
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2015/N15349

June 2015, Poland, Warsaw

Source Requirements

Status Approved

Title FTV software framework

Editors Gauthier Lafruit, gauthier.lafruit@ulb.ac.be

Krzysztof Wegner, kwegner@multimedia.edu.pl

Masayuki Tanimoto, tanimoto@nagoya-u.jp

1 Introduction

This document gives an overview of the processing steps that are involved in multi-view video

coding using DERS (Depth Estimation Reference Software), VSRS (View Synthesis Reference

Software) and 3D-HEVC (3D High Efficiency Video Coding) reference software tools that have

been developed throughout the MPEG-FTV (Free viewpoint TV) and MPEG video coding

exploration and standardization activities.

Since these tools have continuously evolved, targeting a plethora of requirements throughout

their evolution, it has become increasingly challenging – especially for non-experts in the field -

to properly use the tools, understanding their input/output data formats and settings.

This document is a quick start throughout examples of multi-view test sequences with arbitrary

multi-camera arrangements, aimed at addressing the new challenges of Super-Multi-View

(SMV) and Free Navigation (FN) in the FTV Call for Evidence [CfE FTV document].

Annex 10 describes how the user can run the script files for coding and/or view synthesis in

SMV and FN applications, with the test sequences and camera parameters that are used in the

CfE.

2 Multi-camera Processing Pipeline
The multi-view processing pipeline is basically composed of three steps: Acquisition,

Transmission, and Displaying.

The figures in this section provide the complete processing flow, with green arrows and red

blocks corresponding to the main processing kernels, blue arrows addressing pre-processing

steps, and yellow arrows providing configuration parameters.

The pre-processing includes the camera parameters extraction and depth/disparity estimation.

The actual compression is performed by a multi-view codec like MV-HEVC (without depth) or

mailto:gauthier.lafruit@ulb.ac.be
mailto:kwegner@multimedia.edu.pl
mailto:tanimoto@nagoya-u.jp

3D-HEVC (with depth). The final rendering typically involves some view interpolation,

synthesizing additional views typically not present in the decoded bitstream.

All figures are connected to each other through the circled numbers in green, brown and yellow

at the borders of each figure, and will be further explained in the remainder of the document,

referencing specific modules with the black italic numbers indicated in these figures.

2.1 Acquisition

Figure 1: Main acquisition processing flow

In Figure 1, multi-view video can be directly acquired by a multi-camera system (1) or it can be

generated artificially (2) by computer software (e.g. Blender). Based on the captured sequences,

the camera parameters (4) are estimated through special camera calibration software (3).

Alternatively, in the case of computer generated sequences (2), the camera parameters (5) can be

provided directly from the renderer that created the sequences. Commonly, camera parameters

are provided as intrinsic and extrinsic matrices, one per view. Additionally it may consist of

image distortion coefficients for each view. Acquired sequences are preprocessed (6) in order to

color calibrate all views, remove image distortion and denoise the sequences. Undistorted and

color corrected views (7) are used to estimate the depth maps (9) through depth estimation

software (8).

Alternatively, depth maps (10) can directly be obtained during the view generation, e.g. in the

case of computer graphics generated sequences, as the depth map is usually generated during

rendering for proper occlusion handling.

The end result of the full acquisition step is a number of color calibrated views (2), a number of

depth maps (3) (commonly one per view) and a set of camera parameters (1) (one per view).

2.1.1 Camera parameters

Figure 2 gives the main processing steps for the camera parameter extraction.

Figure 2: Various camera parameter formats used in the FTV framework

Starting from the input views (11), all camera parameters are estimated with calibration software

(12) (not made available by MPEG), providing the camera parameter in VSRS compatible

format A (13). For each camera section (starting with camera name e.g. param_camera_1) the

first 3 lines give the camera intrinsics (i.e. the parameters of each camera individually: focal

length, principal point, etc. in pixel units), while the last 3 lines give the camera extrinsics (i.e.

the camera rotation and translation, in world coordinates). Note, that the VSRS camera format

does not follow the extrinsics format commonly used in literature (i.e. [Rotation R | local

translation c]), but rather uses the camera position in global world coordinates system (i.e.

[Rotation R| global translation t = -R
-1

 c]). More information can be found in Annex 1, which

has been copied from [W9595].

As the views might also be rendered from a 3D model by 3D design software, the camera

parameters are known, and typically provided in some proprietary format (14), e.g.

Holografika’s XML format. Such camera parameters should be converted with an appropriate

script (5) into VSRS compatible format. A script example for converting Holografika’s XML

camera parameters into VSRS is given in Annex 2.

A camera parameter file B (17) is also required through (23, Figure 8) for proper compression of

the multi-view data with 3D-HEVC. As 3D-HEVC has been designed strictly for linear camera

setups (input views should be registered properly, i.e. all epipolar lines should be horizontal) the

3D-HEVC camera parameter format contains only a subset of the information available in

general VSRS camera parameter format A (13): only one component of the translation vector is

considered, and the camera rotation matrix is absent. Additionally, the 3D-HEVC camera

parameter file B also contains the Znear and Zfar parameters that are linked to the depth

information of a given view. More information is given in the following section.

The camera parameters in VSRS format can readily be used in DERS (Depth Estimation

Reference Software) through (15), and VSRS (View Synthesis Reference Software) through (34,

Figure 3).

2.1.2 Preprocessing

As shown in the figure below, the multi-view input data (1, 2) is typically color calibrated (6),

denoised and image distortion is removed. Note that the input data (captured by cameras or

generated by the computer) can be raw (3 bytes RGB per pixel – (2) or Bayer mosaic (1)),

whereas further processing in the chain requires the data to be in YUV420 format (3, 6, 32) with

per frame all the luminance Y values, followed by the chrominance U and V values. All frames

are concatenated into one YUV file per camera view.

Figure 3: Video data preparation and depth/disparity estimation

2.1.3 Depth/Disparity estimation

The depth map is an image where each pixel of a view provides information about the distance

of the observed point to the camera. The depth information can be provided in various formats.

The most commonly used are: direct distance to the objects, normalized distance, stereoscopic

disparity, normalized disparity.

The most natural way of storing a depth map is its direct distance to the object, where each value

of the depth map represents a distance between the observed object and the camera plane.

Distances are often stored as floating point numbers. The HDR file format used by Blender is an

example of such a depth map format.

Because potential huge dynamics of distances can occur in a given scene, the direct distance can

be normalized to represent the numbers in an efficient way. Commonly, 3D graphic software use

Z-buffer data normalized to the clipping range, with commonly used Znear and Zfar parameters.

Stereoscopic disparity refers to pixel position differences of an object seen from two viewpoints.

A simplified relation between disparity and distance is given in the following equation

 (1)

where is the focal length of the camera acquiring the image, and is the baseline of the used

stereo pair.

Generally, disparity can be in a range of 0 to infinity. However, in practical cases disparity is

limited to a certain range: dmin ÷ dmax. The dmin is related through equation 1 to zFar, and dmax to

zNear. For practical reasons, instead of providing dmin, and dmax, zFar and zNear value are used.

Then distance z to the object can be obtained from normalized disparity sample v through the

following equation

where is 255 for 8 bit depth maps and 65535 for 16 bit depth maps. MPEG commonly uses

depth maps in normalized disparity format.

2.2
Figure 4: Views and correspondent depth maps

Depth maps are commonly estimated algorithmically through depth estimation software (8,

Figure) (possibly proprietary) based on the analysis of the input views (7). Alternatively it can

be obtained as an intermediate result for view rendering in computer generated sequences (10).

2.2.1.1 Depth Estimation Reference Software
Throughout the years, MPEG has been developing Depth Estimation Reference Software

(DERS) which has constantly been improved in order to provide state-of-the-are depth

estimation results. Currently DERS is not limited to linear view arrangements any more: it can

estimate depth maps out of three arbitrary arranged input views. More details can be found in

[DERS] and [DERSManual]. Figure 5 gives a typical example of a depth estimation

configuration file (config file I at step (32) in Figure 3Błąd! Nie można odnaleźć źródła

odwołania.) . In DERS, depth is estimated with a graph cut algorithm on 3 successive cameras

(left, center, right), which are given at the top of the configuration file. It outputs depth maps in

4:2:0 YUV file where the Y component contains normalized disparity of the center view.

Additionally it outputs two scaling values zNear and zFar used to normalize the disparity.

#=============== INPUT PARAMETERS ================

DepthType 0 # 0...Depth from camera, 1...Depth from the origin of 3D space

SourceWidth 1600 # Input frame width

SourceHeight 1200 # Input frame height

StartFrame 0 # Starting frame

TotalNumberOfFrames 3 # Total number of input frames

LeftCameraName param_uh_line2_1 # Name of left camera

CenterCameraName param_uh_line2_2 # Name of center camera

RightCameraName param_uh_line2_3 # Name of right camera

MinimumValueOfDisparitySearchRange 1 # Minimum value of disparity search range. This value is not always same

as all pairs of views.

MaximumValueOfDisparitySearchRange 55 # Maximum value of disparity search range. This value is not always same

as all pairs of views.

MinimumValueOfDisparityRange 1 # Minimum value of disparity range. This value is smaller than or equal

to minimum value of disparity search ranges for all views.

MaximumValueOfDisparityRange 55 # Maximum value of disparity range. This value is larger than or equal to

maximum value of disparity search ranges for all views.

SmoothingCoefficient 1.0 # Smoothing coefficient to compute depth maps

FileLeftViewImage C:\Users\glafruit\Data\MPEG\Test_sequences\UHasselt_soccer_dataset\Line2\yuv\eye1.yuv

Name of left input video

FileCenterViewImage C:\Users\glafruit\Data\MPEG\Test_sequences\UHasselt_soccer_dataset\Line2\yuv\eye2.yuv

Name of center input video

FileRightViewImage C:\Users\glafruit\Data\MPEG\Test_sequences\UHasselt_soccer_dataset\Line2\yuv\eye3.yuv

Name of right input video

FileOutputDepthMapImage

C:\Users\glafruit\Data\MPEG\Test_sequences\UHasselt_soccer_dataset\Line2\yuv\depth_eye_123d.yuv # Name of output depth map

file

FileCameraParameter ..\camera_parameter_files\cam_param_uh_line2.txt # Name of

text file which includes camera parameters

BaselineBasis 1 # 0...minimum baseline, 1...maximum baseline, 2...left baseline,

3...right baseline

Precision 1 # 1...Integer-pel, 2...Half-pel, 4...Quater-pel

SearchLevel 1 # 1...Integer-pel, 2...Half-pel, 4...Quater-pel

Filter 1 # 0...(Bi)-linear, 1...(Bi)-Cubic, 2...MPEG-4 AVC 6-tap

MatchingMethod 0 # 0...Conventional, 1...Disparity-based, 2...Homography-based, 3...Soft-

segmentation-based

#========== Temporal Enhancement ==========

TemporalEnhancement 0 # 0...Off, 1...On

Threshold 2.00 # Threshold of MAD

#========== Size of Matching Block (ignored when MatchingMethod = 3) ==========

MatchingBlock 3 # 1...Pixel matching, 3...3x3 block matching

#========== Softsegmentation (for MatchingMethod = 3 only) ==========

SoftDistanceCoeff 10.0 # SoftSegmentation Distance Coefficient

SoftColorCoeff 20.0 # SoftSegmentation Color Coefficient

SoftBlockWidth 11 # SoftSegmentation Block Width

SoftBlockHeight 11 # SoftSegmentation Block Height

#========== Segmentation ==========

ImageSegmentation 0 # 0...Off, 1...On

SmoothingCoefficient2 1.00 # Smoothing coefficient to compute depth maps

SegmentationMethod 3 # 1...mean shift algorithm, 2...phyramid segmentation, 3...K mean

clustering

MaxCluster 24 # Positive Integer Value

#===

#========== Semi-automatic Depth Estimation ==========

#===

DepthEstimationMode 0 #0...automatic Depth Estimation; 1...Semi-automatic mode1; 2...Semi-

automatic mode2; 3...Reference Depth mode

#---- For DepthEstimationMode = 1 or 2 ------

FileCenterManual ..\semi_automatic_input\champagne_41 #Path and filename prefix of the manual input files

#---- For DepthEstimationMode = 2 ------

ThresholdOfDepthDifference 10 # Threshold value of depth difference

MovingObjectsBSize 1 # 0: small 1: medium 2: large

MotionSearchBSize 0 # 0: narrow 1: medium 2: wide

#---- For DepthEstimationMode = 3 ------

RefDepthCameraName param_uh_line2_2 # camera parameter name

RefDepthFile rdepth_eye2.yuv # filename reference depthmap video

Figure 5: Example configuration file for DERS

2.2.1.2 Recommended DERS settings
For sequences with wide camera baseline or a big depth range it is recommended to compile the

DERS with POZNAN_16BIT_DEPTH flag, to support estimation of extended 16 bit depth maps.

2.2.1.3 Computer generated depth maps
When using Computer Generated Images/Projections from 3D synthetic data as multiview input,

a depth map can be extracted in floating point EXR or HDR format by using the Z output of a

Render layer in the composition graph. In this case no depth estimation software is then needed

as ground truth depth is generated as a side product of the rendering process.

Figure 6: Example composition graph for outputting depth values from Blender. Please note the scaling node that uniformly

divides the depth values before writing them to a file to avoid clamped values. exactly measured.

Currently it is required to convert (33, Figure) distance base depth maps to normalized disparity

depth maps stored as a 4:2:0 YUV file.

2.3 Multiview compression

Figure 7: Texture and Depth/Disparity data encoding, decoding and rendering in Super-MultiView and Free Navigation

The set of views along with the corresponding depth maps, if present, are encoded by a

Multiview Encoder (20) e.g. 3D-HEVC. The encoder may use view redundancy, as well as depth

redundancy, as well as inter-component redundancy in order to efficiently code the multi-view

sequence. With the help of camera parameters, view synthesis prediction can be used as well to

further enhance the compression efficiency. The Multiview Decoder (22) decodes the encoded

bitstreams according to the parameters encoded in the bitstream and outputs decoded views and

depth maps (if existing).

2.3.1 3D-HEVC: depth-based High Efficiency Video Coding

Figure 8: Texture and Depth/Disparity data encoding, decoding.

The bitstream is decoded, recovering the camera parameters, the views and depth maps in the

final displaying step, as shown in the figure above.

Since 3D-HEVC has been designed strictly for linear camera arrangements (no rotation matrix in

the camera parameter file (B)Błąd! Nie można odnaleźć źródła odwołania.), good compression

performances can only be guaranteed for registered/aligned camera views.

For compatibility reasons, we are currently using the HTM13 reference software of 3D-HEVC

available from https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/tags/HTM-13.0 (NOT the

latest software documented on https://hevc.hhi.fraunhofer.de/HM-doc/).

For properly using HTM13 for MPEG-FTV, the source code modification are required according

to Annex 5.

The 3D-HEVC codec (HTM13) takes textures (2 – the video data in YUV 420 file format),

depth/disparities (3 – normalized disparity maps in YUV 420 file format) and camera parameters

(4 – in B format), together with a config file (24 - example portions are given in Figure), to

create a single coded bitstream (25) containing compressed versions of the video and depth data.

Be aware that different and intelligently chosen quantization parameters QP should be used for

texture and depth, in order to provide the highest quality of the rendered views at fixed bitrate.

#======== Legend for comments =====================

(m) specification per layer/dimension/layerset possible

(c) cyclic repetition of values, if not given for all layers/dimensions/layersets. (e.g. 5 layers and 1 2 3 -> 1 2 3 1 2)

#======== File I/O =====================

InputFile_0 : ..\Data\4.yuv

InputFile_1 : ..\Data\d4.yuv

InputFile_2 : ..\Data\3.yuv

InputFile_3 : ..\Data\d3.yuv

InputFile_4 : ..\Data\2.yuv

InputFile_5 : ..\Data\d2.yuv

InputFile_6 : ..\Data\1.yuv

InputFile_7 : ..\Data\d1.yuv

InputFile_8 : ..\Data\5.yuv

InputFile_9 : ..\Data\d5.yuv

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/tags/HTM-13.0
https://hevc.hhi.fraunhofer.de/HM-doc/

InputFile_10 : ..\Data\6.yuv

InputFile_11 : ..\Data\d6.yuv

InputFile_12 : ..\Data\7.yuv

InputFile_13 : ..\Data\d7.yuv

BitstreamFile : stream.bit

ReconFile_0 : rec_4.yuv

ReconFile_1 : rec_4d.yuv

ReconFile_2 : rec_3.yuv

ReconFile_3 : rec_3d.yuv

ReconFile_4 : rec_2.yuv

ReconFile_5 : rec_2d.yuv

ReconFile_6 : rec_1.yuv

ReconFile_7 : rec_1d.yuv

ReconFile_8 : rec_5.yuv

ReconFile_9 : rec_5d.yuv

ReconFile_10 : rec_6.yuv

ReconFile_11 : rec_6d.yuv

ReconFile_12 : rec_7.yuv

ReconFile_13 : rec_7d.yuv

FramesToBeEncoded : 250 # Number of frames to be coded

FrameRate : 25 # Frame Rate per second

SourceWidth : 1600 # Input frame width

SourceHeight : 1200 # Input frame height

NumberOfLayers : 14

TargetEncLayerIdList : # Layer Id in Nuh to be encoded, (empty:-> all layers will be encode)

QP : 30 39 # quantization parameter (view depth)

#======== VPS ============================

ScalabilityMask : 3 # Scalability Mask (2: View Scalability, 3:

View + Depth Scalability)

DimensionIdLen : 4 4 # Number of bits to store Ids, per scalability dimension,

(m)

ViewOrderIndex : 0 0 1 1 2 2 3 3 4 4 5 5 6 6 # ViewOrderIndex, per layer (m)

DepthFlag : 0 1 0 1 0 1 0 1 0 1 0 1 0 1 # DepthFlag (m)

LayerIdInNuh : 0 # Layer Id in NAL unit header, (0: no explicit signalling,

otherwise per layer) (m)

SplittingFlag : 0 # Splitting Flag

ViewId : 3 2 1 0 4 5 6 # ViewId, per ViewOrderIndex (m)

#======== VPS / Layer sets ================

VpsNumLayerSets : 9 # Number of layer sets # of View + 2

LayerIdsInSet_0 : 0 # Indices in VPS of layers in layer set 0

LayerIdsInSet_1 : 0 1 # Indices in VPS of layers in layer set 1

LayerIdsInSet_2 : 0 1 2 3 # Indices in VPS of layers in layer set 2

LayerIdsInSet_3 : 2 3 4 5 # Indices in VPS of layers in layer set 3

LayerIdsInSet_4 : 4 5 6 7 # Indices in VPS of layers in layer set 3

LayerIdsInSet_5 : 0 1 8 9 # Indices in VPS of layers in layer set 2

LayerIdsInSet_6 : 8 9 10 11 # Indices in VPS of layers in layer set 3

LayerIdsInSet_7 : 10 11 12 13 # Indices in VPS of layers in layer set 3

LayerIdsInSet_8 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 # Indices in VPS of layers in layer set 4

#======== VPS / Output layer sets ================

DefaultTargetOutputLayerIdc : 0 # Specifies output layers of layer sets, 0: output all layers, 1: output highest

layer, 2: specified by LayerIdsInDefOutputLayerSet

#OutputLayerSetIdx : 2 3 # Indices of layer sets used to derive additional output layer sets

#LayerIdsInAddOutputLayerSet_0 : 2 3 # Indices in VPS of output layers in additional output layer set 0

#LayerIdsInAddOutputLayerSet_1 : 4 5 # Indices in VPS of output layers in additional output layer set 1

…

#======== VPS / Dependencies ================

DirectRefLayers_1 : 0 # Indices in VPS of direct reference layers

DirectRefLayers_2 : 0 1 # Indices in VPS of direct reference layers

DirectRefLayers_3 : 1 2 # Indices in VPS of direct reference layers

…

DependencyTypes_1 : 2 # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion

DependencyTypes_2 : 2 2 # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion

DependencyTypes_3 : 2 2 # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion

…

#========== Camera parameters ==========

BaseViewCameraNumbers : 4 3 2 1 5 6 7 # camera numbers of coded

views (in coding order per view)

CameraParameterFile : ..\cam_param_Soccer_Linear2_for_HTM13.txt # camera parameter file

CodedCamParsPrecision : 5 # precision used for coding of camera parameters (in units

of 2^(-x) luma samples)

…

#======== Coding Structure =============

IntraPeriod : 24 # Period of I-Frame (-1 = only first)

DecodingRefreshType : 1 # Random Accesss 0:none, 1:CRA, 2:IDR, 3:Recovery Point SEI

GOPSize : 8 # GOP Size (number of B slice = GOPSize-1)

QPfactor betaOffsetDiv2 #ref_pics_active reference pictures deltaRPS reference idcs

ilPredLayerIdc refLayerPicPosIl_L1

Type POC QPoffset tcOffsetDiv2 temporal_id #ref_pics predict #ref_idcs

#ActiveRefLayerPics refLayerPicPosIl_L0

Frame1: B 8 1 0.442 0 0 0 4 4 -8 -10 -12 -16 0

0

Frame2: B 4 2 0.3536 0 0 0 2 3 -4 -6 4 1 4 5 1 1 0 0 1

0

…

#========== depth coding tools ==========

VSO : 1 # use of view synthesis optimization for depth coding

IntraWedgeFlag : 1

IntraContourFlag : 1 # use of intra-view prediction mode

IntraSdcFlag : 1

DLT : 1

QTL : 1

QtPredFlag : 1

InterSdcFlag : 1 # use of inter sdc

MpiFlag : 1

IntraSingleFlag : 1 # use of single depth mode

#========== view synthesis optimization (VSO) ==========

#VSOConfig : [cx0 B(cc1) I(s0.5)][cx1 B(oo0) B(cc2) I(s0.5 s1.5)][cx2 B(oo1) B(cc3) I(s1.5 s2.5)][cx3 B(oo2)

B(oo4) I(s2.5 s3.5)][cx4 B(cc3) B(oo5) I(s3.5 s4.5)][cx5 B(cc4) B(oo6) I(s4.5 s5.5)][cx6 B(cc5) I(s5.5)] # VSO configuration

string

VSOConfig : [cx0 B(cc1) I(s0.25 s0.5 s0.75)][cx1 B(oo0) B(cc2) I(s0.25 s0.5 s0.75 s1.25 s1.5 s1.75)][cx2 B(oo1)

B(cc3) I(s1.25 s1.5 s1.75 s2.25 s2.5 s2.75)][cx3 B(oo2) B(oo4) I(s2.25 s2.5 s2.75 s3.25 s3.5 s3.75)][cx4 B(cc3) B(oo5) I(s3.25

s3.5 s3.75 s4.25 s4.5 s4.75)][cx5 B(cc4) B(oo6) I(s4.25 s4.5 s4.75 s5.25 s5.5 s5.75)][cx6 B(cc5) I(s5.25 s5.5 s5.75)] # VSO

configuration string

#VSOConfig : [cx0 B(cc1) I(s0.25 s0.5 s0.75)][cx1 B(oo0) B(oo2) I(s0.25 s0.5 s0.75 s1.25 s1.5 s1.75)][cx2 B(cc1)

I(s1.25 s1.5 s1.75)] # VSO configuration string

#VSOConfig : [ox0 B(cc1) I(s0.25 s0.5 s0.75)][cx1 B(oo0) B(oo2) I(s0.25 s0.5 s0.75 s1.25 s1.5 s1.75)][ox2 B(cc1)

I(s1.25 s1.5 s1.75)] # VSO configuration string for FCO = 1

WVSO : 1 # use of WVSO (Depth distortion metric with a weighted depth

fidelity term)

VSOWeight : 10 # weight of VSO (in SAD case, cf. squared in SSE case)

VSDWeight : 1 # weight of VSD (in SAD case, cf. squared in SSE case)

DWeight : 1 # weight of depth distortion itself (in SAD case, cf. squared

in SSE case)

UseEstimatedVSD : 1 # Model based VSD estimation instead of rendering based for some

encoder decisions

Figure 9: Example of configuration file of 3D-HEVC (HTM13)

The 3D-HEVC decoder (26) will decode this single stream into 2.N output layers, where N is the

number of encoded views, as shown in Figure 8Błąd! Nie można odnaleźć źródła odwołania.,

i.e. the even layers contain the video data (texture), while the odd layers contain the depth data.

Be aware that the views and depth maps are not necessarily coded in the same order as their

original view order, cf. the top of the example configuration file of Figure. Currently

recommended 3D-HEVC configuration uses following coding structure in the view direction.

Coding structure in view direction: P <- P <- P <- I -> P -> P -> P

Input view number from left: 1, 2, 3, 4, 5, 6, 7

Coding order: 6, 4, 2, 0, 8, 10, 12

Decoded view data number: 6, 4, 2, 0, 8, 10, 12

Input depth map number from left: d1, d2, d3, d4, d5, d6, d7

Coding order: 7, 5, 3, 1, 9, 11, 13

Decoded depth map number: 7, 5, 3, 1, 9, 11, 13

It means that the middle view is encoded first, then its depth, then the views to the left of the

middle view followed by the depth of the views to the left, and as a last view to the right of the

middle view followed by its depth. Therefore, reordering of the output files from the 3D-HEVC

decoder is necessary (check the validity of the reordering by observing the gradual translation of

objects in successive images for linear arrangements) and should be done before using VSRS in

the final rendering step (Figure).

Figure 10: Reordering of the files after decoding

2.3.1.1 Recommended 3D-HEVC settings
Figure 9 shows an example of recommended 3D-HEVC setting for Free navigation case. In case

of Super multi-view, an example of recommended 3D-HECV setting is in Annex 8.

2.4 View Synthesis and rendering

The display (30) in Figure may request some views to be provided by the system. Requested

view positions are provided to the Virtual View parameters interpolator (27), which interpolates

the camera parameters for the requested view positions based of the transmitted ones.

Alternatively, intrinsic and extrinsic camera parameters of the requested views can be provided

explicitly. View Synthesis creates the requested views based on the decoded views (5) and the

depth maps (6). The synthesized views (29) are displayed to the viewer on the 3D display.

Figure 11: Rendering framework

2.4.1 Virtual View Camera Parameter Interpolation

Figure 3: Currently used rendering pipeline

Camera parameters for virtual views can be generated by interpolation from existing views. Such

a virtual view parameters C in format A in Figure 2 have to be provided to VSRS in order to

render the views requested by the display. These parameters in (27, Figure 3) are calculated

through rotational and translational interpolation of the physical camera parameters (1). In

principle, this involves a spherical interpolation based on quaternions, but spline interpolation

with an Excel script gives satisfactory results, as explained in Annex 3. These values calculated

in Excel can be readily copied into the Virtual View Camera parameter file (C), which is VSRS

compatible, as shown in Figure .

Figure 13: Excel sheet camera parameter interpolation

Suggested virtual views camera parameters file is structured as follows. It should start with the

name followed by the position of the nearest real view e.g. 1 and ended with the index of the

virtual view position in between real cameras e.g. number in range 1 to N for N virtual views in

between two real views. The proposed virtual camera parameters name is

“param_virtual_view_VV.xx”, where VV is the real camera number closed to the left view, and

xx is an index of subsequent virtual views as exemplified in Figure 14 for the arc1 soccer

sequence.

Figure 14: Physical and virtual camera naming convention

The video file, that at the end of the processing chain (29) corresponds to a virtual view in Figure

14, will typically be named following the convention "virtual_VV.xx_from_Y_Z", where (Y,Z) is

optional information regarding the left and right views used for the view synthesis with VSRS.

2.4.2 View Synthesis Reference Software

MPEG has been developing View Synthesis Reference Software (VSRS) for synthesizing virtual

views (34) from two input views and two correspondence depth maps in normalized disparity

format. Although synthesized view can be positioned at any place in 3D space, commonly it is

positioned in-between input views. The same VSRS module is also used as a component in the

3D-HEVC codec for view prediction of existing camera views. The VSRS software can be

downloaded from http://wg11.sc29.org/svn/repos/Explorations/FTV

More information about using the VSRS software can be found in Annex 6 and in VSRS manual

[VSRS].

An example configuration file (config file III from Figure 3) for VSRS is given in Figure 55.

There is clearly a reference to a left and right camera view, from which the virtual view will be

calculated. Depending on the position of this virtual view, different left and right camera

references should be used.

#================ Input Parameters ================

DepthType 1 # 0...Depth from camera, 1...Depth from the origin of 3D space

SourceWidth 1600 # Input frame width

SourceHeight 1200 # Input frame height

StartFrame 0 # Starting frame #

TotalNumberOfFrames 1 # Total number of input frames

LeftNearestDepthValue 300 # Nearest depth value of left image from camera or the origin of 3D space

LeftFarthestDepthValue 3000 # Farthest depth value of left image from camera or the origin of 3D space

RightNearestDepthValue 300 # Nearest depth value of right image from camera or the origin of 3D space

RightFarthestDepthValue 3000 # Farthest depth value of right image from camera or the origin of 3D space

CameraParameterFile cam_param_uh_line2.txt # Name of text file which includes real and virtual camera

parameters

LeftCameraName param_uh_line2_1 # Name of real left camera

VirtualCameraName param_uh_line2_2 # Name of virtual camera

RightCameraName param_uh_line2_3 # Name of real right camera

LeftViewImageName ../yuv/1.yuv # Name of left input video

RightViewImageName ../yuv/3.yuv # Name of right input video

LeftDepthMapName ../depthyuv/depth-1-8bit-zn300-zf3000.yuv # Name of left depth map video

RightDepthMapName ../depthyuv/depth-3-8bit-zn300-zf3000.yuv # Name of right depth map video

OutputVirtualViewImageName virtual2.yuv # Name of output virtual view video

ColorSpace 0 # 0...YUV, 1...RGB

Precision 2 # 1...Integer-pel, 2...Half-pel, 4...Quater-pel

Filter 1 # 0...(Bi)-linear, 1...(Bi)-Cubic, 2...MPEG-4 AVC

BoundaryNoiseRemoval 1 #

Boundary Noise Removal: Updated By GIST

SynthesisMode 1 # 0...General, 1...1D parallel

#---- General mode ------

ViewBlending 1 # 0...Blend left and right images, 1...Not Blend

#---- 1D mode ------

#---- In this example, all parameters below are commented and default values will be taken ----

#SplattingOption 2 # 0: disable; 1: Enable for all pixels; 2: Enable only for boundary pixels. Default: 2

#BoundaryGrowth 40 # A parameter to enlarge the boundary area with SplattingOption = 2. Default: 40

#MergingOption 2 # 0: Z-buffer only; 1: Averaging only; 2: Adaptive merging using Z-buffer and averaging.

Default: 2

#DepthThreshold 75 # A threshold is only used with MergingOption = 2. Range: 0 ~ 255. Default: 75

#HoleCountThreshold 30 # A threshold is only used with MergingOption = 2. Range: 0 ~ 49. Default: 30

Figure 55: View Synthesis configuration file example

http://wg11.sc29.org/svn/repos/Explorations/FTV

2.4.3 Recommended VSRS settings

Parameter Value Comments

DepthType 1
Defines depth from the origin of 3D
space

{Left,Right}NearestDepthValue - Obtained directly from depth input
data or from the output of DERS {Left,Right}FarthestDepthValue -

ColorSpace 0 YUV

Precision 4 Quarter-pixel

Filter 1 Bi-cubic

BoundaryNoiseRemoval 0 Not applied

SynthesisMode 0/1
0: general camera configuration
1: cameras with 1D parallel
configuration

ViewBlending 1 View Blending set to off

ViewBlending will blend the left and right camera view in creating the virtual view. For test

sequences that are not color calibrated, ViewBlending masks the luminance change in the

transitions between left/right camera pairs in the quality evaluation sweeping tests of Section

Błąd! Nie można odnaleźć źródła odwołania.. However, ghosting silhouettes are then also

more pronounced.

2.4.4 Legacy display support

As the super-multiview displays are not yet widely available, the quality of the sequence can be

assessed on classical stereoscopic displays. From all views required (29) by the super-multiview

display, a single sweep though all of the view is created before display (35) (Figure 66)

Figure 6: Subjective sweeping test in Free Navigation

3 Annex 1: VSRS Camera parameter format

3.1 Camera parameters principles

The camera parameters are subdivided into two categories:

- the camera intrinsics, i.e. the parameters of each camera individually: camera center c

position in world coordinate system, principal point p and focal length f in pixel units, as

shown in the top part of Figure 76 (picture from [CV1])

- the camera extrinsics, i.e. the camera rotation R and translation T, expressed in world

coordinates, as shown in the bottom part of Figure 76

Figure 77: Intrinsics and extrinsics of cameras

Literature often uses the [R|c] matrix at the bottom of Figure 77 for the extrinsics. However,

DERS/VSRS use a slightly different format, replacing c by the camera position T = - R
-1

 * c,

according to [W9595], which annex A is copied in the next section for completeness.

3.2 [N9595] Annex A: Specification of Camera Parameters

Camera parameters shall be specified as rotation matrix R, translation vector t and intrinsic

matrix A for each camera i. Values shall be given in floating point precision as accurate as

possible. More illustration and explanation is given in Annex B below.

The extrinsic camera parameters R and t shall be specified according to a right-handed

coordinate system. The upper left corner of an image shall be the origin for corresponding

image/camera coordinates, i.e., the (0,0) coordinate, with all other corners of the image having

non-negative coordinates. With these specifications, a 3-dimensional world point, wp=[x y z]
T
 is

mapped into a 2-dimensional camera point, cp = s * [u v 1]
 T

, for the i-th camera according to:

s * cp(i) = A(i) * R
-1

(i) * [wp – t(i)]

where A(i) denotes the intrinsic camera parameters, R
-1

(i) denotes the inverse of the rotation

matrix R(i) and s is an arbitrary scaling chosen to make the third coordinate of cp equal to one.

The rotation matrix R(i) for i-th camera is represented as follows.

The translation vector t(i) for i-th camera is represented as follows:

The rotation matrix R and the translation vector t define the position and orientation of the

corresponding camera with respect to the world coordinate system. The components of the

rotation matrix R are function of the rotations about the three coordinate axes.

focal_length_x[i] specifies the focal length of the i-th camera in the horizontal direction units of

pixels.

focal_length_y[i] specifies the focal length of the i-th camera in the vertical direction in units of

pixels.

principal_point_x[i] specifies the principal point of the i-th camera in the horizontal direction

units of pixels.

principal_point_y[i] specifies the principal point of the i-th camera in the vertical direction in

units of pixels.

radial_distortion[i] specifies the radial distortion coefficient of the i-th camera.

The intrinsic matrix A(i) for i-th camera is represented as follows:

r_11[i] r_12[i] r_13[i]

r_21[i] r_22[i] r_23[i]

r_31[i] r_32[i] r_33[i]

t_1[i]

t_2[i]

t_3[i]

focal_length_x[i] radial_distortion[i] principal_point_x[i]

0 focal_length_y[i] principal_point_y[i]

0 0 1

4 Annex 2: Blender XML to VSRS Camera parameter conversion script
import os, fileinput, string, math, time, sys, shutil, glob, subprocess

from xml.dom import minidom

def HoloVizio2MpegConvertor_LinearLayout(xmlFileName, mpegParamFileName):

Converting XML Linear HoloVizio 3D Camera system file

to MPEG camera parameter file format:

MPEG format:

camera_name

Intrinsic parameter matrix K 3x3

0.0 "Origin for corresponding image"

0.0

extrinsic parameter matrix P = [R T] 3x4

 parametersFromXmlFile = ['count','PathLength', 'CameraDistance', 'CameraFovX',

\

 'CameraAspect', 'CameraWidth', 'CameraHeight']

 parameterValuesFromXmlFile = [None]* len(parametersFromXmlFile)

Extract Parameters from XML HoloVizio file:

 xmlFile = minidom.parse(xmlFileName)

 for p in range(0, len(parametersFromXmlFile)):

 if (p == 0):

 CameraLayout = xmlFile.getElementsByTagName("CameraLayout")

 parameterValue = int(CameraLayout[0].getAttribute("count"))

 else:

 #print xmlFile.getElementsByTagName(parametersFromXmlFile[p])

 parameterValue =

float(xmlFile.getElementsByTagName(parametersFromXmlFile[p])[0].firstChild.data)

 parameterValuesFromXmlFile[p] = float(parameterValue)

 numOfCamera = int(parameterValuesFromXmlFile[0])

 width = parameterValuesFromXmlFile[5]

 height = parameterValuesFromXmlFile[6]

 focalLength =

0.5*width/(math.tan(math.radians(parameterValuesFromXmlFile[3]/2)));

 cameraInterval = parameterValuesFromXmlFile[1]/numOfCamera;

Write MPEG Camera Parameter file:

 mpegParamFile = open(mpegParamFileName, 'w')

 for i in range(0, numOfCamera):

 mpegParamFile.write ('\nparam_ptm%02d \n' % i)

 K = [[focalLength,0,width/2], \

 [0,focalLength,height/2],[0,0,1]];

 P = [[1, 0,0,(0.5*cameraInterval*(i-float(numOfCamera-1)/2))],[0, 1, 0,

0],[0, 0, 1, 0]]

 for r in range(0, len(K)):

 for c in range(0, len(K)):

 mpegParamFile.write(str(K[r][c]))

 mpegParamFile.write(' ')

 mpegParamFile.write('\n')

 mpegParamFile.write('0.0\n')

 mpegParamFile.write('0.0\n')

 for r in range(0, len(P[:])):

 for c in range(0, len(P[:][1])):

 mpegParamFile.write(str(P[r][c]))

 mpegParamFile.write(' ')

 mpegParamFile.write('\n')

 mpegParamFile.close()

 return (numOfCamera, width, height)

def HoloVizio2MpegConvertor_ArcLayout(xmlFileName, mpegParamFileName):

Converting XML Arc HoloVizio 3D Camera system file

to MPEG camera parameter file format:

MPEG format:

camera_name

Intrinsic parameter matrix K 3x3

0.0 "Origin for corresponding image"

0.0

extrinsic parameter matrix P = [R T] 3x4

 firstCameraLocationInDegree = -22.5

 angularResolution = 0.5

 parametersFromXmlFile = ['count','Angle', 'Radius', 'CameraFovX', \

 'CameraWidth', 'CameraHeight']

 parameterValuesFromXmlFile = [None]* len(parametersFromXmlFile)

Extract Parameters from XML HoloVizio file:

 xmlFile = minidom.parse(xmlFileName)

 for p in range(0, len(parametersFromXmlFile)):

 if (p == 0):

 CameraLayout = xmlFile.getElementsByTagName("CameraLayout")

 parameterValue = int(CameraLayout[0].getAttribute("count"))

 else:

 parameterValue =

float(xmlFile.getElementsByTagName(parametersFromXmlFile[p])[0].firstChild.data)

 parameterValuesFromXmlFile[p] = float(parameterValue)

 numOfCamera = int(parameterValuesFromXmlFile[0])

 angle = parameterValuesFromXmlFile[1]

 radius = parameterValuesFromXmlFile[2]

 cameraFovX = parameterValuesFromXmlFile[3]

 width = parameterValuesFromXmlFile[4]

 height = parameterValuesFromXmlFile[5]

 focalLength = 0.5*width/(math.tan(math.radians(cameraFovX/2)));

 beta = firstCameraLocationInDegree

Write MPEG Camera Parameter file:

 mpegParamFile = open(mpegParamFileName, 'w')

 for i in range(0, numOfCamera):

 mpegParamFile.write ('\nparam_ptm%02d \n' % i)

 K = [[focalLength,0,width/2], \

 [0,focalLength,height/2],[0,0,1]]

 xt = radius*math.sin(math.radians(beta))

 yt = 0;

 zt = -radius*math.cos(math.radians(beta))

 P = [[math.cos(math.radians(beta)), 0, math.sin(math.radians(beta)), xt]\

 ,[0, 1, 0, yt]\

 ,[-math.sin(math.radians(beta)), 0, math.cos(math.radians(beta)),

zt]]

 beta += angularResolution

 for r in range(0, len(K)):

 for c in range(0, len(K)):

 mpegParamFile.write(str(K[r][c]))

 mpegParamFile.write(' ')

 mpegParamFile.write('\n')

 mpegParamFile.write('0.0\n')

 mpegParamFile.write('0.0\n')

 for r in range(0, len(P[:])):

 for c in range(0, len(P[:][1])):

 mpegParamFile.write(str(P[r][c]))

 mpegParamFile.write(' ')

 mpegParamFile.write('\n')

 mpegParamFile.close()

 return (numOfCamera, width, height)

HoloVizio2MpegConvertor_LinearLayout('BigBuckBunny_Flowers_Linear.xml',

'BigBuckBunny_Flowers_Linear.txt')

HoloVizio2MpegConvertor_ArcLayout('BigBuckBunny_Flowers_Arc.xml',

'BigBuckBunny_Flowers_Arc.txt')

5 Annex 3: Virtual View Camera parameter interpolation with Excel

5.1 Spherical Linear Interpolation

To create virtual views, also their corresponding camera parameters should be properly provided.

For doing so, the rotation R and translation T of Figure 7 should be smoothly interpolated

between all successive camera viewpoints. While a spline interpolation between the camera

positions will clearly create virtual intermediate positions properly, it’s not obvious that spline

interpolation on the matrix columns of the rotation matrix R will be adequate. We will show in

this annex that it is.

Computer graphics textbooks (e.g. [3DMaths2011]) explain that a rotation with angle around

an axis A can be represented by a quaternion q (i.e. a complex number with 1 real and 3

imaginary components):

Hence, a smooth rotational transition from the rotation matrix R1 with quaternion q1 of a camera

view to the rotation matrix R2 with quaternion q2 of the next camera view can be obtained with

a spherical linear interpolation along a spherical arc, as shown in Figure 8, with the

transformation formula at the right side of Figure 9.

Figure 8: Spherical linear interpolation along a spherical arc

Figure 9: Linear (left) and spherical linear interpolation (right) on quaternions

The so obtained quaternion q=<w,x,y,z> corresponding to an intermediate virtual view at

parametric position t (0<t<1) can readily be transformed into the corresponding rotation matrix

R, using the following transformation formula:

Interestingly, since any projection onto a plane of the spherical arc in Figure 8 is an ellipse, any

good interpolation mechanism on an ellipse will be able to mimic the spherical linear

interpolation properly. Spline interpolation perfectly satisfies this condition as exemplified in the

left side of Figure 20. Applying spline interpolation on the rotation matrix components yields the

results of Figure 101 for the example of the Soccer Arc1 sequence.

Also note in Figure 20 that spline interpolation also preserves a linear behavior, which can hence

handle linear camera arrays properly.

For this and all above reasons, spline interpolation has been selected to calculate the virtual

viewpoints’ camera parameters.

Figure 20: Spline interpolation on an ellipse (left) and a straight line (right)

Figure 10: Spline interpolation for calculating the rotation matrix of the virtual viewpoints

5.2 Excel sheet for virtual camera parameters

All virtual camera parameters are calculated with Excel using the spline interpolation explained

in previous section. The excel spline macro v3.2 downloadable from http://srs1-cubic-spline-for-

excel.software.informer.com/download/ has been used for this purpose. How to use this macro is

further explained in https://www.youtube.com/watch?v=HpMjdnk-Drg

The physical camera parameters should be input in the Cam_parameter_input_file sheet, and

virtual camera parameters are output in the Virtual_Views_parameters sheet, following the flow

given in Błąd! Nie można odnaleźć źródła odwołania..

The output in the light/dark grey zones can be copied to a txt file that can be readily used in

VSRS.

Note at the top-right side of Błąd! Nie można odnaleźć źródła odwołania.2 that names are

automatically created for these virtual views, using the naming convention

"virtual_XX.xx_from_Y_Z", where XX.xx is the translation corresponding to the virtual camera

and (Y,Z) are the left and right views used for the view synthesis with VSRS.

Also note the X_norm, Y_norm and the Z_norm columns in the excel sheet that are all 1, clearly

indicating that the spline interpolation preserves the norm of the rotation basis vectors

corresponding to the columns of the rotation matrix.

The X_ortho_Y, Y_ortho_Z and X_ortho_Z columns confirm the scalar product between these

basis vectors is zero, clearly indicating the that spline interpolation preserves the orthogonality of

the basis vectors in the rotation matrix.

Hence, the Excel sheet well approximates the interpolation on the physical camera parameters to

obtain the virtual camera parameters with a simple to use tool.

6 Annex 4: Y to YUV420 conversion script
The Y to YUV420 transformation relies on the principle that in YUV420 there are – per frame –

half as many UV data values (set to the default value of 128 = no chrominance) as the number of

Y values. Hence, it is sufficient to read each Y-frame and add an array of value 128 with the

appropriate size (cf. UV = bytearray([128]*(NpixelsPerFrame>>1)*NbytesPerElement) to create

a YUV420 file.

----------- Read the input file ------------

all data elements are 1 byte(s) long

NbytesPerElement = 1

size of one frame in number of pixels

NpixelsPerFrame = 1600 * 1200

first, last and no. of frames to read

StartFrame = 0 # starts at 0 for the first frame

NumberOfFrames = 1267 # NumberOfFrames>500 heavily slows down the processing (couple

of minutes)

StopFrame = StartFrame+NumberOfFrames-1

http://srs1-cubic-spline-for-excel.software.informer.com/download/
http://srs1-cubic-spline-for-excel.software.informer.com/download/
https://www.youtube.com/watch?v=HpMjdnk-Drg

----------- File definition ----------------

FilenameBase = 'images/depth-7-8bit-zn300-zf3000'

f_in = open(FilenameBase + '.yuv', 'rb')

f_out = open(FilenameBase +'_Y420_'+ str(StartFrame) +'_'+ str(StopFrame) +'.yuv',

'wb')

UV as a chunck of successive values of 128

UV = bytearray([128]*(NpixelsPerFrame>>1)*NbytesPerElement)

start

print('Processing started')

go to the first frame

f_in.seek((StartFrame)*NpixelsPerFrame*NbytesPerElement)

Copy frame per frame, adding UV components per frame

for i in range(NumberOfFrames):

 # copy one frame to the output

 OneFrame = f_in.read(NpixelsPerFrame*NbytesPerElement)

 f_out.write(OneFrame)

 # add U and V component per frame

 f_out.write(UV)

close all files

f_in.close()

f_out.close()

done

print('Done!')

7 Annex 5: Code changes for use of HTM13 in MPEG-FTV
Following lines of code should be commented out of 3D-HEVC for proper interfacing with the

DERS/VSRS workflow explained in the current document:

In TLibCommon/TypeDef.h, line 57,

#define HEVC_EXT 2 // 3D-HEVC mode // define 2 for 3D-HEVC mode.

In TAppEncoder/TAppEncTop.cpp Line 1336:

Int* aiIdx2DepthValue = (Int*) calloc(uiMaxDepthValue+1, sizeof(Int)); //Fix

Fix Owieczka +1 Added

In TLibEncoder/TEncCavlc.cpp line 444:

WRITE_CODE(uiNumDepthValues_coded, 9, "num_depth_values_in_dlt[i]"); //

num_entry //Fix Fix Owieczka 8->9

In TLibDecoder/TDecCavlc.cpp line 470:

READ_CODE(9, uiNumDepthValues, "num_depth_values_in_dlt[i]"); //> num_entry

//Fix Fix Owieczka 8->9

In /Lib/TLibDecoder/TDecCAVLC.cpp,

line 235: // assert (uiCode <= 15); // comment it out

line 771: // assert (uiCode <= 15); // comment it out

In TLibCommon/TComSlice.h,

line 3039: // assert (psId < m_maxId); // comment it out

8 Annex 6: Use of VSRS
The following steps are needed to properly configure MPEG’s View Synthesis Reference Software

(VSRS) for the tests to be performed in the Free-viewpoint TV (FTV) ad-hoc group. This configuration

has been tested on 64-bit Windows 7 with Visual Studio 10, but should be easily adaptable to other

Windows versions.

 Download the reference software from SVN repository (including the opencv folder) using

MPEG user and password: http://wg11.sc29.org/svn/repos/Explorations/FTV.

 Go to folder vsrs/trunk/windows and open the Visual Studio file corresponding to your version.

 In Visual Studio, open the file version.h, located under project ViewSynLibStaticVC10, and

check that the global definitions are

//#define POZNAN_GENERAL_HOMOGRAPHY
//#define POZNAN_16BIT_DEPTH

#define POZNAN_DEPTHMAP_CHROMA_FORMAT 400

Note that the second line should be uncommented in case 16-bit depth maps are being used, and

the third line should be commented if depth maps are provided in a 420 format.

 Build the solution, which will result in having the working VSRS executable file in

vsrs/trunk/windows/x64/ViewSynVC10.exe

 Once VSRS is compiled, it can be executed from command line using the configuration file as its

first and only parameter, that is, as in ViewSynVC10.exe <configuration_file.cfg>.

 Before running the program, check that configuration file is fine, especially regarding the

following options:

Parameter Value Comments

DepthType 1
Defines depth from the origin of 3D
space

{Left,Right}NearestDepthValue - Obtained directly from depth input
data or from the output of DERS {Left,Right}FarthestDepthValue -

ColorSpace 0 YUV

Precision 4 Quarter-pixel

Filter 1 Bi-cubic

BoundaryNoiseRemoval 0 Not applied

SynthesisMode 0/1
0: general camera configuration
1: cameras with 1D parallel
configuration

 Besides, check that the camera parameters file corresponds to the depth maps being used, and that

these are in the VSRS expected format (where white values means objects closer to the camera).

For instance, there are several depth maps of sequence SoccerArc on MPEG repository, but the

right ones are located under /MPEG-04/Part02-

Visual/FTV_AhG/UHasselt_Soccer/Arc1/Disparity-yuv400.

9 Annex 7: Python code for multi-threaded VSRS
To automate view synthesis process with the use of VSRS a python script have been developed.

For further details please see M36506.

http://wg11.sc29.org/svn/repos/Explorations/FTV

10 Annex 8: example 3D-HEVC configuration file for super multi-view
case

Since all configuration file of 3D-HEVC encoder for 40 view is quite long, only key line have been puted

below. Entre file can be found have been attached to this document.

#======== Legend for comments =====================

(m) specification per layer/dimension/layerset possible

(c) cyclic repetition of values, if not given for all layers/dimensions/layersets. (e.g. 5 layers and 1 2 3 -> 1 2 3 1 2)

#======== File I/O =====================

InputFile_0 : D:\FTV\Butterfly_MV5-45\Data\BBB_Butterfly_cam0025.yuv

InputFile_1 : D:\FTV\Butterfly_MV5-45\Data\BBB_Butterfly_cam0024.yuv

InputFile_2 : D:\FTV\Butterfly_MV5-45\Data\BBB_Butterfly_cam0023.yuv

…
InputFile_37 : D:\FTV\Butterfly_MV5-45\Data\BBB_Butterfly_cam0042.yuv

InputFile_38 : D:\FTV\Butterfly_MV5-45\Data\BBB_Butterfly_cam0043.yuv

InputFile_39 : D:\FTV\Butterfly_MV5-45\Data\BBB_Butterfly_cam0044.yuv

BitstreamFile : stream.bit

ReconFile_0 : rec_25.yuv

ReconFile_1 : rec_24.yuv

ReconFile_2 : rec_23.yuv

…
ReconFile_37 : rec_42.yuv

ReconFile_38 : rec_43.yuv

ReconFile_39 : rec_44.yuv

NumberOfLayers : 40 # number of layers to be coded

TargetEncLayerIdList : # Layer Id in Nuh to be encoded, (empty:-> all layers will be encode)

FramesToBeEncoded : 120 # Number of frames to be coded

FrameRate : 24 # Frame Rate per second

SourceWidth : 1280 # Input frame width

SourceHeight : 768 # Input frame height

QP : 30 # quantization parameter (view only)

#======== VPS ============================

ScalabilityMask : 2 # Scalability Mask (2: View Scalability, shall be 2 for MV-HEVC)

DimensionIdLen : 6 # Number of bits to store Ids, per scalability dimension, (m)

ViewOrderIndex : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 # ViewOrderIndex, per layer (m)

DepthFlag : 0 0 0 0 0 0 0 0 0 0 # DepthFlag (m)

LayerIdInNuh : 0 # Layer Id in NAL unit header, (0: no explicit signalling, otherwise per layer) (m)

SplittingFlag : 0 # Splitting Flag

ViewId : 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 # ViewId, per ViewOrderIndex (m)

#======== VPS / Layer sets ================

VpsNumLayerSets : 41 # Number of layer sets

LayerIdsInSet_0 : 0 # Indices in VPS of layers in layer set 0

LayerIdsInSet_1 : 0 1 # Indices in VPS of layers in layer set 1

…
LayerIdsInSet_37 : 36 37

LayerIdsInSet_38 : 37 38

LayerIdsInSet_39 : 38 39

LayerIdsInSet_40 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

#======== VPS / Output layer sets ================

DefaultTargetOutputLayerIdc : 0 # Specifies output layers of layer sets, 0: output all layers, 1: output highest layer, 2: specified by LayerIdsInDefOutputLayerSet

#OutputLayerSetIdx : 2 3 # Indices of layer sets used to derive additional output layer sets

#LayerIdsInAddOutputLayerSet_0 : 2 3 # Indices in VPS of output layers in additional output layer set 0

#LayerIdsInAddOutputLayerSet_1 : 4 5 # Indices in VPS of output layers in additional output layer set 1

#======== VPS / PTLI ================

#Profile : main main 3d-main # Profile indication in VpsProfileTierLevel, per VpsProfileTierLevel syntax structure (m)

#Level : none none none # Level indication in VpsProfileTierLevel, per VpsProfileTierLevel syntax structure (m)

#Tier : main main main # Tier indication in VpsProfileTierLevel, per VpsProfileTierLevel syntax structure (m)

#InblFlag : 0 0 0 # Inbl indication in VpsProfileTierLevel, per VpsProfileTierLevel syntax structure (m)

ProfileTierLevelIdx_0 : 1 # VpsProfileTierLevel indices of layers in output layer set 0 (m) (should be -1, when layer is not necessary)

ProfileTierLevelIdx_1 : 1 2 # VpsProfileTierLevel indices of layers in output layer set n (m) (should be -1, when layer is not necessary)

ProfileTierLevelIdx_2 : 1 2 # VpsProfileTierLevel indices of layers in output layer set n (m) (should be -1, when layer is not necessary)

…
ProfileTierLevelIdx_37 : 1 2 # VpsProfileTierLevel indices of layers in output layer set n (m) (should be -1, when layer is not necessary)

ProfileTierLevelIdx_38 : 1 2 # VpsProfileTierLevel indices of layers in output layer set n (m) (should be -1, when layer is not necessary)

ProfileTierLevelIdx_39 : 1 2 # VpsProfileTierLevel indices of layers in output layer set n (m) (should be -1, when layer is not necessary)

ProfileTierLevelIdx_40 : 1 2 # VpsProfileTierLevel indices

#======== VPS / Dependencies ================

DirectRefLayers_1 : 0 # Indices in VPS of direct reference layers

DirectRefLayers_2 : 1 # Indices in VPS of direct reference layers

DirectRefLayers_3 : 2 # Indices in VPS of direct reference layers

…
DirectRefLayers_37 : 36 # Indices in VPS of direct reference layers

DirectRefLayers_38 : 37 # Indices in VPS of direct reference layers

DirectRefLayers_39 : 38 # Indices in VPS of direct reference layers

DependencyTypes_1 : 2 # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion

DependencyTypes_2 : 2 # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion

DependencyTypes_3 : 2 # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion

…
DependencyTypes_37 : 2 # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion

DependencyTypes_38 : 2 # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion

DependencyTypes_39 : 2 # Dependency types of direct reference layers, 0: Sample 1: Motion 2: Sample+Motion

#========== Camera parameters ==========

BaseViewCameraNumbers : 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 # camera numbers of coded views (in coding

order per view)

CameraParameterFile : D:\FTV\Butterfly_3D5-44\cam_param_Butterfly_Arc_view5-44_for_HTM13.txt # camera parameter file

CodedCamParsPrecision : 5 # precision used for coding of camera parameters (in units of 2^(-x) luma samples)

#======== Unit definition ================

MaxCUWidth : 64 # Maximum coding unit width in pixel

MaxCUHeight : 64 # Maximum coding unit height in pixel

MaxPartitionDepth : 4 # Maximum coding unit depth

QuadtreeTULog2MaxSize : 5 # Log2 of maximum transform size for

 # quadtree-based TU coding (2...6)

QuadtreeTULog2MinSize : 2 # Log2 of minimum transform size for

 # quadtree-based TU coding (2...6)

QuadtreeTUMaxDepthInter : 3

QuadtreeTUMaxDepthIntra : 3

#======== Coding Structure =============

IntraPeriod : 24 # Period of I-Frame (-1 = only first)

DecodingRefreshType : 1 # Random Accesss 0:none, 1:CDR, 2:IDR

GOPSize : 8 # GOP Size (number of B slice = GOPSize-1)

QPfactor betaOffsetDiv2 #ref_pics_active reference pictures deltaRPS reference idcs ilPredLayerIdc refLayerPicPosIl_L1

Type POC QPoffset tcOffsetDiv2 temporal_id #ref_pics predict #ref_idcs #ActiveRefLayerPics refLayerPicPosIl_L0

Frame1: B 8 1 0.442 0 0 0 4 4 -8 -10 -12 -16 0 0

Frame2: B 4 2 0.3536 0 0 0 2 3 -4 -6 4 1 4 5 1 1 0 0 1 0

Frame3: B 2 3 0.3536 0 0 0 2 4 -2 -4 2 6 1 2 4 1 1 1 1 0

Frame4: B 1 4 0.68 0 0 0 2 4 -1 1 3 7 1 1 5 1 0 1 1 1 0

Frame5: B 3 4 0.68 0 0 0 2 4 -1 -3 1 5 1 -2 5 1 1 1 1 0 0

Frame6: B 6 3 0.3536 0 0 0 2 4 -2 -4 -6 2 1 -3 5 1 1 1 1 0 0

Frame7: B 5 4 0.68 0 0 0 2 4 -1 -5 1 3 1 1 5 1 0 1 1 1 0

Frame8: B 7 4 0.68 0 0 0 2 4 -1 -3 -7 1 1 -2 5 1 1 1 1 0 0

FrameI_l1: P 0 3 0.442 0 0 0 1 0 0 1 0 0 -1

Frame1_l1: B 8 4 0.442 0 0 0 4 4 -8 -10 -12 -16 0 1 0 1 -1

Frame2_l1: B 4 5 0.3536 0 0 0 3 3 -4 -6 4 1 4 5 1 1 0 0 1 1 0 1 -1

Frame3_l1: B 2 6 0.3536 0 0 0 3 4 -2 -4 2 6 1 2 4 1 1 1 1 1 0 1 -1

Frame4_l1: B 1 7 0.68 0 0 0 3 4 -1 1 3 7 1 1 5 1 0 1 1 1 1 0 1 -1

Frame5_l1: B 3 7 0.68 0 0 0 3 4 -1 -3 1 5 1 -2 5 1 1 1 1 0 1 0 2 -1

Frame6_l1: B 6 6 0.3536 0 0 0 3 4 -2 -4 -6 2 1 -3 5 1 1 1 1 0 1 0 2 -1

Frame7_l1: B 5 7 0.68 0 0 0 3 4 -1 -5 1 3 1 1 5 1 0 1 1 1 1 0 2 -1

Frame8_l1: B 7 7 0.68 0 0 0 3 4 -1 -3 -7 1 1 -2 5 1 1 1 1 0 1 0 2 -1

FrameI_l2: P 0 3 0.442 0 0 0 1 0 0 1 0 0 -1

Frame1_l2: B 8 4 0.442 0 0 0 4 4 -8 -10 -12 -16 0 1 0 1 -1

Frame2_l2: B 4 5 0.3536 0 0 0 3 3 -4 -6 4 1 4 5 1 1 0 0 1 1 0 1 -1

Frame3_l2: B 2 6 0.3536 0 0 0 3 4 -2 -4 2 6 1 2 4 1 1 1 1 1 0 1 -1

Frame4_l2: B 1 7 0.68 0 0 0 3 4 -1 1 3 7 1 1 5 1 0 1 1 1 1 0 1 -1

Frame5_l2: B 3 7 0.68 0 0 0 3 4 -1 -3 1 5 1 -2 5 1 1 1 1 0 1 0 2 -1

Frame6_l2: B 6 6 0.3536 0 0 0 3 4 -2 -4 -6 2 1 -3 5 1 1 1 1 0 1 0 2 -1

Frame7_l2: B 5 7 0.68 0 0 0 3 4 -1 -5 1 3 1 1 5 1 0 1 1 1 1 0 2 -1

Frame8_l2: B 7 7 0.68 0 0 0 3 4 -1 -3 -7 1 1 -2 5 1 1 1 1 0 1 0 2 -1

…
FrameI_l38: P 0 3 0.442 0 0 0 1 0 0 1 0 0 -1

Frame1_l38: B 8 4 0.442 0 0 0 4 4 -8 -10 -12 -16 0 1 0 1 -1

Frame2_l38: B 4 5 0.3536 0 0 0 3 3 -4 -6 4 1 4 5 1 1 0 0 1 1 0 1 -1

Frame3_l38: B 2 6 0.3536 0 0 0 3 4 -2 -4 2 6 1 2 4 1 1 1 1 1 0 1 -1

Frame4_l38: B 1 7 0.68 0 0 0 3 4 -1 1 3 7 1 1 5 1 0 1 1 1 1 0 1 -1

Frame5_l38: B 3 7 0.68 0 0 0 3 4 -1 -3 1 5 1 -2 5 1 1 1 1 0 1 0 2 -1

Frame6_l38: B 6 6 0.3536 0 0 0 3 4 -2 -4 -6 2 1 -3 5 1 1 1 1 0 1 0 2 -1

Frame7_l38: B 5 7 0.68 0 0 0 3 4 -1 -5 1 3 1 1 5 1 0 1 1 1 1 0 2 -1

Frame8_l38: B 7 7 0.68 0 0 0 3 4 -1 -3 -7 1 1 -2 5 1 1 1 1 0 1 0 2 -1

FrameI_l39: P 0 3 0.442 0 0 0 1 0 0 1 0 0 -1

Frame1_l39: B 8 4 0.442 0 0 0 4 4 -8 -10 -12 -16 0 1 0 1 -1

Frame2_l39: B 4 5 0.3536 0 0 0 3 3 -4 -6 4 1 4 5 1 1 0 0 1 1 0 1 -1

Frame3_l39: B 2 6 0.3536 0 0 0 3 4 -2 -4 2 6 1 2 4 1 1 1 1 1 0 1 -1

Frame4_l39: B 1 7 0.68 0 0 0 3 4 -1 1 3 7 1 1 5 1 0 1 1 1 1 0 1 -1

Frame5_l39: B 3 7 0.68 0 0 0 3 4 -1 -3 1 5 1 -2 5 1 1 1 1 0 1 0 2 -1

Frame6_l39: B 6 6 0.3536 0 0 0 3 4 -2 -4 -6 2 1 -3 5 1 1 1 1 0 1 0 2 -1

Frame7_l39: B 5 7 0.68 0 0 0 3 4 -1 -5 1 3 1 1 5 1 0 1 1 1 1 0 2 -1

Frame8_l39: B 7 7 0.68 0 0 0 3 4 -1 -3 -7 1 1 -2 5 1 1 1 1 0 1 0 2 -1

#=========== Motion Search =============

FastSearch : 1 # 0:Full search 1:TZ search

SearchRange : 96 # (0: Search range is a Full frame)

BipredSearchRange : 4 # Search range for bi-prediction refinement

HadamardME : 1 # Use of hadamard measure for fractional ME

FEN : 1 # Fast encoder decision

FDM : 1 # Fast Decision for Merge RD cost

#======== Quantization =============

MaxDeltaQP : 0 # CU-based multi-QP optimization

MaxCuDQPDepth : 0 # Max depth of a minimum CuDQP for sub-LCU-level delta QP

DeltaQpRD : 0 # Slice-based multi-QP optimization

RDOQ : 1 # RDOQ

RDOQTS : 1 # RDOQ for transform skip

#=========== Deblock Filter ============

DeblockingFilterControlPresent: 1 # Dbl control params present (0=not present, 1=present) (mc)

LoopFilterOffsetInPPS : 0 # Dbl params: 0=varying params in SliceHeader, param = base_param + GOP_offset_param; 1=constant params in PPS, param = base_param)

LoopFilterDisable : 0 1 # Disable deblocking filter (0=Filter, 1=No Filter) (mc)

LoopFilterBetaOffset_div2 : 0 # base_param: -6 ~ 6

LoopFilterTcOffset_div2 : 0 # base_param: -6 ~ 6

DeblockingFilterMetric : 0 # blockiness metric (automatically configures deblocking parameters in bitstream)

#=========== Misc. ============

InternalBitDepth : 8 # codec operating bit-depth

#=========== Coding Tools =================

SAO : 1 0 # Sample adaptive offset (0: OFF, 1: ON) (mc)

AMP : 1 # Asymmetric motion partitions (0: OFF, 1: ON)

TransformSkip : 1 # Transform skipping (0: OFF, 1: ON)

TransformSkipFast : 1 # Fast Transform skipping (0: OFF, 1: ON)

SAOLcuBoundary : 0 # SAOLcuBoundary using non-deblocked pixels (0: OFF, 1: ON)

#============ Slices ================

SliceMode : 0 # 0: Disable all slice options.

 # 1: Enforce maximum number of LCU in an slice,

 # 2: Enforce maximum number of bytes in an 'slice'

 # 3: Enforce maximum number of tiles in a slice

SliceArgument : 1500 # Argument for 'SliceMode'.

 # If SliceMode==1 it represents max. SliceGranularity-sized blocks per slice.

 # If SliceMode==2 it represents max. bytes per slice.

 # If SliceMode==3 it represents max. tiles per slice.

LFCrossSliceBoundaryFlag : 1 # In-loop filtering, including ALF and DB, is across or not across slice boundary.

 # 0:not across, 1: across

#============ PCM ================

PCMEnabledFlag : 0 # 0: No PCM mode

PCMLog2MaxSize : 5 # Log2 of maximum PCM block size.

PCMLog2MinSize : 3 # Log2 of minimum PCM block size.

PCMInputBitDepthFlag : 1 # 0: PCM bit-depth is internal bit-depth. 1: PCM bit-depth is input bit-depth.

PCMFilterDisableFlag : 0 # 0: Enable loop filtering on I_PCM samples. 1: Disable loop filtering on I_PCM samples.

#============ Tiles ================

TileUniformSpacing : 0 # 0: the column boundaries are indicated by TileColumnWidth array, the row boundaries are indicated by TileRowHeight array

#UniformSpacingIdc : 0 # 0: the column boundaries are indicated by ColumnWidth array, the row boundaries are indicated by RowHeight array

 # 1: the column and row boundaries are distributed uniformly

NumTileColumnsMinus1 : 0 # Number of columns in a picture minus 1

TileColumnWidthArray : 2 3 # Array containing ColumnWidth values in units of LCU (from left to right in picture)

NumTileRowsMinus1 : 0 # Number of rows in a picture minus 1

TileRowHeightArray : 2 # Array containing RowHeight values in units of LCU (from top to bottom in picture)

LFCrossTileBoundaryFlag : 1 # In-loop filtering is across or not across tile boundary.

 # 0:not across, 1: across

#============ WaveFront ================

WaveFrontSynchro : 0 # 0: No WaveFront synchronisation (WaveFrontSubstreams must be 1 in this case).

 # >0: WaveFront synchronises with the LCU above and to the right by this many LCUs.

#=========== Quantization Matrix =================

ScalingList : 0 # ScalingList 0 : off, 1 : default, 2 : file read

ScalingListFile : scaling_list.txt # Scaling List file name. If file is not exist, use Default Matrix.

#============ Lossless ================

TransquantBypassEnableFlag : 0 # Value of PPS flag.

CUTransquantBypassFlagForce : 0 # Constant lossless-value signaling per CU, if TransquantBypassEnableFlag is 1.

#============ Rate Control ======================

RateControl : 0 # Rate control: enable rate control

TargetBitrate : 1000000 # Rate control: target bitrate, in bps

KeepHierarchicalBit : 1 # Rate control: keep hierarchical bit allocation in rate control algorithm

LCULevelRateControl : 1 # Rate control: 1: LCU level RC; 0: picture level RC

RCLCUSeparateModel : 1 # Rate control: use LCU level separate R-lambda model

InitialQP : 0 # Rate control: initial QP

RCForceIntraQP : 0 # Rate control: force intra QP to be equal to initial QP

#========== multiview coding tools ==========

IvMvPredFlag : 1 1 # Inter-view motion prediction

IvResPredFlag : 1 # Advanced inter-view residual prediction (0:off, 1:on)

IlluCompEnable : 1 # Enable Illumination compensation (0: off, 1: on) (v/d)

IlluCompLowLatencyEnc : 0 # Enable low-latency Illumination compensation encoding(0: off, 1: on)

ViewSynthesisPredFlag : 0 # View synthesis prediction

DepthRefinementFlag : 0 # Disparity refined by depth DoNBDV

IvMvScalingFlag : 1 # Interview motion vector scaling

Log2SubPbSizeMinus3 : 0 # Log2 of sub-PU size minus 3 for IvMvPred (0 ... 3) and smaller than or equal to log2(maxCUSize)-3

Log2MpiSubPbSizeMinus3 : 0 # Log2 of sub-PU size minus 3 for MPI (0 ... 3) and smaller than or equal to log2(maxCUSize)-3

DepthBasedBlkPartFlag : 0 # Depth-based Block Partitioning

#========== depth coding tools ==========

VSO : 0 # use of view synthesis optimization for depth coding

IntraWedgeFlag : 0

IntraContourFlag : 0 # use of intra-view prediction mode

IntraSdcFlag : 0

DLT : 0

QTL : 0

QtPredFlag : 0

InterSdcFlag : 0 # use of inter sdc

MpiFlag : 0

IntraSingleFlag : 0 # use of single depth mode

#========== view synthesis optimization (VSO) ==========

#VSOConfig : [cx0 B(cc1) I(s0.25 s0.5 s0.75)][cx1 B(oo0) B(oo2) I(s0.25 s0.5 s0.75 s1.25 s1.5 s1.75)][cx2 B(cc1) I(s1.25 s1.5 s1.75)] # VSO configuration string

#VSOConfig : [ox0 B(cc1) I(s0.25 s0.5 s0.75)][cx1 B(oo0) B(oo2) I(s0.25 s0.5 s0.75 s1.25 s1.5 s1.75)][ox2 B(cc1) I(s1.25 s1.5 s1.75)] # VSO configuration string for FCO = 1

WVSO : 0 # use of WVSO (Depth distortion metric with a weighted depth fidelity term)

VSOWeight : 0 # weight of VSO (in SAD case, cf. squared in SSE case)

VSDWeight : 0 # weight of VSD (in SAD case, cf. squared in SSE case)

DWeight : 0 # weight of depth distortion itself (in SAD case, cf. squared in SSE case)

UseEstimatedVSD : 0 # Model based VSD estimation instead of rendering based for some encoder decisions

DO NOT ADD ANYTHING BELOW THIS LINE ###

DO NOT DELETE THE EMPTY LINE BELOW ###

11 Annex 9: Inter-view prediction related parameters for HTM

In the configuration of HTM software, there are four parameters to assign the inter-view

prediction structure for each view. They are DirectRefLayers_x, activeRefLayerPics,

ilPredLayerIdc, refLayerPicPosIl_L0, refLayerPicPosIl_L1.

DirectRefLayers_x sepecifies the layerID of the reference layers of the layer x,

activeRefLayerPics specifies the number of reference pictures used for inter-layer prediction of

the current picture. E.g. 0: means non inter-view reference picture 1: means one inter-view

reference picture,

ilPredLayerIdc specifies the indices of the direct reference layers in DirectRefLayers_x.

refLayerPicPosIl_L0 and refLayerPicPosIl_L1 specify the positions to which the inter-layer

reference pictures are inserted to list 0 and 1, respectively. When the number is negative the

position is related to the end of the list. E.g. 0 means first position of the list , -2 means the last

but one position of the list.

Example:

If we have the configurations like follows:

………

DirectRefLayers_7 : 1 3 5 # Layers 1, 3 and 5 are direct reference layers of layer 7

 …….
 activeRefLayerPics ilPredLayerIdc refLayerPicPosIl_L0 refLayerPicPosIl_L1

Frame2_l7: 2 0 2 0 -1 -1 1

1 3 5 : specifies the pictures of layer7 can refer the pictures of layer1, layer3 and layer5.

Inter view prediction structure of the picture 2 in a GOP of layer7:

2 : specifies the frame has two inter-view reference pictures.

0 2 : specifies the two inter-view reference pictures are respectively from layer1 and layer5.

0 -1： specifies the reference picture from layer1 is inserted to the first position of the list0 and the

reference picture from layer5 is inserted to the last position of the list0.

1 2 : specifies the reference picture from layer1 is inserted to the second position of the list0 and

the reference picture from layer5 is inserted to the third position of the list0.

12 Annex 10: SMV and FN software user guidelines
This annex describes how the user can run the script files for coding and/or view synthesis in

SMV and FN applications, along following steps:

- Creating depth maps with DERS

- Generating 3D-HEVC bitstreams from the input views and (optional) depth maps

- Decoding the 3D-HEVC bitstreams

- Synthesizing new virtual viewpoints that were not present in the bitstream (e.g. for FN)

with VSRS

The scripts are written for the test sequences and camera parameters that are used in the CfE for

FTV (SMV and FN) [CfE FTV document] issued at the Warsaw 112
th

 MPEG meeting.

[Here comes a workflow diagram with numbers]

[Here comes the scripts usage and parameters for each step in the above workflow]

References
[N15095] Gauthier Lafruit, Krzysztof Wegner, Masayuki Tanimoto, “Draft Call for

Evidence on FTV,” ISO/IEC JTC1/SC29/WG11 MPEG2015/N15095,

Geneva, Switzerland, February 2015.

[CV1] “Computer Vision course: CISC 4/689,” University of Louisville.

[CV2] Robert Collins, “Computer Vision I: CSE486,” Penn State University

[3DMaths2011] John Flynt, Eric Lengyel, “Mathematics for 3D Game programming and

Computer Graphics,” Course Technology, 2011.

[W9595] “Call for Contributions on 3D Video Test Material (Update),” ISO/IEC

JTC1/SC29/WG11 MPEG 2008/N9595, Antalya, Turkey, January 2008.

[DERSManual] Krzysztof Wegner, Olgierd Stankiewicz, „DERS Software Manual”,

ISO/IEC JTC1/SC29/WG11 MPEG2014/M34302 July 2014, Sapporo,

Japan.

[VSRS] Krzysztof Wegner, Olgierd Stankiewicz, Masayuki Tanimoto, Marek

Domanski, „Enhanced View Synthesis Reference Software (VSRS) for

Free-viewpoint Television”, ISO/IEC JTC1/SC29/WG11

MPEG2013/M31520 October 2013, Geneva, Switzerland.

[DERS] Krzysztof Wegner, Olgierd Stankiewicz, Masayuki Tanimoto, Marek

Domanski, „Enhanced Depth Estimation Reference Software (DERS) for

Free-viewpoint Television”, ISO/IEC JTC1/SC29/WG11

MPEG2013/M31518 October 2013, Geneva, Switzerland.

[CfE FTV document]

