
Real-Time CPU-Based Virtual View Synthesis

Adrian Dziembowski, Jakub Stankowski
 Chair of Multimedia Telecommunications and Microelectronics

Poznan University of Technology
Poznań, Poland

{adziembowski, jstankowski}@multimedia.edu.pl

Abstract—This paper presents the fast virtual view synthesis
method for free navigation purposes. Presented method was
implemented on CPU in order to allow free navigation for even
cheap personal comput-ers with integrated graphic cards. The
described synthesis technique is based on the hybrid view
synthesis, combining advantages of forward-type and backward-
type synthesis. It allows to synthesize high resolution sequences in
the real time, allowing the viewer to freely navigate around the
scene, e.g. volleyball playfield. Three implementations were
developed and tested: single-threaded, vectorized and multi-
threaded implementation.

Keywords—virtual view synthesis; free-viewpoint television; free
navigation

I. INTRODUCTION

The main purpose of the Free-Viewpoint Television (FTV)
[1], [2] is to allow a viewer to navigate freely around a scene
captured by multiple cameras [3], [4], [5], [6].

When the viewer chooses to observe the scene from a
viewpoint in between the real views, it is necessary to synthesize
the virtual view (Fig. 1). In order to allow virtual navigation, the
virtual view synthesis should be performed in the real-time.

Fig. 1. View synthesis idea

The goal of the paper is to study open questions in the real-
time view synthesis using low-cost implementations. The
authors’ considerations will be related to the experience with
practical implementations in an experimental free-viewpoint
television system.

II. ALGORITHM DESCRIPTION

In order to obtain the highest possible quality of the
synthesized virtual views, the hybrid-type synthesis was
proposed. This approach combines advantages of forward-type
[7], [8] and backward-type [9], [10] synthesis. In contrary to the
forward-type synthesis, which is faster and easier to implement
in the real-time, the backward synthesis allows to filter the depth
map of the virtual view before texture projection thus reducing

erroneous influence of improperly computed, inconsistent depth
maps.

The proposed synthesis algorithm can be divided into three
main steps, presented in Fig. 2. In the first one, the depth map
for the virtual view is calculated (orange block). In this step all
the pixels from both the real views are projected to the virtual
view but only their depth information is used. Color of each
pixel is projected in the second step (blue block), where the
actual virtual view is synthesized. In this step, combined virtual
depth obtained from two real views is used for projecting color
components from left or right real view. The last step of the
virtual view synthesis is postprocessing of the synthesized view
(purple block in Fig. 2). This step consists of texture filtering and
inpainting, where first operation removes small artifacts and the
second one fills remaining holes in the virtual view.

Fig. 2. View synthesis algorithm

As it was mentioned, the proposed hybrid approach allows
to filter the virtual depth map. However, in the presented
approach the virtual depth map and view are filtered
simultaneously, so in the scheme presented in Fig. 2 we merged
these two operations into common block called “filtering”. The
only filtering executed in the virtual depth synthesis block is the
ghost edges removal [11], where pixels close to the edges in the
depth maps are omitted during projection in order to avoid false
edges in the virtual view.

virtual camera

real cameras

A. Depth projection and merging

All the points of each real view can be represented as a
vector 𝐦 = [𝑥 𝑦 𝑧 1], where 𝑥 and 𝑦 represent its position in
the real view and 𝑧 is its depth. In the step of depth projection,
each pixel is projected from a real to the virtual view:

 𝐦𝐕 = 𝐦 ⋅ 𝐏𝐕 ⋅ 𝐏𝐑

ିଵ , (1)

where 𝐦𝐕 = [𝑥 𝑦 𝑧 1] is the point position in the virtual
view (𝑥 , 𝑦) and its depth (𝑧). 𝐏𝐑 and 𝐏𝐕 are projection
matrices for the real and the virtual view, respectively. Each
projection matrix combines both the intrinsic and extrinsic
parameters of the camera: 𝐏 = 𝐊 ⋅ 𝐄, where the intrinsic matrix
𝐊 includes the camera focal length and the location of the
principal point of the camera and extrinsic matrix 𝐄 consists of
the translation vector concatenated to the rotation matrix [12].

The result of depth projection are two depth maps – first
for the points projected from the left real view and the second
containing depth projected from the right real view. In the next
step, both of these depth maps are merged in order to produce
one consistent virtual depth map. In this step, for each point the
lower (closer to the virtual camera) depth value is chosen.

B. View projection and blending

In the typical, backward-type synthesis, projection of color
of all the points of the virtual view is based on previously
estimated depth map. In this operation all the points are
projected as in (1) (but in the opposite direction) in order to
estimate the position of corresponding points in the real views
[10].

Projection requires a number of operations, thus in the real-
time algorithm the hybrid method was proposed. In this
approach, projection is performed by the simple reading an
array created during depth projection.

Any point of the virtual view could be visible in one or two
real views or not visible in any real view. When the point was
visible in one view, its color is just copied from the real view.
If it was captured by both the real cameras, it is checked
whether point’s depth projected from both real views is similar.
If this condition is true, the color of the point in the virtual view
is obtained by averaging colors from both real views; if not – it
is copied from the point with lower depth value (color of a point
representing closer object). This approach allows to avoid
blending background and foreground areas.

C. Synthesized view filtering

The purpose of the virtual view filtering is to eliminate two
effects: view discontinuities entailed by finite resolution of the
views and depth maps and small (but subjectively disturbing)
artifacts caused by erroneous depth maps.

In order to remove discontinuities in the virtual view, for
each point within a view it is checked whether the difference
between colors of that point and its left neighbor is higher, than
the difference between colors of that point’s left and right
neighbor. If it is higher, it is assumed that color of that point
was wrong and it is replaced by the color of its right neighbor.

In order to remove both horizontal and vertical discontinuities,
analogous operation is done for vertical direction.

Errors in the depth maps may cause appearance of small
non-existing objects, both in the background and in the
foreground. While navigating within the scene, the foreground
objects move faster, than other objects in the scene. Therefore,
wrongly synthesized areas cause significant subjective quality
deterioration.

In order to remove these artifacts, a simple method was
proposed. For each point of the virtual view it is checked
whether the point is closer to the virtual camera than its left and
right neighbor. If this condition is true, color of this point is
replaced by the color of its right neighbor. Of course, similar to
discontinuities removal, analogous operation is performed for
vertical direction.

D. Synthesized view inpainting

At this stage, synthesized and filtered virtual view still
contains areas with no projected information (disoccluded
areas). These areas have to be inpainted based on their
neighborhood [13], [14], [15], [16], [17], [18].

In described algorithm, we proposed fast, depth-based
interpolating of these regions, where color of each inpainted is
copied from one of four neighboring projected points: nearest
point to the top, bottom, left and right. In order to choose
copying direction, depth of each neighbor and distance between
each neighbor and point being inpainted are compared. The
smaller the distance and the lower depth value, the higher
priority has particular neighbor.

III. IMPLEMENTATION

In order to make free navigation possible even for personal
computers without powerful graphic cards, the proposed
technique was developed and implemented for CPU. It
significantly differs our method from existing methods,
implemented for GPU [7], [19], [20] or FPGA [21], [22].

A. Single-threaded implementation

The algorithm presented in the previous section has some
simplifications, e.g. in filtering and inpainting operations.
However, the core of the algorithm could not be performed in
the real-time for high resolution sequences.

Let us consider depth projection presented in (1). Even if
𝐏𝐕 ⋅ 𝐏𝐑

ିଵ multiplication would be calculated only once for the
entire real view, 𝐦 ⋅ 𝐏𝐕 ⋅ 𝐏𝐑

ିଵ would require 16 multiplications
and 12 additions for each pixel of each real view. For FullHD
sequence it gives over 33M multiplications and almost 25M
additions for each real view. Texture projection is performed
analogously, so total number of multiplications and additions
needed for projection only would reach 133M and 100M,
respectively for multiplications and additions. Even assuming
only 1 clock cycle for one addition and 1 for multiplication, and
4 GHz CPU, one frame of multiview sequence will be
processed in 0.06s, ignoring the entire postprocessing block. It
is far away from real-time processing, where (for 25 fps) one
frame should be processed in 0.04 s.

In order to reduce number of operations, multiplication (1)
was divided into independent parts, e.g. multiplication of the

second column of 𝐏𝐕 ⋅ 𝐏𝐑
ିଵ matrix and vertical position of the

point (y) is performed only once for entire row of the real view.
Also multiplication for entire image columns is performed once
and the results are saved in look-up table.

Another time-saving operation is divisions elimination.
They are the most time-consuming of all simple mathematical
operations, so in the presented algorithm, number of divisions
was significantly reduced and most of them were replaced by
multiplications or performed only once for the entire view – in
the whole view synthesis process only one division operation is
performed in the loop for all the points.

As it was presented in the subsection 2B, projecting texture
from the real views to the virtual one requires the same amount
of operations as depth projection. In the proposed algorithm,
this process is simplified – in the step of depth projection for all
the points of the virtual view position of corresponding points
in both real views is saved in an array. Therefore, instead of
many multiplications and additions – texture projection is
performed by the simple array reading.

Another small improvement is the color blending for points
with similar depth projected from both the real views. This
operation was optimized and is performed by the bit shifts.

After texture projection the two postprocessing operations
are performed – filtering and inpainting. Both of them are
performed in only two additional loops. For the image filtering,
in the first loop virtual view is filtered horizontally (in order to
remove thin vertical holes), in the second one – vertically for
horizontal holes removing. The inpainting operation requires
three loops. First two for view analysis, where positions of the
nearest projected points in every direction are calculated and
the third loop for the actual inpainting processing. However,
view analysis for searching left and top nearest projected points
is performed simultaneously to the view projection so the entire
postprocessing requires only 4 loops on the virtual view.

Fig. 3. Single-threaded implementation

B. Vectorized implementation

As a result of profiling of the optimized implementation
described in the subsection 3A, the depth map projection has
been identified as the most complex operation in virtual view
synthesis. Therefore, an effort have been made in order to
reduce the computation time related to the depth projection.
Since the depth projection consist of significant number of
calculations and few memory access operations, we decided to
exploit the low-level data parallelism and prepare the
vectorized implementation.

The vectorized implementation has been developed by
using x86 specific SIMD instructions from AVX, AVX2 [23]
and FMA [24] instruction sets. All of the abovementioned
instruction sets allow the programmer to use wide 256-bit
registers containing 8 single precision floating point numbers.
Moreover, the FMA instruction set allows to combine one
multiplication and one addition into the single fused multiple-
add operation [25]. The combination of multiplication followed
by addition repeats very often during matrix multiplication.

The usage of the SIMD instructions results in ability to
process 8 values of the source depth at once. As a result the
vectorized implementation is significantly faster than the scalar
one.

C. Multi-threaded implementation

The last possibility to speed up the synthesis process is to
divide the work into multiple processor cores and execute
synthesis related operations in parallel. Since the virtual view
synthesis seems similar to other image processing workloads,
the obvious way of parallelization is to divide the image into
segments (tiles, slices, rows, etc.) and perform processing in
each row separately. Unfortunately, some of virtual view
synthesis related operations cannot be parallelized in such a
simple way due to data dependencies. Examples of such an
operations are: depth projection and inpainting analysis.

Due to the fact that some operations cannot be easily
divided into independent tasks, we designed a hybrid approach
to parallelize the virtual view synthesis. Despite the fact that
projection of the depth cannot be divided into the separate tasks,
the projection is performed separately for every input view,
therefore calculations for view 0 and view 1 could be performed
in the separate threads. The same approach has been applied for
the inpainting analysis, where one thread executes analysis
from the left-top origin and second executes analysis from the
bottom-right origin.

Remaining operations like texture projection, depth
blending, filtering and inpainting could be parallelized by
dividing the picture area into the arbitrary number of slices and
processing each slice in the separate thread. The multithreaded
approach has been illustrated in Fig. 4.

Fig. 4. Multi-threaded implementation

IV. EXPERIMENTAL EVALUATION

A. Processing time estimation

All proposed algorithms and implementations have been
evaluated experimentally in order to determine performance
and computational complexity.

In order to investigate the influence of the proposed
methods into the virtual view synthesis processing time, the
four different implementation have been prepared:

 the reference implementation with depth projection
implemented without any improvements (as in the
subsection 2A),

 the optimized implementation as described in the
subsection 3A,

 the vectorized implementation including previously
mentioned optimizations and with depth projection
implemented using vector operations,

 the multi-threaded implementation based on vectorized
one with addition of multi-threaded processing.

The experiments have been performed with the use of

Poznan_Basketball and Poznan_Volleyball [26] test sequences
(1080p25, complex, difficult to synthesize). We prepared two
test scenarios: first with FullHD input and FullHD output and
second with FullHD input and output reduced to ¼ input
resolution (qHD). The calculations were performed on the
desktop computer equipped with 4.0 GHz CPU based on the
“Skylake” microarchitecture.

The experimental results have been summarized in TABLE
I. For every test scenario and every tested implementation, the
average calculation time for each synthesis step is estimated
(DP – depth projection, DM – depth merging, VP – view
projection, FH – filtering horizontal, FV – filtering vertical, IA
– inpainting analysis, IP – inpainting processing).

TABLE I. PROCESSING TIME
(AVERAGED FOR 1500 FRAMES FOR 2 TEST SEQUENCES)

Implementation
Processing time (FullHDFullHD) [ms]

DP DM VP FH FV IA IP Total

 Reference 60.44 1.04 8.25 5.95 6.85 1.83 2.33 86.70

 Optimized 29.77 1.04 8.19 6.05 6.80 1.85 2.35 56.05

 Vectorized 19.74 1.05 8.18 5.97 6.44 1.87 2.33 45.58

 Multi-threaded 8.23 4.65 3.34 3.32 2.15 1.43 23.12

Implementation
Processing time (FullHDqHD) [ms]

DP DM VP FH FV IA IP Total

 Reference 59.91 0.25 2.12 1.18 1.57 0.42 0.41 65.87

 Optimized 24.79 0.23 2.19 1.19 1.58 0.43 0.41 30.82

 Vectorized 13.47 0.22 2.22 1.18 1.52 0.42 0.40 19.42

 Multi-threaded 7.38 1.33 0.67 0.85 0.53 0.25 11.01

a. DP – depth projection, DM – depth merging, VP – view projection,
FH – filtering horizontal, FV – filtering vertical,

IA – inpainting analysis, IP – inpainting processing

All the described improvements allowed to significantly
reduce the computational time. With all proposed modifications
(algorithmic optimization (subsection 3A), vectorization
(subsection 3B) and multi-threading (subsection 3C) we
managed to reduce the synthesis time below value required for
the real-time processing (40 ms for 25 fps). Theroposed
synthesis algorithm is able to compute virtual view in ~23 ms
for FullHD output and in ~11 ms for the reduced qHD output.

B. Quality evaluation

The quality of the virtual views synthesized using proposed
view synthesis algorithm was compared to the state-of-the-art
synthesis method – VSRS [27] (View Synthesis Reference
Software).

The results are presented in Table II. For two FullHD test
sequences [26] the PSNR value for one reference view was
calculated and averaged for 10 s of the sequence (250 frames).

TABLE II. PROPOSED VS. STATE-OF-THE ART METHOD

Test sequence
PSNR [dB]

Processing time for
1 frame [ms]

VSRS Proposed VSRS Proposed

 Poznan_Basketball 26.76 26.82 2163 23

 Poznan_Volleyball 28.33 28.37 2134 23

The quality was also evaluated subjectively during experts’

viewing. Performed subjective tests indicated that the quality of
views synthesized using proposed approach is noticeably
higher, than for reference software.

V. SUMMARY

In this paper, the fast real-time CPU based virtual view
synthesis has been presented. The experimental evaluation
proves that proposed algorithmic and implementation
improvements allows to significantly reduce the FullHD
synthesis time and fulfill the real time synthesis requirements,
preserving the good quality of the synthesized virtual views.

ACKNOWLEDGEMENT

The presented work has been funded by the Polish Ministry
of Science and Higher Education for the status activity
consisting of research and development and associated tasks
supporting development of young scientists and doctoral
students in 2018 in Chair of Multimedia Telecommunications
and Microelectronics.

REFERENCES

[1] M. Tanimoto, et. al., “FTV for 3-D spatial communication”, Proc.
IEEE, vol. 100, no. 4, pp. 905-917, 2012.

[2] C.C. Lee, A. Tabatabai, K. Tashiro, “Free viewpoint video (FVV)
survey and future research direction”, APSIPA Tr. on Signal and
Information Processing, vol. 4, 10.2015.

[3] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, R. Szeliski,
“High-quality video view interpolation using a layered
representation”, ACM TOG, vol. 3, s. 600-608, 08.2004.

[4] P. Goorts, M. Dumont, S. Rogmans, P. Bekaert, “An end-to-end
system for free viewpoint video for smooth camera transitions”,
IC3D 2012, Liege, Belgium, 3-5.12.2012.

[5] O. Stankiewicz, et. al., “A free-viewpoint television system for
horizontal virtual navigation”, IEEE Tr. on Mult, 2018.

[6] M. Tanimoto, “Overview of FTV (free-viewpoint television)”,
ICME 2009, New York, USA, 28.06-3.07.2009.

[7] L. Do, G. Bravo, S. Zinger, P. de With, “Real-time free-viewpoint
DIBR on GPUs for large base-line multi-view 3DTV videos”,
VCIP 2011, Tainan, Taiwan, 6-9.11.2011.

[8] S. Zinger, et. al., “Free-viewpoint depth image based rendering”,
J. Vis Comm. & Im. Repr., vol. 21, pp. 533-541, 2010.

[9] M. Domański, M. Gotfryd, K. Wegner, “View synthesis for
multiview video transmission”, IPCV 2009, USA, 2009.

[10] L. Du-Hsiu, H. Hsueh-Ming, L. Yu-Lun, “Virtual view synthesis
using backward depth warping algorithm”, Picture Coding
Symposium, PCS 2013, San Jose, USA, 2013.

[11] A. Dziembowski, et. al., “Multiview Synthesis – improved view
synthesis for virtual navigation”, 32nd Picture Coding
Symposium, PCS 2016, Nuremberg, Germany, 4-7.12.2016.

[12] A. Heyden, M. Pollefeys, “Multiple view geometry”, in:
Emerging Topics in Comp. Vis., Prentice Hall, 63-75, 2008.

[13] C. Barnes, et. al., “Patch-Match: a randomized correspondence
algorithm for structural image editing”, ACM Transactions on
Graphics - TOG, vol. 28, no. 3, 2009.

[14] M. Bertalmio, G. Sapiro, V. Caselles, “Image inpainting”,
SIGGRAPH 2000, New Orlean, USA, 2000.

[15] N. Komodakis, G. Tziritas, “Image completion using efficient
belief propagation via priority scheduling and dynamic pruning”,
IEEE Tr. Im. Proc., vol. 16, pp. 2649-2661, 2007.

[16] K.J. Oh, S. Yea, Y.S. Ho, “Hole filling method using depth based
inpainting for view synthesis in free viewpoint television and 3-D
video”, PCS 2009, Chicago, USA, 2009.

[17] A. Criminisi, P. Prez, K. Toyama, “Region filling and object
removal by exemplar-based image inpainting”, IEEE Tr. on
Image Processing, vol. 13, no. 9, pp. 1200-1212, 2004.

[18] I. Daribo, B. Pesquet-Popescu, “Depth-aided image inpainting for
novel view synthesis”, MMSP 2010, France, 10.2010.

[19] S. Rogmans, et. al., “Real-time stereo-based view synthesis
algorithms: a unified framework and evaluation on commodity
GPUs”, Sig. Proc.: Im. Comm., vol. 24, pp. 49-64, 2009.

[20] L. Yao, Y. Liu, W. Xu, “Real-time virtual view synthesis using
light field”, EURASIP Journal on Image and Video Processing,
vol. 2016, pp. 1-10, 2016.

[21] A. Akin, et. al., “Real-time free viewpoint synthesis using three-
camera disparity estimation hardware”, ISCAS 2015, Lisbon,
Portugal, 24-27.05.2015.

[22] J. Wang, L.A. Roeningen, “Real time believable stereo and virtual
view synthesis engine for autostereoscopic display”, IC3D 2012,
Liege, Belgium, 3-5.12.2012.

[23] C. Lomont, “Introduction to Intel® Advanced Vector
Extensions”, Intel White Paper, 2011.

[24] E. Quinnell, E.E. Swartzlander, C. Lemonds, “Floating-Point
Fused Multiply-Add Architectures”, 41 Conf. on Sign., Syst. and
Comp., Pacific Grove, pp. 331-337, 2007.

[25] “IEEE Standard for Floating-Point Arithmetic”, IEEE Std 754-
2008, 1-70, 2008.

[26] M. Domański, et al., “Free-viewpoint television demonstration for
sports events”, ISO/IEC JTC1/SC29/ WG11 MPEG2018,
M41994, Gwangju, Korea, 2018.

[27] T. Senoh, et.al, “View Synthesis Reference Software (VSRS) 4.2
with improved inpainting and hole filling”, ISO/IEC
JTC1/SC29/WG11 MPEG2013, M40657, Hobart, Australia, 3-
7.04.2017.

