected depth and

index buffer which allows for eliminating the time-

consuming stage of depth merging.

According to [Zhu84], atomic operations are slightly

slower than regular memory accesses, however the

biggest performance penalty is related to a situation

where two cores try to perform an atomic operation on

the same location (to be precise – within the same

cache line) and memory subsystem has to serialize

request coming from different CPU cores. This leads

us to conclusion that the performance of proposed

algorithm can depend on two factors: the number of

inter-thread collisions and the quality of the CPU

memory subsystem implementation.

Nevertheless, the usage of AZT allows us to use all

available CPU cores/threads and overcome IPT

scalability issues.

Figure 4. The data flow of the atomic z-test (AZT)

with intermediate data structures.

5. IMPLEMENTATION

The proposed atomic z-test algorithm was

implemented using the C++11 standard library

[ISO11] and operations defined in <atomic> header.

The std::compare_exchange_weak<uint64_t>

function was chosen as a portable way to use

compare-and-swap operation. The exemplary

implementation of atomic z-test is provided below:

/**

@brief Performs atomic z test on DepthIndex buffer

@param PtrDI is pointer to location within buffer
@param NewD is reprojected depth value
@param NewI is index representing source depth location
*/
void AZT(uint64_t* PtrDI, uint32_t NewD, uint32_t NewI)
{
 uint64_t BuffDI = *PtrDI; //DI - DepthIndex
 uint32_t BuffD = (uint32_t)(BuffDI >> 32);
 if(BuffD <= NewD)
 {
 uint64_t NewDI = ((uint64_t)NewD<<32)|(uint64)NewI;
 while(!std::atomic_compare_exchange_weak(
 (std::atomic_uint64_t*)(PtrDI), &BuffDI, NewDI))
 {
 if((uint32_t)(BuffDI >> 32) >= NewD) { break; }
 }
 }
}

In addition to the usage of atomic CAS, we used

already described vectorization techniques [Sta20],

[Sta22] by using AVX2 and AVX512 extensions.

6. EXPERIMENTS

Test sequences

The test set contained 9 miscellaneous test sequences

(Fig. 5), including:

• 3 omnidirectional sequences:

o A01: ClassroomVideo [Kro18] (4K×2K),

o C01: Hijack [Dor18] (4K×2K),

o C02: Cyberpunk [Jeo21] (2K×2K),

• 3 perspective computer-generated sequences:

o J01: Kitchen [Boi18] (FullHD),

o J04: Fan [Dor20] (FullHD),

o W02: Dancing [Boi18] (FullHD),

• 3 perspective natural sequences:

o D01: Painter [Doy18] (2K×1K),

o L01: Fencing [Dom16] (FullHD),

o L03: MartialArts [Mie23] (FullHD).

Figure 5. Test set used in the experiments. 1st row

(from left): ClassroomVideo, Hijack, Cyberpunk;

2nd row: Kitchen, Fan, Dancing; 3rd row: Painter,

Fencing, MartialArts.

The sequences are commonly used in immersive video

applications, e.g., within ISO/IEC JTC1/SC29/WG04

MPEG Video Coding group [MPEG23].

Experiment setup

Test was performed on two computers with modern

x86-64 CPUs: AMD Ryzen 9 5950X (containing 16

uniform cores) and Intel Core i7-12700k (containing 8

regular and 4 weak cores). Both processors are able to

execute instructions from AVX2 extension set so

during experimental evaluation the AVX2 vectorized

implementation was used. Unfortunately, during

experiments we have no access to any AVX512

capable CPU, therefore no results for AVX512

implementation is provided.

Quality and time evaluation

In order to assess the quality of virtual views

synthesized using proposed real-time view

synthesizer, we compared it to the state-of-the-art

ISO/IEC MPEG’s reference software – RVS [Fac18],

[MPEG18]. The comparison is reported in terms of

two objective quality metrics commonly used in works

on immersive video: IV-PSNR [Dzi22] and WS-

PSNR [Sun17].

The computational complexity was evaluated by

measuring the average processing time required for

synthesizing of a single frame of the sequence

including timing for individual processing stages

(depth projection, depth combining, view projection,

virtual view filtering and inpainting).

Evaluation results

The results of performed experiments are presented in

Tables 1 – 3.

Tables 1 and 2 present a detailed comparison of

computational time of the proposed algorithm and the

previous implementation described in [Sta20]. As

presented, the proposed atomic z-test (AZT) operation

allows for a significant reduction of the computational

time.

Figure 6. Fragments of virtual views synthesized

using RVS (left) and the proposed method (right);

sequences (from top): Kitchen, Fencing,

Cyberpunk, and Painter.

For the 16-core AMD Ryzen CPU, AZT decreases the

time required for synthesis of a single frame by more

than 40%. For Intel i7-12700K CPU the decrease is

smaller, but still significant. There are two reasons for

lower gain caused by the use of AZT. The first one –

a smaller number of cores, thus lower parallelization.

The second reason is the heterogeneous structure of

that CPU, which operates on 8 performant cores and 4

slower ones leading to unequal processing time for

each core type.

As presented in Tables 1 and 2, the decrease of the

computational time is caused by introducing the

possibility of efficient parallelization of the depth

projection step (denoted as “DP”). Such an

implementation may lead to slightly longer step of

combining depth candidates into the final virtual depth

Sequence
IPT algorithm processing time [ms] Proposed algorithm processing time [ms] Time reduction [%]

DP DC TP F I Total DP DC TP F I Total Depth Total

A01 38.70 2.57 10.43 6.17 3.56 61.44 14.48 4.65 11.07 6.27 3.21 39.68 54% 35%

C01 38.52 2.52 10.05 5.27 2.73 59.10 13.72 4.66 10.94 4.90 2.71 36.93 55% 38%

C02 23.37 6.19 5.17 2.07 1.40 38.19 7.30 1.85 5.58 2.18 2.04 18.95 69% 50%

D01 5.60 3.31 2.87 2.03 1.01 14.81 2.98 0.84 2.79 1.55 0.67 8.84 57% 40%

J01 5.74 2.94 2.39 1.07 0.63 12.77 2.79 0.78 2.48 1.12 0.58 7.73 59% 39%

J04 7.54 2.93 2.47 1.37 0.76 15.07 2.82 0.77 2.50 1.15 0.60 7.84 66% 48%

L01 7.57 2.87 2.77 1.30 0.73 15.24 3.11 0.81 2.63 1.22 0.60 8.37 62% 45%

L03 7.71 2.94 2.42 1.24 0.80 15.11 2.90 0.84 2.55 1.14 0.65 8.07 65% 47%

W02 8.06 2.91 2.51 1.39 0.81 15.68 3.07 0.80 2.52 1.23 0.61 8.24 65% 47%

Average 61% 43%

Table 1. Performance evaluation – computation time comparison between IPT [Sta20] and proposed AZT

algorithm for 16-core AMD Ryzen 9 5950X CPU. Processing stages: DP – depth projection, DC – depth

combining, TP – texture projection, F – filtering, I – inpainting. “Depth time reduction” includes depth

projection and depth combining.

Sequence
IPT algorithm processing time [ms] Proposed algorithm processing time [ms] Time reduction [%]

DP DC TP F I Total DP DC TP F I Total Depth Total

A01 38.54 4.18 11.41 9.25 3.93 67.31 29.89 4.25 11.66 9.24 3.45 58.48 20% 13%

C01 37.34 4.13 11.10 6.46 3.45 62.48 30.47 4.24 11.29 6.76 3.16 55.92 16% 11%

C02 20.66 6.95 5.34 3.41 1.87 38.23 15.82 1.96 5.54 3.78 1.97 29.06 36% 24%

D01 5.81 3.36 3.00 2.91 1.19 16.29 6.67 0.81 2.73 2.95 1.10 14.27 18% 12%

J01 4.66 3.19 2.70 1.81 0.76 13.12 5.25 0.69 2.29 1.70 1.17 11.10 24% 15%

J04 5.17 3.19 2.70 1.88 0.75 13.69 5.43 0.71 2.35 1.95 0.78 11.23 27% 18%

L01 5.54 3.26 2.87 2.02 0.78 14.48 5.70 0.75 2.64 1.95 0.75 11.79 27% 19%

L03 5.36 3.18 2.98 1.54 1.68 14.74 5.62 0.71 2.91 1.61 0.85 11.69 26% 21%

W02 5.65 3.22 2.86 2.02 1.61 15.36 6.02 0.74 2.68 2.07 0.82 12.33 24% 20%

Average 24% 17%

Table 2. Performance evaluation – computation time comparison between IPT [Sta20] and proposed AZT

algorithm for [8+4] core Intel i7-12700K CPU. Processing stages: DP – depth projection, DC – depth

combining, TP – texture projection, F – filtering, I – inpainting. “Depth time reduction” includes depth

projection and depth combining.

Sequence
Processing time [ms] IV-PSNR [dB] WS-PSNR [dB]

RVS Proposed Speedup RVS Proposed Delta RVS Proposed Delta

A01 15885 39.68 400 43.56 42.68 -0.89 32.21 31.74 -0.47

C01 15547 36.93 421 45.04 45.85 0.82 38.14 38.57 0.43

C02 7878 18.95 416 47.73 48.23 0.50 41.01 41.43 0.42

D01 3838 8.84 434 48.59 46.85 -1.74 38.46 36.94 -1.52

J01 3370 7.73 436 37.03 38.12 1.09 28.82 29.30 0.49

J04 3723 7.84 475 36.80 37.55 0.74 27.21 27.98 0.76

L01 3355 8.37 401 40.54 40.14 -0.40 29.55 29.21 -0.34

L03 3285 8.07 407 31.80 31.24 -0.55 26.81 26.14 -0.67

W02 3437 8.24 417 41.63 41.06 -0.57 29.43 28.91 -0.52

Average 423 41.41 41.30 -0.11 32.41 32.25 -0.16

Table 3. Performance and quality evaluation – comparison with the state-of-the-art view synthesis method

RVS [Fac18].

map (depth map corresponding to the virtual view),

but in total the entire depth processing step is

significantly faster. All remaining steps (texture

projection, filtering, and inpainting) are not impacted

by the proposed AZT algorithm.

Table 3 shows the comparison of the quality of virtual

views synthesized using the proposed method and the

state-of-the-art synthesizer RVS. As presented, in

terms of objective quality, both algorithms provide

similar results, both for IV-PSNR and WS-PSNR. A

slight quality decrease (0.11 for IV-PSNR and 0.16 for

WS-PSNR, on average) is the cost for a huge speedup

– the proposed algorithm is more than 400 times faster

than RVS.

Also the subjective quality of virtual views

synthesized using RVS and proposed method is

similar (Fig. 6). The characteristics of the synthesis

artifacts is slightly different (e.g., caused by a different

inpainting technique), but it can be certainly stated,

that the proposed real-time algorithm allows to

achieve at least similar quality to the state-of-the-art

view synthesis technique.

7. CONCLUSIONS

In the paper we have presented a versatile CPU-based
virtual view synthesis method which can be used in
practical, real-time immersive video systems.

The novelty of the proposed method is based on
introducing the atomic z-test approach, allowing for
massive parallelization of the depth reprojection step,
which is a crucial and most time-consuming part of the
entire view synthesis pipeline.

The proposed virtual view synthesis method allows for
achieving real-time processing for both perspective
and omnidirectional sequences, even for very high
resolutions. As presented in the paper, for 4K sequence
it is possible to achieve real-time view synthesis at 25
frames per second. For lower resolutions (i.e., FullHD)
it requires less than 10 ms per frame, making it possible
to be used also for high frame rate immersive video
systems.

8. ACKNOWLEDGMENTS

This work was supported by the Ministry of Education

and Science of Republic of Poland.

9. REFERENCES

[Aki15] Akin, A., Capoccia, R., Narinx, J., Masur, J.,

Schmid, A., and Leblebici, Y. Real-time free

viewpoint synthesis using three-camera disparity

estimation hardware. 2015 IEEE International

Symposium on Circuits and Systems (ISCAS),

Lisbon, pp. 2525-2528, 2015.

[Boi18] Boissonade P., and Jung J. Proposition of new

sequences for Windowed-6DoF experiments on

compression, synthesis, and depth estimation.

Document ISO/IEC JTC1/SC29/WG11

MPEG/M43318, Ljubljana, Slovenia, Jul. 2018.

[Dom16] Domański M. et al. Multiview test video

sequences for free navigation exploration obtained

using pairs of cameras. Doc. ISO/IEC

JTC1/SC29/WG11, MPEG M38247, 2016.

[Dor18] Doré, R. Technicolor 3DoF+ test materials.

ISO/IEC JTC1/SC29/WG11 MPEG, M42349, San

Diego, CA, USA, 04.2018.

[Dor20] Doré R. et al. InterdigitalFan0 content

proposal for MIV. Doc. ISO/IEC JTC1/SC29/

WG04 MPEG VC/ M54732, Online, Jul. 2020.

[Doy18] Doyen D. et al. [MPEG-I Visual] New

Version of the Pseudo-Rectified Technicolor

painter Content. Doc. ISO/IEC JTC1/SC29/

WG11 MPEG/M43366, Ljublana, 2018.

[Dzi18] Dziembowski, A., and Stankowski, J. Real-

time CPU-based virtual view synthesis. 2018

International Conference on Signals and

Electronic Systems, Kraków, Poland, 2018.

[Dzi19] Dziembowski, A., Mieloch, D., Stankiewicz,

O., Domański, M., Lee, G., and Seo, J. Virtual

view synthesis for 3DoF+ video. 2019 Picture

Coding Symposium (PCS), Ningbo, China, 2019.

[Dzi22] Dziembowski A., Mieloch D., Stankowski J.

and Grzelka A., IV-PSNR—The Objective Quality

Metric for Immersive Video Applications, IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 32, no. 11, pp. 7575-7591, Nov.

2022, doi: 10.1109/TCSVT.2022.3179575.

[Fac18] Fachada, S., Bonatto, D., Schenkel, A., and

Lafruit, G. Depth image based view synthesis with

multiple reference views for virtual reality. 3DTV-

Conference: The True Vision – Capture,

Transmission and Display of 3D Video (3DTV-

CON), Helsinki, Finland, 2018.

[Goo12] Goorts, P., Dumont, M., Rogmans, S., and

Bekaert, P. An end-to-end system for free

viewpoint video for smooth camera transitions.

2012 International Conference on 3D Imaging

(IC3D). Liege, Belgium, 2012.

[Hua19] Huang, H., Wang, Y., Chen, W., Lin, P. and

Huang, C. System and VLSI implementation of

phase-based view synthesis. 2019 IEEE

International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Brighton, United

Kingdom, pp. 1428-1432, 2019.

[ISO11] Information technology — Programming

languages — C++, ISO/IEC 14882:2011, ISO/IEC

JTC 1/SC 22 International Organization for

Standardization.

[Jeo21] Jeong, J.Y., Yun, K.J., Lee, G., Cheong, W.S.,

and Yoo, S. [MIV] ERP Content Proposal for MIV

ver.1 Verification Test. ISO/IEC

JTC1/SC29/WG04 MPEG VC, M58433, Online,

10.2021.

[Kro18] Kroon, B. 3DoF+ test sequence

ClassroomVideo. ISO/IEC JTC1/SC29/WG11

MPEG, M42415, San Diego, CA, USA, 04.2018.

[Li19] Li, Y., Claesen, L., Huang, K., and Zhao, M. A

real-time high-quality complete system for depth

image-based rendering on FPGA. IEEE

Transactions on Circuits and Systems for Video

Technology, vol. 29, no. 4, pp. 1179-1193, 2019.

[Mie23] Mieloch, D., Dziembowski, A., Szydełko, B.,

Klóska, D., Grzelka, A., Stankowski, J.,

Domański, M., Lee, G., and Jeong, J.Y. [MIV]

New natural content – MartialArts. ISO/IEC

JTC1/SC29/WG04 MPEG VC, M61949, Online,

01.2023.

[MPEG18] “Reference View Synthesizer (RVS)

manual,” Doc. ISO/IEC JTC1/SC29/WG11

MPEG, N18068, Macao, Oct. 2018.

[MPEG23] Common test conditions for MPEG

immersive video. ISO/IEC JTC1/SC29/WG04

MPEG VC, N0307, Online, Jan. 2023.

[Mül11] Müller, K., Merkle, P., and Wiegand, T. 3-D

Video Representation Using Depth Maps.

Proceedings of the IEEE, vol. 99, no. 4, pp. 643-

656, Apr. 2011.

[Non18] Nonaka, K., Watanabe, R., Chen, J., Sabirin,

H., and Naito, S. Fast plane-based free-viewpoint

synthesis for real-time live streaming. 2018 IEEE

Visual Communications and Image Processing

(VCIP), Taichung, Taiwan, pp. 1-4, 2018.

[Sen18] Senoh, T., Tetsutani, N., and Yasuda, H.

Depth estimation and view synthesis for

immersive media. 2018 International Conference

on 3D Immersion (IC3D), Brussels, Belgium,

2018.

[Sch15] Schweizer H., Besta M. and Hoefler T.,

"Evaluating the Cost of Atomic Operations on

Modern Architectures," 2015 International

Conference on Parallel Architecture and

Compilation (PACT), San Francisco, CA, USA,

2015, pp. 445-456, doi: 10.1109/PACT.2015.24.

[Sta18] Stankiewicz, O., Domański, M.,

Dziembowski, A., Grzelka, A., Mieloch, D.,

Samelak, and J. A Free-viewpoint Television

system for horizontal virtual navigation. IEEE

Transactions on Multimedia, vol. 20, no. 8, pp.

2182-2195, 2018.

[Sta20] Stankowski, J., and Dziembowski, A. Fast

view synthesis for immersive video systems.

Proceedings of the 28. International Conference in

Central Europe on Computer Graphics,

Visualization and Computer Vision, WSCG’2020,

Plzen, Czech Republic, 05.2020.

[Sta22] Stankowski J., and Dziembowski A., Real-

time CPU-based view synthesis for

omnidirectional video, 30th International

Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision,

WSCG 2022, Pilsen, Czech Republic, 05.2022.

[Sun17] Sun, Y., Lu, A., and Yu, L. Weighted-to-

Spherically-Uniform Quality Evaluation for

Omnidirectional Video. IEEE Signal Processing

Letters 24.9(2017):1408-1412.

[Zha17] Zhang, L., Li, Y., Zhu, Q., and Li, M.

Generating virtual images for multi-view video.

Chinese Journal of Electronics, vol. 26, no. 4, pp.

810-813, 2017.

[Zhu84] Zhu C.-Q. and Yew P.-C., "A

synchronization scheme and its applications for

large multiprocessor systems", Proc. 4th Int. Conf.

Distrib. Computing Syst., pp. 486-493, 1984.

