
Real-Time CPU-Based Virtual View Synthesis 

Adrian Dziembowski, Jakub Stankowski 
 Chair of Multimedia Telecommunications and Microelectronics  

Poznan University of Technology 
Poznań, Poland 

{adziembowski, jstankowski}@multimedia.edu.pl 
 
 

Abstract—This paper presents the fast virtual view synthesis 
method for free navigation purposes. Presented method was 
implemented on CPU in order to allow free navigation for even 
cheap personal comput-ers with integrated graphic cards. The 
described synthesis technique is based on the hybrid view 
synthesis, combining advantages of forward-type and backward-
type synthesis. It allows to synthesize high resolution sequences in 
the real time, allowing the viewer to freely navigate around the 
scene, e.g. volleyball playfield. Three implementations were 
developed and tested: single-threaded, vectorized and multi-
threaded implementation. 

Keywords—virtual view synthesis; free-viewpoint television; free 
navigation 

I.  INTRODUCTION 

The main purpose of the Free-Viewpoint Television (FTV) 
[1], [2] is to allow a viewer to navigate freely around a scene 
captured by multiple cameras [3], [4], [5], [6]. 

When the viewer chooses to observe the scene from a 
viewpoint in between the real views, it is necessary to synthesize 
the virtual view (Fig. 1). In order to allow virtual navigation, the 
virtual view synthesis should be performed in the real-time. 

 
Fig. 1. View synthesis idea 

The goal of the paper is to study open questions in the real-
time view synthesis using low-cost implementations. The 
authors’ considerations will be related to the experience with 
practical implementations in an experimental free-viewpoint 
television system. 

II. ALGORITHM DESCRIPTION 

In order to obtain the highest possible quality of the 
synthesized virtual views, the hybrid-type synthesis was 
proposed. This approach combines advantages of forward-type 
[7], [8] and backward-type [9], [10] synthesis. In contrary to the 
forward-type synthesis, which is faster and easier to implement 
in the real-time, the backward synthesis allows to filter the depth 
map of the virtual view before texture projection thus reducing 

erroneous influence of improperly computed, inconsistent depth 
maps.  

The proposed  synthesis algorithm can be divided into three 
main steps, presented in Fig. 2. In the first one, the depth map 
for the virtual view is calculated (orange block). In this step all 
the pixels from both the real views are projected to the virtual 
view but only their depth information is used. Color of each 
pixel is projected in the second step (blue block), where the 
actual virtual view is synthesized. In this step, combined virtual 
depth obtained from two real views is used for projecting color 
components from left or right real view. The last step of the 
virtual view synthesis is postprocessing of the synthesized view 
(purple block in Fig. 2). This step consists of texture filtering and 
inpainting, where first operation removes small artifacts and the 
second one fills remaining holes in the virtual view. 

 
Fig. 2. View synthesis algorithm 

As it was mentioned, the proposed hybrid approach allows 
to filter the virtual depth map. However, in the presented 
approach the virtual depth map and view are filtered 
simultaneously, so in the scheme presented in Fig. 2 we merged 
these two operations into common block called “filtering”. The 
only filtering executed in the virtual depth synthesis block is the 
ghost edges removal [11], where pixels close to the edges in the 
depth maps are omitted during projection in order to avoid false 
edges in the virtual view. 

virtual camera 

real cameras 



A. Depth projection and merging 

All the points of each real view can be represented as a 
vector 𝐦 = [𝑥 𝑦 𝑧 1], where 𝑥 and 𝑦 represent its position in 
the real view and 𝑧 is its depth. In the step of depth projection, 
each pixel is projected from a real to the virtual view: 

 
 𝐦𝐕 = 𝐦 ⋅ 𝐏𝐕 ⋅ 𝐏𝐑

ିଵ ,  (1) 
 

where 𝐦𝐕 = [𝑥  𝑦   𝑧   1] is the point position in the virtual 
view (𝑥 , 𝑦) and its depth (𝑧). 𝐏𝐑 and 𝐏𝐕 are projection 
matrices for the real and the virtual view, respectively. Each 
projection matrix combines both the intrinsic and extrinsic 
parameters of the camera: 𝐏 = 𝐊 ⋅ 𝐄, where the intrinsic matrix 
𝐊 includes the camera focal length and the location of the 
principal point of the camera and extrinsic matrix 𝐄 consists of 
the translation vector concatenated to the rotation matrix [12]. 

The result of depth projection are two depth maps – first 
for the points projected from the left real view and the second 
containing depth projected from the right real view. In the next 
step, both of these depth maps are merged in order to produce 
one consistent virtual depth map. In this step, for each point the 
lower (closer to the virtual camera) depth value is chosen. 

B. View projection and blending 

In the typical, backward-type synthesis, projection of color 
of all the points of the virtual view is based on previously 
estimated depth map. In this operation all the points are 
projected as in (1) (but in the opposite direction) in order to 
estimate the position of corresponding points in the real views 
[10]. 

Projection requires a number of operations, thus in the real-
time algorithm the hybrid method was proposed. In this 
approach, projection is performed by the simple reading an 
array created during depth projection. 

Any point of the virtual view could be visible in one or two 
real views or not visible in any real view. When the point was 
visible in one view, its color is just copied from the real view. 
If it was captured by both the real cameras, it is checked 
whether point’s depth projected from both real views is similar. 
If this condition is true, the color of the point in the virtual view 
is obtained by averaging colors from both real views; if not – it 
is copied from the point with lower depth value (color of a point 
representing closer object). This approach allows to avoid 
blending background and foreground areas. 

C. Synthesized view filtering 

The purpose of the virtual view filtering is to eliminate two 
effects: view discontinuities entailed by finite resolution of the 
views and depth maps and small (but subjectively disturbing) 
artifacts caused by erroneous depth maps. 

In order to remove discontinuities in the virtual view, for 
each point within a view it is checked whether the difference 
between colors of that point and its left neighbor is higher, than 
the difference between colors of that point’s left and right 
neighbor. If it is higher, it is assumed that color of that point 
was wrong and it is replaced by the color of its right neighbor. 

In order to remove both horizontal and vertical discontinuities, 
analogous operation is done for vertical direction. 

Errors in the depth maps may cause appearance of small 
non-existing objects, both in the background and in the 
foreground. While navigating within the scene, the foreground 
objects move faster, than other objects in the scene. Therefore, 
wrongly synthesized areas cause significant subjective quality 
deterioration. 

In order to remove these artifacts, a simple method was 
proposed. For each point of the virtual view it is checked 
whether the point is closer to the virtual camera than its left and 
right neighbor. If this condition is true, color of this point is 
replaced by the color of its right neighbor. Of course, similar to 
discontinuities removal, analogous operation is performed for 
vertical direction. 

D. Synthesized view inpainting 

At this stage, synthesized and filtered virtual view still 
contains areas with no projected information (disoccluded 
areas). These areas have to be inpainted based on their 
neighborhood [13], [14], [15], [16], [17], [18]. 

In described algorithm, we proposed fast, depth-based 
interpolating of these regions, where color of each inpainted is 
copied from one of four neighboring projected points: nearest 
point to the top, bottom, left and right. In order to choose 
copying direction, depth of each neighbor and distance between 
each neighbor and point being inpainted are compared. The 
smaller the distance and the lower depth value, the higher 
priority has particular neighbor. 

III. IMPLEMENTATION 

In order to make free navigation possible even for personal 
computers without powerful graphic cards, the proposed 
technique was developed and implemented for CPU. It 
significantly differs our method from existing methods, 
implemented for GPU [7], [19], [20] or FPGA [21], [22]. 

A. Single-threaded implementation 

The algorithm presented in the previous section has some 
simplifications, e.g. in filtering and inpainting operations. 
However, the core of the algorithm could not be performed in 
the real-time for high resolution sequences. 

Let us consider depth projection presented in (1). Even if  
𝐏𝐕 ⋅ 𝐏𝐑

ିଵ multiplication would be calculated only once for the 
entire real view, 𝐦 ⋅ 𝐏𝐕 ⋅ 𝐏𝐑

ିଵ would require 16 multiplications 
and 12 additions for each pixel of each real view. For FullHD 
sequence it gives over 33M multiplications and almost 25M 
additions for each real view. Texture projection is performed 
analogously, so total number of multiplications and additions 
needed for projection only would reach 133M and 100M, 
respectively for multiplications and additions. Even assuming 
only 1 clock cycle for one addition and 1 for multiplication, and 
4  GHz CPU, one frame of multiview sequence will be 
processed in 0.06s, ignoring the entire postprocessing block. It 
is far away from real-time processing, where (for 25 fps) one 
frame should be processed in 0.04 s. 

In order to reduce number of operations, multiplication (1) 
was divided into independent parts, e.g. multiplication of the 



second column of 𝐏𝐕 ⋅ 𝐏𝐑
ିଵ matrix and vertical position of the 

point (y) is performed only once for entire row of the real view. 
Also multiplication for entire image columns is performed once 
and the results are saved in look-up table. 

Another time-saving operation is divisions elimination. 
They are the most time-consuming of all simple mathematical 
operations, so in the presented algorithm, number of divisions 
was significantly reduced and most of them were replaced by 
multiplications or performed only once for the entire view – in 
the whole view synthesis process only one division operation is 
performed in the loop for all the points. 

As it was presented in the subsection 2B, projecting texture 
from the real views to the virtual one requires the same amount 
of operations as depth projection. In the proposed algorithm, 
this process is simplified – in the step of depth projection for all 
the points of the virtual view position of corresponding points 
in both real views is saved in an array. Therefore, instead of 
many multiplications and additions – texture projection is 
performed by the simple array reading. 

Another small improvement is the color blending for points 
with similar depth projected from both the real views. This 
operation was optimized and is performed by the bit shifts. 

After texture projection the two postprocessing operations 
are performed – filtering and inpainting. Both of them are 
performed in only two additional loops. For the image filtering, 
in the first loop virtual view is filtered horizontally (in order to 
remove thin vertical holes), in the second one – vertically for 
horizontal holes removing. The inpainting operation requires 
three loops. First two for view analysis, where positions of the 
nearest projected points in every direction are calculated and 
the third loop for the actual inpainting processing. However, 
view analysis for searching left and top nearest projected points 
is performed simultaneously to the view projection so the entire 
postprocessing requires only 4 loops on the virtual view. 

 

 
Fig. 3. Single-threaded implementation 

B. Vectorized implementation 

As a result of profiling of the optimized implementation 
described in the subsection 3A, the depth map projection has 
been identified as the most complex operation in virtual view 
synthesis. Therefore, an effort have been made in order to 
reduce the computation time related to the depth projection. 
Since the depth projection consist of significant number of 
calculations and few memory access operations, we decided to 
exploit the low-level data parallelism and prepare the 
vectorized implementation. 

The vectorized implementation has been developed by 
using x86 specific SIMD instructions from AVX, AVX2 [23] 
and FMA [24] instruction sets. All of the abovementioned 
instruction sets allow the programmer to use wide 256-bit 
registers containing 8 single precision floating point numbers. 
Moreover, the FMA instruction set allows to combine one 
multiplication and one addition into the single fused multiple-
add operation [25]. The combination of multiplication followed 
by addition repeats very often during matrix multiplication. 

The usage of the SIMD instructions results in ability to 
process 8 values of the source depth at once. As a result the 
vectorized implementation is significantly faster than the scalar 
one. 

C. Multi-threaded implementation 

The last possibility to speed up the synthesis process is to 
divide the work into multiple processor cores and execute 
synthesis related operations in parallel. Since the virtual view 
synthesis seems similar to other image processing workloads, 
the obvious way of parallelization is to divide the image into 
segments (tiles, slices, rows, etc.) and perform processing in 
each row separately. Unfortunately, some of virtual view 
synthesis related operations cannot be parallelized in such a 
simple way due to data dependencies. Examples of such an 
operations are: depth projection and inpainting analysis. 

Due to the fact that some operations cannot be easily 
divided into independent tasks, we designed a hybrid approach 
to parallelize the virtual view synthesis. Despite the fact that 
projection of the depth cannot be divided into the separate tasks, 
the projection is performed separately for every input view, 
therefore calculations for view 0 and view 1 could be performed 
in the separate threads. The same approach has been applied for 
the inpainting analysis, where one thread executes analysis 
from the left-top origin and second executes analysis from the 
bottom-right origin. 

Remaining operations like texture projection, depth 
blending, filtering and inpainting could be parallelized by 
dividing the picture area into the arbitrary number of slices and 
processing each slice in the separate thread. The multithreaded 
approach has been illustrated in Fig. 4. 
 

 
Fig. 4. Multi-threaded implementation 



IV. EXPERIMENTAL EVALUATION 

A. Processing time estimation 

All proposed algorithms and implementations have been 
evaluated experimentally in order to determine performance 
and computational complexity.  

In order to investigate the influence of the proposed 
methods into the virtual view synthesis processing time, the 
four different implementation have been prepared: 

 the reference implementation with depth projection 
implemented without any improvements (as in the 
subsection 2A), 

 the optimized implementation as described in the 
subsection 3A, 

 the vectorized implementation including previously 
mentioned optimizations and with depth projection 
implemented using vector operations, 

 the multi-threaded implementation based on vectorized 
one with addition of multi-threaded processing. 

 
The experiments have been performed with the use of 

Poznan_Basketball and Poznan_Volleyball [26] test sequences 
(1080p25, complex, difficult to synthesize). We prepared two 
test scenarios: first with FullHD input and FullHD output and 
second with FullHD input and output reduced to ¼ input 
resolution (qHD). The calculations were performed on the 
desktop computer equipped with 4.0 GHz CPU based on the 
“Skylake” microarchitecture. 

The experimental results have been summarized in TABLE 
I. For every test scenario and every tested implementation, the 
average calculation time for each synthesis step is estimated 
(DP – depth projection, DM – depth merging, VP – view 
projection, FH – filtering horizontal, FV – filtering vertical, IA 
– inpainting analysis, IP – inpainting processing). 

TABLE I.  PROCESSING TIME 
(AVERAGED FOR 1500 FRAMES FOR 2 TEST SEQUENCES) 

Implementation 
Processing time (FullHDFullHD) [ms] 

DP DM VP FH FV IA IP Total 

 Reference 60.44 1.04 8.25 5.95 6.85 1.83 2.33 86.70 

 Optimized 29.77 1.04 8.19 6.05 6.80 1.85 2.35 56.05 

 Vectorized 19.74 1.05 8.18 5.97 6.44 1.87 2.33 45.58 

 Multi-threaded 8.23 4.65 3.34 3.32 2.15 1.43 23.12 

         

Implementation 
Processing time (FullHDqHD) [ms] 

DP DM VP FH FV IA IP Total 

 Reference 59.91 0.25 2.12 1.18 1.57 0.42 0.41 65.87 

 Optimized 24.79 0.23 2.19 1.19 1.58 0.43 0.41 30.82 

 Vectorized 13.47 0.22 2.22 1.18 1.52 0.42 0.40 19.42 

 Multi-threaded 7.38 1.33 0.67 0.85 0.53 0.25 11.01 

a. DP – depth projection, DM – depth merging, VP – view projection, 
FH – filtering horizontal, FV – filtering vertical, 

IA – inpainting analysis, IP – inpainting processing 

 

All the described improvements allowed to significantly 
reduce the computational time. With all proposed modifications 
(algorithmic optimization (subsection 3A), vectorization 
(subsection 3B) and multi-threading (subsection 3C) we 
managed to reduce the synthesis time below value required for 
the real-time processing (40 ms for 25 fps). Theroposed 
synthesis algorithm is able to compute virtual view in ~23 ms 
for FullHD output and in ~11 ms for the reduced qHD output. 

B. Quality evaluation 

The quality of the virtual views synthesized using proposed 
view synthesis algorithm was compared to the state-of-the-art 
synthesis method – VSRS [27] (View Synthesis Reference 
Software). 

The results are presented in Table II. For two FullHD test 
sequences [26] the PSNR value for one reference view was 
calculated and averaged for 10 s of the sequence (250 frames). 

TABLE II.  PROPOSED VS. STATE-OF-THE ART METHOD 

Test sequence 
PSNR [dB] 

Processing time for 
1 frame [ms] 

VSRS Proposed VSRS Proposed 

 Poznan_Basketball 26.76 26.82 2163 23 

 Poznan_Volleyball 28.33 28.37 2134 23 

 
The quality was also evaluated subjectively during experts’ 

viewing. Performed subjective tests indicated that the quality of 
views synthesized using proposed approach is noticeably 
higher, than for reference software. 

V. SUMMARY 

In this paper, the fast real-time CPU based virtual view 
synthesis has been presented. The experimental evaluation 
proves that proposed algorithmic and implementation 
improvements allows to significantly reduce the FullHD 
synthesis time and fulfill the real time synthesis requirements, 
preserving the good quality of the synthesized virtual views. 
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