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1 Introduction 
Omnidirectional video formats are currently considered within MPEG in the context of 

6DoF/3DoF+ video technology. This document describes the depth estimation technique and 

software called Immersive Video Depth Estimation (IVDE), which addresses depth estimation 

from video acquired by multiple omnidirectional cameras, needed to create multi-point 

6DoF/3DoF+ scene representation.  

2 IVDE 
The framework is based mainly on the method described in [1]. The particular usefulness of the 

presented method in virtual navigation, free-viewpoint television and other 6DoF systems, is a 

result of the joint exploitation of the ideas mentioned below: 

• Depth is estimated for segments instead of individual pixels, and thus the size of segments can be 

used to control the trade-off between the quality of depth maps and the processing time of 

estimation. Larger segments can be used to attain fast depth estimation, or finer segments can be used 

to attain higher quality. 

• Estimation is performed for all views simultaneously and produces depths that are inter-view 

consistent because of the utilization of the new formulation of the cost function, developed for 

segment-based estimation. 

• No assumptions about the positioning of views are stated and any number of arbitrarily positioned 

cameras (both perspective and omnidirectional) can be used during the estimation. 

• In the temporal consistency enhancement method, depth maps estimated in previous frames are 

utilized in the estimation of depth for the current frame, increasing the consistency of depth maps 

and simultaneously decreasing the processing time of estimation. 

• The framework uses a parallelization method that reduces the processing time of graph-based depth 

estimation. 



2.1 Depth estimation 

The estimation of depth in the proposed method is based on a cost function minimization, 

performed using GraphCut method [2]. The cost function is based on two components: the 

intra-view discontinuity cost 𝑉𝑠,𝑡 and the inter-view matching cost 𝑀𝑠,𝑠′ , responsible for the 

inter-view consistency of depth maps: 

𝐸(d) = ∑ ∑ { ∑ 𝑀𝑠,s′(𝑑𝑠)

𝑐′∈D

+ ∑ 𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡)

𝑡∈T

}

𝑠∈S𝑐∈C

 , 

where: 

d – vector containing depth value for each segment in all views, 

C  – set of views,  

𝑐 – view used in the estimation, 

D  – set of views neighboring to the view 𝑐,  

𝑐′ – view neighboring to the view 𝑐, 

S – set of segments of the view 𝑐, 

𝑠  – segment in the view 𝑐,  

𝑑𝑠  – currently considered depth of the segment 𝑠, 𝑑𝑠 ∈ d , 

𝑠′  – segment in the view 𝑐′, which corresponds to the segment 𝑠 in the view 𝑐 for the 

currently considered depth 𝑑𝑠 ,  

𝑀𝑠,𝑠′ – inter-view matching cost between segments 𝑠 and 𝑠′, 

T – set of segments neighboring to the segment 𝑠, 

𝑡 – segment neighboring to the segment 𝑠, 

𝑉𝑠,𝑡 – intra-view discontinuity cost between segments 𝑠 and 𝑡, 

𝑑𝑡  – currently considered depth of the segment 𝑡, 𝑑𝑠 ∈ d . 

 

 

Fig. 1. Inter-view and intra-view costs. 

 



The intra-view discontinuity cost is calculated between all neighboring segments within the same 

view: 

𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡) = 𝛽 ∙ |𝑑𝑠 − 𝑑𝑡| , 

where: 

𝛽  – smoothing coefficient,  

𝑑𝑠 – currently considered depth of the segment 𝑠, 

𝑠  – segment in the view 𝑐,  

𝑡 – segment neighboring to the segment 𝑠, 

𝑉𝑠,𝑡 – intra-view discontinuity cost between segments 𝑠 and 𝑡, 

𝑑𝑡  – currently considered depth of the segment 𝑡.  

 

In the proposed method the smoothing coefficient 𝛽 is not fixed for all segments. Instead, the 

smoothing coefficient is calculated using a similarity of two neighbouring segments s and t and 

𝛽0 that is an initial smoothing coefficient: 

𝛽 = 𝛽0/‖[�̂� �̂�𝑏 �̂�𝑟]𝑠 − [�̂� �̂�𝑏 �̂�𝑟]𝑡‖
1
 , 

where: 

𝛽 – smoothing coefficient, 

𝛽0 – initial smoothing coefficient provided by the user, 

‖∙‖1  – L1 distance,  

𝑠  – segment in the view 𝑐,  

𝑡 – segment neighbouring to the segment 𝑠, 

[�̂� �̂�𝑏 �̂�𝑟]𝑠 –  vector of average Y, Cb, Cr color components of the segment 𝑠, 

[�̂� �̂�𝑏 �̂�𝑟]𝑡 –  vector of average Y, Cb, Cr color components of the segment 𝑡. 

 

The core of the inter-view matching cost, denoted as 𝑚𝑠,𝑠′, is: 

𝑚𝑠,𝑠′(𝑑𝑠) =
1

𝑐𝑜𝑢𝑛𝑡(W)
∑ ‖[𝑌𝐶𝑏𝐶𝑟]𝜇𝑠+𝑤 − [𝑌𝐶𝑏𝐶𝑟]𝑇[𝜇𝑠]+𝑤‖

1
𝑤∈W

 , 

where: 

W  – set of points in the window of the size specified by the user, 

count(∙)  – size of the window W, 

𝑤 – vector of coordinates of a point in the window W, 

‖∙‖1  – L1 distance,  

𝜇𝑠 – vector of coordinates of center of a segment 𝑠, 

𝑇[∙] – 3D transform obtained from intrinsic and extrinsic parameters of cameras, 

[𝑌 𝐶𝑏 𝐶𝑟]𝜇𝑠+𝑤  – vector of Y, Cb, Cr color components of the center 𝜇𝑠 of the segment 𝑠, 

[𝑌 𝐶𝑏 𝐶𝑟]𝑇[𝜇𝑠]+𝑤 – vector of Y, Cb, Cr color components of the point in a view 𝑐′  

  corresponding to the center 𝜇𝑠 of the segment 𝑠 in a view 𝑐.   

 



In order to achieve the inter-view consistency of depth maps, the value of the inter-view matching 

cost 𝑀𝑠,𝑠′(𝑑𝑠) is calculated as [2]: 

𝑀𝑠,𝑠′(𝑑𝑠) = {
min {0, 𝑚𝑠,𝑠′(𝑑𝑠) − 𝐾} 𝑖𝑓 𝑑𝑠 = 𝑑𝑠′

0 𝑖𝑓 𝑑𝑠 ≠ 𝑑𝑠′
  , 

where: 

𝑠  – segment in the view 𝑐,  

𝑑𝑠  – currently considered depth of the segment 𝑠, 

𝑠′  – segment in the view 𝑐′, which corresponds to the segment 𝑠 in the view 𝑐 for the 

  currently considered depth 𝑑𝑠 ,  

𝑑𝑠′  – currently considered depth of the segment 𝑠′, 

𝑀𝑠,𝑠′ – inter-view matching cost between segments 𝑠 and 𝑠′, 

𝑚𝑠,𝑠′ – core of the inter-view matching cost between segments 𝑠 and 𝑠′, 

𝐾  – a positive constant. 

 

The value of constant 𝐾 is selected so that the inter-view matching cost 𝑀𝑠,𝑠′  is not dominated by 

the intra-view discontinuity cost 𝑉𝑠,𝑡 , as a sum of these two costs constitutes the cost function of 

the depth optimisation. The chosen final value of 𝐾 is 30, as discussed in [1]. The use of both 

equirectangular and perspective views is included in the 3D transform 𝑇[∙].  

 

2.2 Neighboring segments depth analysis 

In order to increase the final quality of estimated depth maps, a segment-based method of the depth 

enhancement, named neighboring segments depth analysis, was included.  

The proposed process is performed for each segment in estimated depth maps. For the currently 

processed segment, depth values of its neighboring segments are tested as new depth candidates 

for this segment. A depth value is used if two conditions are fulfilled: use of this depth reduces the 

inter-view matching cost for the processed segment and a corresponding segment in neighboring 

view targeted by this depth also has the same value of depth. 

The proposed solution increases the quality of depth maps in areas of uncertain depth (e.g., 

disoccluded areas) and preserves the inter-view consistency of depth maps. Moreover, because the 

process is performed after estimating the depth for each frame, such enhanced depth is used for all 

following frames (because of segmentation-based temporal enhancement). Therefore, such an 

approach increases the quality of depth maps also in terms of temporal consistency. 

 

2.3 Temporal consistency enhancement 

In natural video sequences, only a small part of an acquired scene considerably changes in 

consecutive frames, especially when cameras are not moving during the acquisition of video. The 

idea of the proposed temporal consistency enhancement of depth estimation is to calculate a new 

value of depth only for the segments that changed (in terms of their color) in comparison with the 

previous frame. 

The proposed temporal consistency enhancement method allows us to automatically mark 

segments as unchanged in consecutive frames. These segments are used in the calculation of the 



intra-view discontinuity and the inter-view matching cost for other segments, but are not 

represented by any node in the structure of the optimized graph. It reduces the number of nodes in 

the graph, making the optimization process significantly faster, and on the other hand, increases 

the temporal consistency of estimated depth maps. 

In the first frame of a depth map, denoted as an “I-type” depth frame, the estimation is performed 

for all segments, as described in the previous sections. The following frames (“P-type” depth 

frames) can utilize depth information from the preceding P-type depth frame and the I-type depth 

frame.  

Segment 𝑠 is marked by the algorithm as unchanged in two cases: if all components of the vector 

[�̂� �̂�𝑏 �̂�𝑟]𝑠 of average Y, Cb and Cr color components changed less than the set threshold 𝑇 in 

comparison with segment 𝑠𝐵, which is a collocated segment in the previous P-type frame, or, if all 

components of the abovementioned vector changed less than the threshold 𝑇 in comparison with 

segment 𝑠𝐼 – a collocated segment in the I-type frame. If any of these two conditions are met, then 

segment 𝑠 adopts the depth from the segment 𝑠𝐵 or 𝑠𝐼 (depending on which condition was 

fulfilled).  

A collocated segment in the previous or the first frame is simply the segment which contains the 

central point of the segment 𝑠. Therefore, even if the segmentation in compared frames is not the 

same, the algorithm can easily find the corresponding segment in these frames.  

The introduction of two reference depth frames has a beneficial impact on the visual quality of 

virtual navigation. First, the adoption of depth from the previous P-type depth frame allows us to 

use the depth of objects that changed their position over time. On the other hand, the adoption of 

depth from the I-type depth frame minimizes the flickering of depth in the background. 

 

2.4 Parallelization of graph-based optimization 

In our proposal, each of n threads estimates a depth map with an n-times lower number of depth 

levels. Depth maps with a reduced number of depth levels that were calculated by different threads 

have to be merged into one depth map. The merging process is performed in a similar way as depth 

estimation [using the cost function (1)], but only two levels of depth are considered for each 

segment – i.e., the depth of a segment from thread 𝑡 or the depth from thread 𝑡 + 1 (Fig. 3). Only 

two depth maps can be merged into one by one thread during the merging cycle. Therefore, for n 

threads, ⌈𝑙𝑜𝑔2(𝑛)⌉ additional cycles are needed to estimate the final depth map with all depth 

levels.  

 

Fig. 2. Depth levels are divided into blocks, each rectangle represents a different level of the depth of a scene. 

Of course, even without the use of parallelization, all cores of the CPU can also be used for depth 

estimation, e.g., each core can perform the estimation of depth for different sets of input views 



(e.g., for each 5 cameras of the system), or for different frames of the sequence. Unfortunately, 

when many standalone depth estimation processes are performed, it results in the loss of inter-

view consistency or temporal consistency of estimated depth maps. When the proposed 

parallelization is used, both inter-view and temporal consistency of depth maps, which are 

fundamental for the quality of virtual view synthesis, are preserved. 

 

 

Fig. 3. Depth map merging process for the case of 4-thread parallelization. 

 

 

2.5 Segmentation in omnidirectional videos 

The use of omnidirectional cameras is taken into account during the superpixel segmentation of 

input views. The superpixel segmentation [3] is based on the calculation of the color and spatial 

distances of a point to neighboring superpixels.  

Fig. 4. shows initial grid of 1000 superpixels used in the beginning of segmentation process. To 

estimate such initial grid, the overall size of image is divided by the number of superpixels in order 

to acquire the average size of superpixel. Then, the square root of the resulting superpixel size is 

used to define the distance between centers of superpixels and, in the end, the whole image is 

divided evenly as presented in the figure below. 

 

Fig. 4. Initial grid of superpixels used in segmentation. 



In next steps, segments’ shapes are changed on the basis of color and spatial distances of 

neighboring points in order to match edges present in a scene. The final segmentation of a 

omnidirectional sequence can be seen in Fig.  5. 

Segments on the top and bottom border of presented image have similar size in the whole image. 

However, in equirectangular image, areas in the top and the bottom of an image represent much 

smaller areas of a scene than areas in the middle of an image. Therefore, if the segmentation of the 

image would be not adapted to the equirectangular images, then the accuracy of estimated depth 

maps would be not consistent in for the whole image in the proposed method. 

 

Fig. 5. Result of unmodified superpixel segmentation for an equirectangular image. 

The initial segmentation of 360 video should be based on the equirectangular projection. First of 

all, as in the process of unmodified segmentation, the average distance between centers of 

segments is calculated as square root of the average size of a segment. This average distance is 

used to calculate the number of superpixels on the ‘equator’ (central row) of an equirectangular 

image. The number of superpixels in rows that are above or under the equator is proportionally 

lower, because these rows represent circles on a sphere that are smaller than the circle represented 

by the equator. The result of such initial grid of superpixels in an equirectangular image is 

presented in Fig. 6. 

The calculation of the spatial distance in case of an omnidirectional image has to be based not 

simply on the difference of positions of two points in an image, but on the distance between these 

points before the equirectangular projection, using appropriate formulas.  

The final result of such modified superpixel segmentation, adapted to equirectangular images, can 

be seen in Fig. 7. The size of segments in the center of an image is smaller than in unmodified 

superpixel segmentation, while the size of segments in the top and the bottom of an image is much 

larger, therefore, the proposed segmentation better represents real relative sizes of objects present 

in a scene. 

 

Fig. 6. Proposed initial grid of superpixels used in segmentation of an equirectangular image. 



 

Fig. 7. Result of modified superpixel segmentation for an equirectangular image. 

3 Building the project 
The IVDE framework does not use any external libraries for image processing operations. The 

project can be built for Windows and Linux using CMake. 

In order to build the project for Visual Studio, open the command line and go to the folder that 

contains the CMakeLists.txt file. If you installed CMake, you can build the project for the 

x64 architecture using the following command: cmake .\ -A x64 -B build. The project 

will be built to the build folder. 

 

4 Configuration file 
This section provides information on configuration of IVDE. Below, the example of configuration 

file for PoznanFencing test sequence is enclosed. Table 1 includes description of all parameters. 

 

#=============== INPUT PARAMETERS =============== 

NumOfThreads    2 

StartFrame     0 

TotalNumberOfFrames   8 

 

NeighboringSegmentsDepthAnalysis 1 

 

FileCameraParameter   cam_params.txt 

ChrominanceFormat    420 

NearestZValue    3.5 

FarthestZValue    7 

NumberOfZSteps    256 

MatchNeighbors    4 

MatchThresh     30 

Matcher     Block 

MatchingBlockSize    1 

SmoothingCoefficient   1 

NumberOfCycles    1 

 

NameOfCamera0    param_cam0 

InputView0     PoznanFencing_1920x1080_cam0.yuv 

ViewType0     Perspective 

ViewWidth0     1920 

ViewHeight0     1080 

ViewNumOfSuperpixels0   150000 

OutputDepthMap0    pf_depth_1920x1080_cf400_16bps_cam0.yuv 

 

NameOfCamera1    param_cam1 

InputView1     PoznanFencing_1920x1080_cam1.yuv 



ViewType1     Perspective 

ViewWidth1     1920 

ViewHeight1     1080 

ViewNumOfSuperpixels1   150000 

OutputDepthMap1    pf_depth_1920x1080_cf400_16bps_cam1.yuv 

 

NameOfCamera2    param_cam2 

InputView2     PoznanFencing_1920x1080_cam2.yuv 

ViewType2     Perspective 

ViewWidth2     1920 

ViewHeight2     1080 

ViewNumOfSuperpixels2   150000 

OutputDepthMap2    pf_depth_1920x1080_cf400_16bps_cam2.yuv 

 

NameOfCamera3    param_cam3 

InputView3     PoznanFencing_1920x1080_cam3.yuv 

ViewType3     Perspective 

ViewWidth3     1920 

ViewHeight3     1080 

ViewNumOfSuperpixels3   150000 

OutputDepthMap3    pf_depth_1920x1080_cf400_16bps_cam3.yuv 

 

NameOfCamera4    param_cam4 

InputView4     PoznanFencing_1920x1080_cam4.yuv 

ViewType4     Perspective 

ViewWidth4     1920 

ViewHeight4     1080 

ViewNumOfSuperpixels4   150000 

OutputDepthMap4    pf_depth_1920x1080_cf400_16bps_cam4.yuv 

 

#=============== SEGMENTATION =============== 

 

SuperpixelSegmentationType SNIC 

SuperpixelColorCoeff  20 

 

#=============== TEMPORAL ENHANCEMENT =============== 

 

TemporalEnhancement     1 

TemporalEnhancementIFramePeriod  8 

TemporalEnhancementThresh   0.5 

NumberOfCyclesInIFrame    1 

 

 

 

 

 

 

Table 1. IVDE configuration parameters. 

Name of the parameter Description Type, value 

NumOfThreads Number of CPU threads used by software Unsigned int 

StartFrame 
The first frame of input views that should be used 

for estimation 
Unsigned int 

TotalNumberOfFrames Number of frames Unsigned int 

NeighboringSegmentsDepth

Analysis 

Turning on/off the neighboring segments depth 

analysis (see section 2.2) 

Unsigned int,  

0 or 1 



FileCameraParameter 

Path and name of the file that contains VSRS-style 

camera parameters (included in the MPEG 

repository, see section 5) 

String 

ChrominanceFormat  Chrominance format of input views 
Unsigned int,  

420 or 444 

NearestZValue The nearest depth plane in the scene Double 

FarthestZValue The farthest depth plane in the scene Double 

NumberOfZSteps 
The number of depth steps between the nearest and 

farthest depth planes 
Unsigned int 

MatchNeighbors 
Number of neighboring views matched with each 

view 
Unsigned int 

MatchThresh The threshold of the inter-view matching cost Unsigned int 

Matcher Type of used matcher 
String,  

“Block” or “Pixel” 

MatchingBlockSize Size of block used in inter-view matching cost Unsigned int 

SmoothingCoefficient Value of β in the intra-view discontinuity cost Double 

NumberOfCycles Number of GraphCut cycles Unsigned int 

NameOfCamera0 Name of view in camera parameters file String 

InputView0 
The filename of view number 0 (number of views is 

not limited), 8 bps inputs are supported only 
String 

ViewType0 
Type of view number 0, perspective and 360 degree 

omnidirectional views are supported 

String,  

“Perspective” or 

“Omnidirectional” 

ViewWidth0 Width of view number 0 Unsigned int 

ViewHeight0 Height of view number 0 Unsigned int 

ViewNumOfSuperpixels0 
Number of superpixels used for the estimation of 

the depth map of view number 0 
Unsigned int 

OutputDepthMap0 
The filename of 16-bit, cf 4:0:0 depth map of view 

number 0 
String 

SuperpixelSegmentation 

Type 
Type of used superpixel segmentation 

String,  

“SNIC” 

SuperpixelColorCoeff 

Coefficient used in superpixel segmentation to 

influence shapes of superpixels, high coefficient 

(>20) decreases the influence of color on the shape 

Double 

TemporalEnhancement  
Turning on/off the temporal consistency 

enhancement 

Unsigned int,  

0 or 1 

TemporalEnhancement 

IFramePeriod 
Number of frames between I-type depth frames +1 Unsigned int 

TemporalEnhancement 

Thresh 

The threshold used in the temporal consistency 

enhancement 
Double 

NumberOfCyclesInIFrame Number of GraphCut cycles in I-type depth frame Unsigned int 

 

 



5 MPEG Repository 
The repository for IVDE is available on MPEG GIT:  

http://mpegx.int-evry.fr/software/MPEG/Explorations/6DoF/IVDE 

In the repository, two folders can be found: 

• /src: which contains the source code of IVDE 

• /cfgs: which contains camera parameters and configuration parameter files per sequence. 

The current configuration parameter files are those presented in [4]. 

The CMakeLists.txt file for CMake is in the root directory.  
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