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Abstract—Fast algorithms for stereoscopic depth estimation 

typically employ processing of the input images in a Single 

Scanning Order (SSO). In this paper we present a novel 

approach that employs processing in Multiple Scanning Orders 

(MSO), which are then merged together into a final depth map. 

We demonstrate the advantages of the proposal on the example 

of a fast depth estimation technique [1], adaptable both for 

mobile platforms and FPGA. We show that application of the 

proposal leads to considerable quality improvement at an 

acceptable complexity cost. 

Keywords—depth estimation, disparity estimation, multiple 

scanning order, FPGA. 

I. INTRODUCTION 

Depth estimation is an important tool for modeling 3D 
scenes from sets of views, important for 3D television 
(3DTV), immersive 6-DoF video, robot vision, self-driving 
cars etc. In such applications, efficient real-time depth 
estimation is still a true challenge, especially when hardware 
complexity and power consumption is of concern. In order to 
meet these conditions, the respective depth estimation 
techniques must be relatively simple but still be able to 
produce high-fidelity depth.  

The most common passive depth estimation methods 
employ stereo-matching. In the simplest form, stereo 
matching techniques use image pair analysis and 
correspondence search between image fragments to determine 
the best disparity value for each point [2]. Disparity (distance 
between object positions between distinct views) is then used 
to determine the depth (e.g. distance to the object in the scene 
from the camera). The downside of such a simple approach is 
that each disparity value is estimated independently and 
therefore the process lacks information in regions without 
texture and the estimated depth suffers from structural 
inconsistency. 

Therefore, in more advanced depth estimation methods 
[2, 3, 4], additionally, regularization algorithms are used to 
enforce structural consistency in the estimated 3D scene. In 
such approaches, neighboring disparity values are entangled, 
e.g. optimized together which is commonly expressed in terms 
of energy minimization. Such energy can be defined globally 
for the entire image and tackled through means of algorithms 
like graph cuts [5] or belief propagation [6], which are 
computationally intensive. Due to this, such works are outside 
of the scope of this paper. 

Less complex solutions typically try to achieve 
regularization locally, in a greedy approach, in which disparity 
for newly estimated pixels in inferred from the already 
estimated pixels. In such an approach pixels are processed 
(scanned) in some predefined order, e.g. row-by-row from the 
top to the bottom of the image, and in each row: pixel-by-
pixel, from the left to the right, or vice versa. In the methods 

found in the literature, a Single Scanning Order (SSO) is used. 
Such SSO-based methods suffer from depth artifacts related 
to the direction of scanning because the information about the 
depth is inferred/propagated only in one direction and cannot 
propagate back. We elaborate on this in Section III of the 
paper. 

In this paper, we present a novel approach that employs 
processing in Multiple Scanning Orders (MSO). The depth 
map is estimated multiple times, with the same core algorithm, 
but each time with the use of different scanning orders, and 
thus using different inferring directions. Therefore, in each 
scan, depth information propagates in different directions, 
each time resulting in different depth artifacts, often in 
different areas of the image. In the end, the depth maps 
produced as a result of consecutive scanning orders are 
merged into a final depth map. For the merging step we 
propose a few alternative algorithms - the details are presented 
in Section IV. 

The experimental results in Section V show that 
application of the proposal leads to considerable depth map 
quality improvement. The proposal can also be efficiently 
implemented in hardware for which we also show results on 
an example of an FPGA device (see Section VI). 

II. STATE OF THE ART 

In this paper, we consider fast depth estimation methods, 
applicable for mobile devices and FPGA implementations. 
Such methods typically [4] perform regularization locally. In 
particular, we focus on methods that employ scanning of the 
image in some order, in which depth for already estimated 
pixels is used for inferring the depth which is currently 
estimated.  

However global optimization methods (graph cuts [5] or 
belief propagation [6] and its implementations e.g. [7]) are 
outside of the scope of this paper, there are existing hybrid 
methods that employ semi-global optimization (e.g. on “inside 
row” level) and scanning on “between rows” level [8, 9, 10]. 
For example, Wang et al. use a simpler global reasoning 
algorithm based on dynamic programming in horizontal scan 
lines. Such methods can successfully benefit from the 
proposals of this paper. 

In the case of the considered scanning-based approach, all 
of the methods found in the literature employ just a Single 
Scanning Order (SSO). In works [11-14] for each pixel in 
image weights in the block matching cost are calculated by 
means of bilateral filtering. Unfortunately, bilateral filtering is 
computationally expensive and thus its various 
approximations are studied in the literature. Mattoccia et al 
[11] divide the matching window into small regular blocks in 
which filter coefficients are kept constant. Wei et al [12] 
propose two algorithms that employ separable approximation 
of bilateral filtering and iterative calculation of the matching 
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cost with an exponential step size. Others, like [13,14] try to 
use guided filters for fast computation of the matching cost in 
block-size-independent O(N) time.  

In work [1] authors show a hardware-applicable algorithm 
that employs inferring from neighboring pixels to the newly 
estimated one. The estimation progresses in one direction and 
thus this method also can be categorized as SSO. However, 
the authors mention that the direction of the processing can 
have an impact on the quality of the depth map, no results or 
proposals are presented in that matter.  

Based on the aforementioned state-of-the-art we have 
decided to assess the proposal of the paper with the use of an 
existing scanning-based depth estimation algorithm as a core 
technique. We have selected the depth estimation algorithm 
presented in the work [1] because it is fast and applicable to 
both hardware and mobile applications. It can however be 
noticed that the approach that we propose can be applied to 
any scanning-based depth estimation method. 

III. SINGLE SCANNNG ORDER 

In Single Scanning Order (SSO) depth estimation 
algorithms, pixels are processed (scanned) in some predefined 
order, e.g. in work [1] row-by-row from the top to the bottom 
of the image, and in each row: pixel-by-pixel, from the right 
to the left (Fig. 1).  

An explicit order of processing is beneficial because 
allows usage of already estimated disparity values for 
inferring currently estimated disparity values. In the work [1] 
columns on the right are processed first, they can be used to 
estimate depth for the pixels in columns to the left (Fig. 2a). 
Thus, a given pixel can use already estimated depth values 
from its neighboring pixels placed to the right, right-top, and 
right-bottom. Of course, different inferring schemes, are 
possible, e.g. using, top, top-right and right (Fig. 2b) limited 

to the right-top and right neighbor (Fig. 2c), or even limited to 
the neighbor to the right (Fig. 2d). 

 

Fig. 1. Exemplary scanning order 

Artifacts in estimated depth with SSO methods strongly 
correlate with the selected direction of scanning/inferring. For 
example, the pixel at coordinates (x,y) (Fig 2d) uses 
information about estimated depth from an already estimated 
pixel at coordinates (x+1, y),  but the opposite is impossible. 
This appears as characteristic “depth leak” artifacts (Fig. 3b), 
visible mostly and the borders of the objects. In the picture, 
the depth of the original shape (marked in red) is used for 
(erroneous) inferring the depth of the left band of the objects. 

 

Fig. 3. Exemplary grounth depth map (a) and depth map with“depth leak” 

artifacts (b) due to information inferring only from one direction – from the 

right. The original shape of objects in marked on (b) with red line. 

Fig. 2. Possible directions of information inferring in SSO depth estimation. Estimation scans considered in the paper (A,B,C,D) employ inferring 

presented in (b). 
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IV. MULTIPLE SCANNING ORDER 

The idea of this paper is to replace SSO approach with 
Multiple Scanning Orders (MSO).  Instead of estimating depth 
once with only one selected scanning order, which is 
vulnerable to direction-characteristic depth leaks, we propose 
to perform multiple passes of depth estimation scanning. In 
each scan, the same core algorithm is used, but with different 
scanning order, and thus also with different inferring 
directions. In the end, the depth maps produced as a result of 
consecutive scanning orders are merged in to a final depth 
map. 

A. Scanning orders and inferring dirrections 

For the sake of experimentation, we have decided to 
employ 4 scans: A, B, C, D, each of which uses three-
neighboring pixels for inferring, as shown in Fig. 2b, but 
rotated accordingly (Fig.4). It can be noted that 90° rotations 
of inferring direction altogether with scanning order can be 
implemented through the same computational kernel, but 
working on transformed (flipped) data (Table I and Fig. 4). In 
the case of three-view depth estimation, where the depth is 
estimated for the center view, additionally there is a need to 
switches left with right image and vice-versa. This operation 
is controlled identically to horizontal flipping. 

For example, variant A means inferring data from 
previously processed pixels located to the left, to the left-top, 
and to the top, relatively to the currently processed pixels, top-
to-bottom row scanning, left-to-tight column scanning. In 
such a case: 

• Variant B is implemented as variant A but with horizontal 
flipping of the input image. 

• Variant C is implemented as variant A but with vertical 
flipping of the input image. 

• Variant D is implemented as variant A but with both 
horizontal and vertical flipping of the input image. 

 

TABLE I. INFORMATION INFERRING DIRECTIONS AND IMPLIED SCANNING 

ORDER AND PRACTICAL IMPLEMENTATION BY IMAGE FLIPPING 

(HORIZONTAL/VERTICAL) 

 Inferring direction (relative to currently 
processed pixel) 

Scanning Flipping 

Row Col. Horz. 
(FH) 

Vert. 
(FV) 

A Left (←), left-top (↖), top (↑) → ↓ - - 

B Right (→), right-top (↗), top (↑) ← ↓ + - 

C Left (←), left-bottom (↙), bottom (↓) → ↑ - + 

D Right (→), right-bottom (↘), bottom (↓) ← ↑ + + 
 

 

 

Fig. 4. Information inferring directions and implied scanning orders. 

B. Depth map merging 

Usage of Multiple Scanning Orders (MSO) results in four 
estimated depth maps. Therefore, for each image point there 
are available 4 disparity values - one from each scan: A, B, C 
and D. Basing on these four values, merging is performed in 

order to produce the final depth map (Fig. 4). As a first step, 
the process involves sorting of set {A,B,C,D}, which results 
in set {E,F,G,H} such that E ≤ F ≤ G ≤ H. 

 

Fig. 4. Proposd merging methods of MSO results.  

We propose four alternative methods for merging of 
disparity values and producing the final disparity value R: 

• Min – minimal disparity value is selected, thus the 
algorithm has a preference for distant (far) objects (1): 

                           R ← min(A, B, C, D)                              (1). 

• Max – maximal disparity value is selected, thus the 
algorithm has a preference for near objects (2): 

                           R ← max(A,B,C,D) = H                            (2). 

• Med – may result in a disparity value not present in the 
scene (not found by the core depth estimation algorithm) 
as because 4 scans are used, median operation (3) involves 
division by 2 (integer shift right by 1 bit): 

                                  R ← (F+G)/2                                        (3). 

• MinMed – “median” with a preference for smaller 
disparity value (preference for slightly further objects) (4): 

                     R ← F                                              (4). 

As we show in the results section, the selection of the 
voting algorithm has a significant impact on the depth 
estimation quality.  

C. MSO Realization 

Realization of the proposed MSO can be done with the use 
of the resources (e.g. hardware) suitable for SSO, only at the 
cost of 4 passes of execution of the algorithm and a merging 
step which has negligible complexity. In particular, additional 
needed hardware can be summarized as: 

• Controllable vertical/horizontal coordinate flipping. 
This can be implemented by means of an adder and a 
multiplexer. For example, controllable horizontal 
coordinate flipping, controlled with horizontal flipping flag 

FH (Table I), can  be expressed as (5): 

                 x’ = FH   ?     (WIDTH-1) - x    :   x         (5), 

where ? : is a conditional expression,  WIDTH is the width 
of the image, x is original horizontal coordinate and x’ is 
(optionally) flipped horizontal coordinate.  

• In the case of three-view depth estimation, where the depth 
is estimated for the center view - image data multiplexer 
which is switches left with right image and vice-versa. This 
operation is controlled identically to horizontal flipping, 
e.g. with the use of horizontal flipping flag FH (Table I). 
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Fig. 5.  Experimental results – “Art” and “Moebius” imags from Middlebury dataset [15]:  

a) the original image, b) ground-truth depth map, c) Winner Takes All (WTA) technique , d) technique from work [1],  

e) proposed – Min, f) proposed – Max, g) proposed – Med, h) proposed – MinMed. 
 

“Art” image “Moebius” image 

a) Original 

    image 

b) Ground  

    truth 

c) WTA 

d) work [1] 

e) Proposed 

- Min 

f) Proposed 
- Max 

g) Proposed 

- Med 

h) Proposed 

 - MinMed 

“Midd2” image “Reindeer” image 
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V. EXPERIMENTAL RESULTS 

For the quality evaluation of our method, we have used 
Middlebury stereoscopic images [15]. As an objective quality 
index bad-pixel ratio [16] has been used, which is common in 
literature. Bad-pixel ratio presents the percentage of pixels for 
which disparity is estimated wrongly, in comparison to 
ground-truth disparity maps, with a margin of 1 disparity 
level. The percentage of bad pixels was calculated only for 
non-occluded regions of the images. In Table II we present 
results for Winner Takes All algorithm (the most straight-
forward reference), the results of the unaltered [1] technique 
(used as the core for our experiments) with SSO, and the 
results for 4 alternative merging algorithms proposed in this 
paper: Min, Max, Med, and MinMed. The evaluation has been 
done for various window sizes for the stereo-matching step: 
3×3, 5×5, 7×7 and with different setups of color components: 
Luminance only (Y) and RGB. We also show some exemplary 
images (Fig. 5) to show the visual improvement attained with 
our proposal. It can be seen that the usage of depth merging 
from competitive orthogonal scanning orders allows canceling 
of some of the “depth leak” artifacts. 

 

TABLE II. BAD-PIXEL RATIO [%] RESULTS ON MIDDLEBURY [15] DATASET 

FOR VARIOUS BLOCK SIZES AND COMPONENT SETTINGS 

Algorithm 
Y – Luminance only RGB 

3x3 5x5 7x7 3x3 5x5 7x7 

WTA 53.91 45.67 42.12 48.78 42.12 39.18 

SSO [1] 37.32 35.8 35.28 34.99 33.57 33.42 

Proposed MSO - Min 39.11 36.54 35.66 36.42 33.74 33.05 

Proposed MSO - Max 44.56 41.81 40.27 41.59 39.07 37.84 

Proposed MSO -  Med 33.34 32.04 32.11 30.51 30.10 30.43 

Proposed MSO - MinMed 33.01 31.39 31.81 30.77 29.35 29.69 

Gain of MSO – MinMed 
versus SSO [1] 

4.31 4.41 3.47 4.22 4.22 3.73 

 

It can be noticed that the best results are attained with 
MinMed merging method. It allows for an improvement of 
about 4 percent points, as compared to the SSO method [1]. 
Notably this gain is much higher than one attainable by the 
usage of larger windows. For example, usage of 7×7 window 
improves the results by about 1 percent point, as compared to 
the usage of 3×3 window size. 

VI. IMPLEMENTATION 

The hardware implementation has been prepared in 
Verilog language. It has been synthesized, verified and tested 
on a proprietary Mucha Development Board equipped with 
Lattice ECP5 FPGA (Fig. 6). The source of video data is a 
3-camera rig equipped with OmniVision ov4689 sensor. Also, 
for demonstration application purposes, an end-user-friendly 
Arduino-based microcontroller (Espressif ESP32) was used.  

 

Fig. 6. Hardware implemention of the algorith, using proprietry  

Mucha Development Board. 

TABLE III. SYNTHESIS RESULTS FOR FPGA HARDWARE IMPLEMENTATION 

 Window Size (RGB mode) 

Synthesis parameter 3×3 5×5 7×7 

Clock frequency – P&R [MHz] 112.7 102.4 74.8 

Clock frequency – MAP [MHz] 158.8 176.1 159.7 

CLBs 12 180 16 536 22 853 

EBRs 174 178 182 

 

In Table III we present synthesis results for various 
window sizes. In all cases RGB color space has been used in 
similarity metric calculation and in all cases MinMed variant 
of the proposed algorithm has been used. The synthesized IP 
is can run at 100 MHz and consumes 83 640 Cell Logic 
Blocks (CLBs) and 208 blocks of memory (EBR), 18 kbit 
each.  

CONCLUSSIONS 

A novel approach to stereoscopic depth estimation has 
been proposed that employs Multiple Scanning Orders (MSO) 
as opposed to commonly used Single Scanning Order (SSO). 
MSO in our proposal is appended with a merging step which 
may involve one of four proposed voting methods: Min, Max, 
Med, and MinMed.  

The experimental results are presented on the example of 
MSO applied on top of a state-of-the-art algorithm known 
from the literature [1] with four competitive scanning orders, 
which infer depth information from four orthogonal 
directions. As it has been presented - both visually and 
objectively by means of bad-pixel ratio – the usage of the 
proposal allows for significant improvement of the quality of 
the estimated depth map. The highest gains are observed for 
the MinMed method (around 5 percentage points reduction of 
bad-pixel ratio), but very comparable results can be achieved 
with the Med method. 

The considered algorithm has been implemented and 
tested in hardware FPGA devices (Lattice ECP5). It allowed 
us to practically show that the implementation of the proposed 
MSO approach can be done with the use of the same hardware 
which is suitable for SSO, only at the cost of 4 passes of 
execution of the algorithm (and a negligible merging step). 
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