
ISO/IEC JTC 1/SC 29/WG 11 N19224

Document type: Approved WG 11 document

Title: Manual of Immersive Video Depth Estimation

Status: Approved

Date of document: 2020-05-08

Source: Video

Expected action:

No. of pages: 12

Email of convenor: leonardo@chiariglione.org

Committee URL: mpeg.chiariglione.org

ISO/IEC JTC 1/SC 29/WG 11

Coding of moving pictures and audio

Convenorship: UNI (Italy)

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2020/N19224

May 2020, Online

Source Video

Status Approved

Title Manual of Immersive Video Depth Estimation

Editor Dawid Mieloch

1 Introduction
Omnidirectional video formats are currently considered within MPEG in the context of

6DoF/3DoF+ video technology. This document describes the depth estimation technique and

software called Immersive Video Depth Estimation (IVDE), which addresses depth estimation

from video acquired by multiple omnidirectional cameras, needed to create multi-point

6DoF/3DoF+ scene representation.

2 IVDE
The framework is based mainly on the method described in [1]. The particular usefulness of the

presented method in virtual navigation, free-viewpoint television and other 6DoF systems, is a

result of the joint exploitation of the ideas mentioned below:

• Depth is estimated for segments instead of individual pixels, and thus the size of segments can be

used to control the trade-off between the quality of depth maps and the processing time of

estimation. Larger segments can be used to attain fast depth estimation, or finer segments can be used

to attain higher quality.

• Estimation is performed for all views simultaneously and produces depths that are inter-view

consistent because of the utilization of the new formulation of the cost function, developed for

segment-based estimation.

• No assumptions about the positioning of views are stated and any number of arbitrarily positioned

cameras (both perspective and omnidirectional) can be used during the estimation.

• In the temporal consistency enhancement method, depth maps estimated in previous frames are

utilized in the estimation of depth for the current frame, increasing the consistency of depth maps

and simultaneously decreasing the processing time of estimation.

• The framework uses a parallelization method that reduces the processing time of graph-based depth

estimation.

2.1 Depth estimation

The estimation of depth in the proposed method is based on a cost function minimization,

performed using GraphCut method [2]. The cost function is based on two components: the

intra-view discontinuity cost 𝑉𝑠,𝑡 and the inter-view matching cost 𝑀𝑠,𝑠′ , responsible for the

inter-view consistency of depth maps:

𝐸(d) = ∑ ∑ { ∑ 𝑀𝑠,s′(𝑑𝑠)

𝑐′∈D

+ ∑ 𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡)

𝑡∈T

}

𝑠∈S𝑐∈C

 ,

where:

d – vector containing depth value for each segment in all views,

C – set of views,

𝑐 – view used in the estimation,

D – set of views neighboring to the view 𝑐,

𝑐′ – view neighboring to the view 𝑐,

S – set of segments of the view 𝑐,

𝑠 – segment in the view 𝑐,

𝑑𝑠 – currently considered depth of the segment 𝑠, 𝑑𝑠 ∈ d ,

𝑠′ – segment in the view 𝑐′, which corresponds to the segment 𝑠 in the view 𝑐 for the

currently considered depth 𝑑𝑠 ,

𝑀𝑠,𝑠′ – inter-view matching cost between segments 𝑠 and 𝑠′,

T – set of segments neighboring to the segment 𝑠,

𝑡 – segment neighboring to the segment 𝑠,

𝑉𝑠,𝑡 – intra-view discontinuity cost between segments 𝑠 and 𝑡,

𝑑𝑡 – currently considered depth of the segment 𝑡, 𝑑𝑠 ∈ d .

Fig. 1. Inter-view and intra-view costs.

The intra-view discontinuity cost is calculated between all neighboring segments within the same

view:

𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡) = 𝛽 ∙ |𝑑𝑠 − 𝑑𝑡| ,

where:

𝛽 – smoothing coefficient,

𝑑𝑠 – currently considered depth of the segment 𝑠,

𝑠 – segment in the view 𝑐,

𝑡 – segment neighboring to the segment 𝑠,

𝑉𝑠,𝑡 – intra-view discontinuity cost between segments 𝑠 and 𝑡,

𝑑𝑡 – currently considered depth of the segment 𝑡.

In the proposed method the smoothing coefficient 𝛽 is not fixed for all segments. Instead, the

smoothing coefficient is calculated using a similarity of two neighbouring segments s and t and

𝛽0 that is an initial smoothing coefficient:

𝛽 = 𝛽0/‖[�̂� �̂�𝑏 �̂�𝑟]𝑠 − [�̂� �̂�𝑏 �̂�𝑟]𝑡‖
1
 ,

where:

𝛽 – smoothing coefficient,

𝛽0 – initial smoothing coefficient provided by the user,

‖∙‖1 – L1 distance,

𝑠 – segment in the view 𝑐,

𝑡 – segment neighbouring to the segment 𝑠,

[�̂� �̂�𝑏 �̂�𝑟]𝑠 – vector of average Y, Cb, Cr color components of the segment 𝑠,

[�̂� �̂�𝑏 �̂�𝑟]𝑡 – vector of average Y, Cb, Cr color components of the segment 𝑡.

The core of the inter-view matching cost, denoted as 𝑚𝑠,𝑠′, is:

𝑚𝑠,𝑠′(𝑑𝑠) =
1

𝑐𝑜𝑢𝑛𝑡(W)
∑ ‖[𝑌𝐶𝑏𝐶𝑟]𝜇𝑠+𝑤 − [𝑌𝐶𝑏𝐶𝑟]𝑇[𝜇𝑠]+𝑤‖

1
𝑤∈W

 ,

where:

W – set of points in the window of the size specified by the user,

count(∙) – size of the window W,

𝑤 – vector of coordinates of a point in the window W,

‖∙‖1 – L1 distance,

𝜇𝑠 – vector of coordinates of center of a segment 𝑠,

𝑇[∙] – 3D transform obtained from intrinsic and extrinsic parameters of cameras,

[𝑌 𝐶𝑏 𝐶𝑟]𝜇𝑠+𝑤 – vector of Y, Cb, Cr color components of the center 𝜇𝑠 of the segment 𝑠,

[𝑌 𝐶𝑏 𝐶𝑟]𝑇[𝜇𝑠]+𝑤 – vector of Y, Cb, Cr color components of the point in a view 𝑐′

 corresponding to the center 𝜇𝑠 of the segment 𝑠 in a view 𝑐.

In order to achieve the inter-view consistency of depth maps, the value of the inter-view matching

cost 𝑀𝑠,𝑠′(𝑑𝑠) is calculated as [2]:

𝑀𝑠,𝑠′(𝑑𝑠) = {
min {0, 𝑚𝑠,𝑠′(𝑑𝑠) − 𝐾} 𝑖𝑓 𝑑𝑠 = 𝑑𝑠′

0 𝑖𝑓 𝑑𝑠 ≠ 𝑑𝑠′
 ,

where:

𝑠 – segment in the view 𝑐,

𝑑𝑠 – currently considered depth of the segment 𝑠,

𝑠′ – segment in the view 𝑐′, which corresponds to the segment 𝑠 in the view 𝑐 for the

 currently considered depth 𝑑𝑠 ,

𝑑𝑠′ – currently considered depth of the segment 𝑠′,

𝑀𝑠,𝑠′ – inter-view matching cost between segments 𝑠 and 𝑠′,

𝑚𝑠,𝑠′ – core of the inter-view matching cost between segments 𝑠 and 𝑠′,

𝐾 – a positive constant.

The value of constant 𝐾 is selected so that the inter-view matching cost 𝑀𝑠,𝑠′ is not dominated by

the intra-view discontinuity cost 𝑉𝑠,𝑡 , as a sum of these two costs constitutes the cost function of

the depth optimisation. The chosen final value of 𝐾 is 30, as discussed in [1]. The use of both

equirectangular and perspective views is included in the 3D transform 𝑇[∙].

2.2 Neighboring segments depth analysis

In order to increase the final quality of estimated depth maps, a segment-based method of the depth

enhancement, named neighboring segments depth analysis, was included.

The proposed process is performed for each segment in estimated depth maps. For the currently

processed segment, depth values of its neighboring segments are tested as new depth candidates

for this segment. A depth value is used if two conditions are fulfilled: use of this depth reduces the

inter-view matching cost for the processed segment and a corresponding segment in neighboring

view targeted by this depth also has the same value of depth.

The proposed solution increases the quality of depth maps in areas of uncertain depth (e.g.,

disoccluded areas) and preserves the inter-view consistency of depth maps. Moreover, because the

process is performed after estimating the depth for each frame, such enhanced depth is used for all

following frames (because of segmentation-based temporal enhancement). Therefore, such an

approach increases the quality of depth maps also in terms of temporal consistency.

2.3 Temporal consistency enhancement

In natural video sequences, only a small part of an acquired scene considerably changes in

consecutive frames, especially when cameras are not moving during the acquisition of video. The

idea of the proposed temporal consistency enhancement of depth estimation is to calculate a new

value of depth only for the segments that changed (in terms of their color) in comparison with the

previous frame.

The proposed temporal consistency enhancement method allows us to automatically mark

segments as unchanged in consecutive frames. These segments are used in the calculation of the

intra-view discontinuity and the inter-view matching cost for other segments, but are not

represented by any node in the structure of the optimized graph. It reduces the number of nodes in

the graph, making the optimization process significantly faster, and on the other hand, increases

the temporal consistency of estimated depth maps.

In the first frame of a depth map, denoted as an “I-type” depth frame, the estimation is performed

for all segments, as described in the previous sections. The following frames (“P-type” depth

frames) can utilize depth information from the preceding P-type depth frame and the I-type depth

frame.

Segment 𝑠 is marked by the algorithm as unchanged in two cases: if all components of the vector

[�̂� �̂�𝑏 �̂�𝑟]𝑠 of average Y, Cb and Cr color components changed less than the set threshold 𝑇 in

comparison with segment 𝑠𝐵, which is a collocated segment in the previous P-type frame, or, if all

components of the abovementioned vector changed less than the threshold 𝑇 in comparison with

segment 𝑠𝐼 – a collocated segment in the I-type frame. If any of these two conditions are met, then

segment 𝑠 adopts the depth from the segment 𝑠𝐵 or 𝑠𝐼 (depending on which condition was

fulfilled).

A collocated segment in the previous or the first frame is simply the segment which contains the

central point of the segment 𝑠. Therefore, even if the segmentation in compared frames is not the

same, the algorithm can easily find the corresponding segment in these frames.

The introduction of two reference depth frames has a beneficial impact on the visual quality of

virtual navigation. First, the adoption of depth from the previous P-type depth frame allows us to

use the depth of objects that changed their position over time. On the other hand, the adoption of

depth from the I-type depth frame minimizes the flickering of depth in the background.

2.4 Parallelization of graph-based optimization

In our proposal, each of n threads estimates a depth map with an n-times lower number of depth

levels. Depth maps with a reduced number of depth levels that were calculated by different threads

have to be merged into one depth map. The merging process is performed in a similar way as depth

estimation [using the cost function (1)], but only two levels of depth are considered for each

segment – i.e., the depth of a segment from thread 𝑡 or the depth from thread 𝑡 + 1 (Fig. 3). Only

two depth maps can be merged into one by one thread during the merging cycle. Therefore, for n

threads, ⌈𝑙𝑜𝑔2(𝑛)⌉ additional cycles are needed to estimate the final depth map with all depth

levels.

Fig. 2. Depth levels are divided into blocks, each rectangle represents a different level of the depth of a scene.

Of course, even without the use of parallelization, all cores of the CPU can also be used for depth

estimation, e.g., each core can perform the estimation of depth for different sets of input views

(e.g., for each 5 cameras of the system), or for different frames of the sequence. Unfortunately,

when many standalone depth estimation processes are performed, it results in the loss of inter-

view consistency or temporal consistency of estimated depth maps. When the proposed

parallelization is used, both inter-view and temporal consistency of depth maps, which are

fundamental for the quality of virtual view synthesis, are preserved.

Fig. 3. Depth map merging process for the case of 4-thread parallelization.

2.5 Segmentation in omnidirectional videos

The use of omnidirectional cameras is taken into account during the superpixel segmentation of

input views. The superpixel segmentation [3] is based on the calculation of the color and spatial

distances of a point to neighboring superpixels.

Fig. 4. shows initial grid of 1000 superpixels used in the beginning of segmentation process. To

estimate such initial grid, the overall size of image is divided by the number of superpixels in order

to acquire the average size of superpixel. Then, the square root of the resulting superpixel size is

used to define the distance between centers of superpixels and, in the end, the whole image is

divided evenly as presented in the figure below.

Fig. 4. Initial grid of superpixels used in segmentation.

In next steps, segments’ shapes are changed on the basis of color and spatial distances of

neighboring points in order to match edges present in a scene. The final segmentation of a

omnidirectional sequence can be seen in Fig. 5.

Segments on the top and bottom border of presented image have similar size in the whole image.

However, in equirectangular image, areas in the top and the bottom of an image represent much

smaller areas of a scene than areas in the middle of an image. Therefore, if the segmentation of the

image would be not adapted to the equirectangular images, then the accuracy of estimated depth

maps would be not consistent in for the whole image in the proposed method.

Fig. 5. Result of unmodified superpixel segmentation for an equirectangular image.

The initial segmentation of 360 video should be based on the equirectangular projection. First of

all, as in the process of unmodified segmentation, the average distance between centers of

segments is calculated as square root of the average size of a segment. This average distance is

used to calculate the number of superpixels on the ‘equator’ (central row) of an equirectangular

image. The number of superpixels in rows that are above or under the equator is proportionally

lower, because these rows represent circles on a sphere that are smaller than the circle represented

by the equator. The result of such initial grid of superpixels in an equirectangular image is

presented in Fig. 6.

The calculation of the spatial distance in case of an omnidirectional image has to be based not

simply on the difference of positions of two points in an image, but on the distance between these

points before the equirectangular projection, using appropriate formulas.

The final result of such modified superpixel segmentation, adapted to equirectangular images, can

be seen in Fig. 7. The size of segments in the center of an image is smaller than in unmodified

superpixel segmentation, while the size of segments in the top and the bottom of an image is much

larger, therefore, the proposed segmentation better represents real relative sizes of objects present

in a scene.

Fig. 6. Proposed initial grid of superpixels used in segmentation of an equirectangular image.

Fig. 7. Result of modified superpixel segmentation for an equirectangular image.

3 Building the project
The IVDE framework does not use any external libraries for image processing operations. The

project can be built for Windows and Linux using CMake.

In order to build the project for Visual Studio, open the command line and go to the folder that

contains the CMakeLists.txt file. If you installed CMake, you can build the project for the

x64 architecture using the following command: cmake .\ -A x64 -B build. The project

will be built to the build folder.

4 Configuration file
This section provides information on configuration of IVDE. Below, the example of configuration

file for PoznanFencing test sequence is enclosed. Table 1 includes description of all parameters.

#=============== INPUT PARAMETERS ===============

NumOfThreads 2

StartFrame 0

TotalNumberOfFrames 8

NeighboringSegmentsDepthAnalysis 1

FileCameraParameter cam_params.txt

ChrominanceFormat 420

NearestZValue 3.5

FarthestZValue 7

NumberOfZSteps 256

MatchNeighbors 4

MatchThresh 30

Matcher Block

MatchingBlockSize 1

SmoothingCoefficient 1

NumberOfCycles 1

NameOfCamera0 param_cam0

InputView0 PoznanFencing_1920x1080_cam0.yuv

ViewType0 Perspective

ViewWidth0 1920

ViewHeight0 1080

ViewNumOfSuperpixels0 150000

OutputDepthMap0 pf_depth_1920x1080_cf400_16bps_cam0.yuv

NameOfCamera1 param_cam1

InputView1 PoznanFencing_1920x1080_cam1.yuv

ViewType1 Perspective

ViewWidth1 1920

ViewHeight1 1080

ViewNumOfSuperpixels1 150000

OutputDepthMap1 pf_depth_1920x1080_cf400_16bps_cam1.yuv

NameOfCamera2 param_cam2

InputView2 PoznanFencing_1920x1080_cam2.yuv

ViewType2 Perspective

ViewWidth2 1920

ViewHeight2 1080

ViewNumOfSuperpixels2 150000

OutputDepthMap2 pf_depth_1920x1080_cf400_16bps_cam2.yuv

NameOfCamera3 param_cam3

InputView3 PoznanFencing_1920x1080_cam3.yuv

ViewType3 Perspective

ViewWidth3 1920

ViewHeight3 1080

ViewNumOfSuperpixels3 150000

OutputDepthMap3 pf_depth_1920x1080_cf400_16bps_cam3.yuv

NameOfCamera4 param_cam4

InputView4 PoznanFencing_1920x1080_cam4.yuv

ViewType4 Perspective

ViewWidth4 1920

ViewHeight4 1080

ViewNumOfSuperpixels4 150000

OutputDepthMap4 pf_depth_1920x1080_cf400_16bps_cam4.yuv

#=============== SEGMENTATION ===============

SuperpixelSegmentationType SNIC

SuperpixelColorCoeff 20

#=============== TEMPORAL ENHANCEMENT ===============

TemporalEnhancement 1

TemporalEnhancementIFramePeriod 8

TemporalEnhancementThresh 0.5

NumberOfCyclesInIFrame 1

Table 1. IVDE configuration parameters.

Name of the parameter Description Type, value

NumOfThreads Number of CPU threads used by software Unsigned int

StartFrame
The first frame of input views that should be used

for estimation
Unsigned int

TotalNumberOfFrames Number of frames Unsigned int

NeighboringSegmentsDepth

Analysis

Turning on/off the neighboring segments depth

analysis (see section 2.2)

Unsigned int,

0 or 1

FileCameraParameter

Path and name of the file that contains VSRS-style

camera parameters (included in the MPEG

repository, see section 5)

String

ChrominanceFormat Chrominance format of input views
Unsigned int,

420 or 444

NearestZValue The nearest depth plane in the scene Double

FarthestZValue The farthest depth plane in the scene Double

NumberOfZSteps
The number of depth steps between the nearest and

farthest depth planes
Unsigned int

MatchNeighbors
Number of neighboring views matched with each

view
Unsigned int

MatchThresh The threshold of the inter-view matching cost Unsigned int

Matcher Type of used matcher
String,

“Block” or “Pixel”

MatchingBlockSize Size of block used in inter-view matching cost Unsigned int

SmoothingCoefficient Value of β in the intra-view discontinuity cost Double

NumberOfCycles Number of GraphCut cycles Unsigned int

NameOfCamera0 Name of view in camera parameters file String

InputView0
The filename of view number 0 (number of views is

not limited), 8 bps inputs are supported only
String

ViewType0
Type of view number 0, perspective and 360 degree

omnidirectional views are supported

String,

“Perspective” or

“Omnidirectional”

ViewWidth0 Width of view number 0 Unsigned int

ViewHeight0 Height of view number 0 Unsigned int

ViewNumOfSuperpixels0
Number of superpixels used for the estimation of

the depth map of view number 0
Unsigned int

OutputDepthMap0
The filename of 16-bit, cf 4:0:0 depth map of view

number 0
String

SuperpixelSegmentation

Type
Type of used superpixel segmentation

String,

“SNIC”

SuperpixelColorCoeff

Coefficient used in superpixel segmentation to

influence shapes of superpixels, high coefficient

(>20) decreases the influence of color on the shape

Double

TemporalEnhancement
Turning on/off the temporal consistency

enhancement

Unsigned int,

0 or 1

TemporalEnhancement

IFramePeriod
Number of frames between I-type depth frames +1 Unsigned int

TemporalEnhancement

Thresh

The threshold used in the temporal consistency

enhancement
Double

NumberOfCyclesInIFrame Number of GraphCut cycles in I-type depth frame Unsigned int

5 MPEG Repository
The repository for IVDE is available on MPEG GIT:

http://mpegx.int-evry.fr/software/MPEG/Explorations/6DoF/IVDE

In the repository, two folders can be found:

• /src: which contains the source code of IVDE

• /cfgs: which contains camera parameters and configuration parameter files per sequence.

The current configuration parameter files are those presented in [4].

The CMakeLists.txt file for CMake is in the root directory.

6 References

[1] D. Mieloch, O. Stankiewicz and M. Domański, "Depth Map Estimation for Free-Viewpoint

Television and Virtual Navigation," IEEE Access, vol. 8, pp. 5760-5776, 2020.

[2] R. Achanta and S. Süsstrunk, “Superpixels and Polygons using simple non-iterative clustering,” in

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, pp.

4895–4904.

[3] V. Kolmogorov and R. Zabin, "What energy functions can be minimized via graph cuts?," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147–159, Feb. 2004.

[4] D. Mieloch, A. Dziembowski, J. Stankowski, O. Stankiewicz, M. Domański, G. Lee, J. Yun,

“[MPEG-I Visual] Immersive video depth estimation”, ISO/IEC SC29/WG11 MPEG2020/M53407,

Online, April 2020

http://mpegx.int-evry.fr/software/MPEG/Explorations/6DoF/IVDE

