
REAL-TIME VIRTUAL NAVIGATION PROVISION BY SIMPLE MEANS 
 

Marek Domański, Adrian Dziembowski, Tomasz Grajek, Adam Grzelka,  
Dawid Mieloch, Robert Ratajczak, Olgierd Stankiewicz, Jakub Stankowski, Krzysztof Wegner 

 
Poznań University of Technology, Chair of Multimedia Telecommunications and Microelectronics, 

Poznań, Poland 
 

 
ABSTRACT 

 

The paper reports the results on virtual navigation in a sports 
hall. The video data is gathered and processed off-line thus 
producing the multiview plus depth representation of a scene. 
This representation is an input to the rendering server. Even 
a typical PC computer is able to serve a number of users that 
freely and independently navigate in real - time and watch 
virtual video. The users are able to navigate in the scene 
changing the virtual viewpoint and virtual view direction. 
The service is provided through a webpage, so a viewer does 
not need to install any software on smartphone, tablet or 
notebook. The paper discusses the technical solutions 
together with the rationale for their choice. 
 

Index Terms— Free-viewpoint television, free 
navigation, virtual reality, view synthesis.  
 

1. INTRODUCTION 
 

Here, we deal with the virtual navigation, i.e. a functionality 
of future interactive video services that provides a viewer an 
ability to move freely around a scene and watch it in an 
arbitrary view direction and from virtual viewpoints on an 
arbitrary navigation trajectory. The respective video 
communication systems are called free-viewpoint television 
(FTV) [1-5], and are a subject of significant research efforts 
in the recent years. Most of the work is aimed at high-end 
thus extremely expensive systems, like the recently 
announced system of KDDI [6]. In contrary to them, we aim 
at cheap and simple FTV systems [2,7,8] with such 
applications like sports broadcasts, performances, interactive 
courses and manuals, and school teaching materials. We aim 
at smaller events that may be reported with some delay, 
maybe on the next day. We also leave the audio issues out of 
the scope of this paper. 

In this paper, we deal with free navigation provision to 
the viewer. Except of view synthesis algorithms [9-14] and 
video streaming in complex systems [1, 13, 15, 16], the issue 
is nearly absent in the references. 

  
2. SYSTEM ARCHITECTURE 

 

Although the considerations of the paper are valid for various  
applications, we will demonstrate the system in the context of  

free navigation in a sports hall (cf. Fig. 1).   

 
Fig. 1. A sports hall with a multi-camera rig. 

 
The system provides horizontal virtual navigation 

around a scene with the limited ability to go into a scene, i.e. 
the virtual viewpoint may move towards the players but is 
unable to go in between the players (cf. Fig. 2). Moreover, a 
viewer may also dynamically change the view direction as 
shown in Fig. 2. Nevertheless, the angle of viewer rotation 
around a vertical axis is limited, i.e. the rotation angle 
practically should not exceed 40 degrees. Slight tilt of the 
virtual view direction is possible that improves subjective 
quality of the virtual navigation. The abovementioned 
limitations result from the limitations of the visual 
information available from the one-dimensional camera rig 
shown in Fig. 1.  

 

 

Fig. 2. An example of virtual navigation trajectory and virtual view 
directions. 

 
We use the centralized model [2, 8, 15] of view 

synthesis, where the views requested by viewers are 
synthesized in the servers of the service provider, i.e. in the 



rendering servers (edge servers). The number of rendering 
servers depends on the number of user terminals, as each 
server may serve a limited number of user terminals. 
Nevertheless, this approach does not need synthesis in user 
terminals thus increasing the availability of the service. 
Moreover, the bandwidth between the rendering server and 
user terminal is just the bandwidth for one video stream, and 
there is no need to transmit even a part of the 3D model of a 
scene.  

In the centralized model, the user terminal sends 
requests for current virtual positions, and the rendering server 
responds with video frames synthesized for the requested 
position. The free navigation service is available as a video-
on-demand service on the Internet. A user terminal may be as 
simple as a smartphone or a tablet equipped with any standard 
video decoder.  

The general system architecture is depicted in Fig. 3. 
Only the lower part of the system in Fig. 3 is within the scope 
of the paper, as it was recently developed. Here, we consider 
the rendering server, the user terminal, and the 
communication between them. As a simple example of the 
rendering server, we are going to consider its implementation 
on a PC computer with Intel i7 processor.  

 

 
Fig. 3. The free-viewpoint television system. 

3. REAL-TIME VIEW SYNTHESIS 
 
More than 50% of the computational load of the rendering 
server corresponds to virtual view synthesis. Its algorithm is 
an improvement of VSRS [20] as it has to be simple because 
of the real-time requirement. Therefore, the virtual view is 
synthesized in a simplified way using only two real views 
(Fig. 4) as in [20]. Therefore, in the first step the proper real 
views have to be chosen – the chosen cameras should capture 
possibly highest percentage of the scene visible in the virtual 
view. Performed experiments show, that in the most cases the 
highest quality of the virtual view can be obtained using 
nearest left and nearest right real view – both for the linear 
(e.g. cameras located along a sports hall’s sideline) and arc 
(sports hall’s corner) camera setups.  

When two real views are chosen, the depth map of the 
virtual view is being calculated – position of each pixel of 
two real views is multiplied by inverted projection matrix of 
the real view and the projection matrix of the virtual view. 
Then, these depth maps are being filtered in order to remove 
errors and artifacts caused by finite resolution of the depth 
and image and to smoothen surface of the objects thus 
improve the depth map quality. After filtering, the texture of 
the real views is being projected to the virtual view using 
virtual view’s depth information. As a result, we have two 
separate virtual views – one for each real camera. These two 
images should be blended. Unfortunately, due to different 
cameras’ characteristics and lighting conditions, virtual view 
synthesized from the left camera may have different color 
characteristics than the. view obtained for the right real view. 
Therefore, before blending, a simple color correction method 
should be applied. In proposed approach the color 
characteristics of the further view is adjusted to the 
characteristics of the closer one by adding an offset for all the 
pixels within the virtual view. 

After view blending the virtual view contains 
information from both the real views, but it also contains 
areas where no pixel was projected. These areas have to be 
filled in using inpainting. In proposed approach we used 
realtime bilinear inpainting, where estimated color of the 
non-synthesized pixel is the weighted average of the closest 
synthesized pixel to the left, right, top and bottom (and the 
weight is the distance to each). 

 
 

 

 
Fig. 4. Real-time view synthesis.

real view 0 previous view 2.5

real view 1

virtual depth from 2

real view 2 real view 2 real view 2 virtal view from 2

virtual view 2.5 current view 2.5 view 2.5

real view 3 real view 3 real view 3 virtual view from 3 with holes

virtual depth from 3

real view 4

real view 5

te
m
po

ra
l e
nh

an
ce
m
en

t

in
pa

in
tin

g

re
al
 v
ie
w
 c
ho

os
in
g

vi
rt
ua

l d
ep

th
 m

ap
 e
st
im

at
io
n

de
pt
h 
fil
te
rin

g

te
xt
ur
e 
pr
oj
ec
tio

n

co
lo
r c

or
re
ct
io
n

vi
rt
ua

l v
ie
w
 b
le
nd

in
g



The last step of the view synthesis algorithm is the 
temporal enhancement operation. It is simple and thus very 
fast – for every pixel the color difference between two 
consecutive frames is checked. If the difference is less than a 
small threshold, both values are being averaged. This 
operation reduces flickering of static objects, i.e. in the 
background. 

 
4. RENDERING SERVER 

 

When a new user is connected to the rendering server, 
a new rendering pipeline is created. This enables independent 
navigation for each user. At the start, each user watches the 
scene from a default viewpoint. By swiping across the 
displayed image a user can request a change of his/her 
viewpoint. The information about requested change in 
viewing position is transmitted by client application through 
WebSocket connection to the server. The server updates 
virtual view position in the user’s rendering pipeline (virtual 
view and input view selector block) and selects appropriate 
input views for the best rendering of the quality from the 
requested viewpoint. This new information is used 
immediately in the next time slot for frame rendering.  

The necessary data (video plus depth) for input views 
related to the virtual view are pointed out by the input view 
selector block, and are fed into the user’s rendering pipeline 
at the beginning of each time slot for frame rendering. The 
input views and the corresponding depth data are passed to 
synthesizer module and the new frame of a requested virtual 
view is rendered. In the case of fast virtual walk, each 
consecutive frame may be synthesized from a completely 
different viewpoint and view direction. 

Therefore, the rendered image is compressed by the all-
intra video AVC [17] encoder (or JPEG encoder [18]) and 
sent via WebSocket to the client application.  

Obviously, the rendering server comprises also the 
respective audio processing blocks that are not considered 
here as mentioned in Introduction.  

The rendering server is composed of: HTTP server, 
WebSocket server, a source pipeline, and the rendering 
pipelines (see Fig. 5). 

The implementation is featured by the parallel 
processing using a pipeline and a thread pool, highly 
optimized CPU synthesis implemented using vector 
instructions (256bit AVX) and multithreading as well as by 
hardware compression. 

 

5. USER TERMINAL 
 

The service can be obtained from  the rendering server by 
simply typing a rendering server address. Once the web page 
is loaded, connection with a rendering server is established 
automatically via WebSocket and video starts playing. 
Therefore, no special software needs to be downloaded 
before the start of the interactive viewing.  

 
Fig. 5. Block scheme for the rendering server (shown for 2 users). 

 
Using the devices with touchscreens, a user can shift the 

virtual viewpoint around the playfield by swiping the 
displayed image in two directions (left and right) as 
demonstrated in Fig. 6. It is also possible to step into the 
playfield and back by swiping the screen vertically. The 
rotation of the view direction may be achieved by diagonal 
swipe. The allocation of the finger motions to the changes of 
the viewpoint and the view direction is currently tested in 
order to make the viewer-terminal communication be the 
most intuitive and comfortable. The satisfaction of a viewer 
depends also on sensitivity of the swipe, so the sensitivity 
tune should be done experimentally for various virtual 
navigation scenarios.   

Similar means of control is used on the touchpad of a 
laptop.  

 

 

Fig. 6. Virtual navigation around the volleyball playfield controlled 
by motion of finger on a touchscreen of a smartphone. 

 
From the finger motion, the application estimates the 

changes of the viewpoint and the view direction, and signals 
them to the rendering server. Rendering server calculates new 



virtual view position, and immediately transmits a rendered 
video frame that corresponds to the chosen viewpoint and 
view direction.  

Client application is implemented as web application in 
JavaScript with help of HTML 5 video component and 
WebSocket API. It has been successfully tested with modern 
web browsers on PC as Mozilla Firefox version 57.0.2 and 
Microsoft Edge version 41.16299.15.0, and with Google 
Chrome and Mozilla Firefox on the Android-powered mobile 
devices. 

 
6. EXPERIMENTS AND THEIR RESULTS 

 

The system exploits the centralized model of view synthesis 
where the client requests a frame with a defined viewpoint 
and view direction, and promptly receives the video frame 
ready to display. Therefore, the system latency is the issue of 
paramount importance. This latency consists of the latency of 
the rendering server, the latency of the client terminal, and 
latency of the network. 

The total latency of the rendering server was measured 
using two multiview plus depth test video sequences: 
Poznan_Volleyball2 [19] and Poznan_Blocks2 [2]. The 
latency was measured for 10-second virtual-navigation video 
clips (i.e. 250 frames in each sequence). For the rendering 
server, the system CPU was Intel® Core™ i7-6700K @ 
4GHz (4 cores, 8 threads). The processing times are 
summarized in Table I. Note that the pipeline processing is 
used, therefore, the maximum frame rate is not simply 
determined by the total processing time of a frame.  

Table I. Processing times in the rendering server. 

Sequence 

Resolution 
Average processing 
time per frame [ms] Maximum 

achievable 
frame rate

[Hz] Input Output 
Total 
frame 

processing 

Virtual 
view 

synthesis 
Poznan_ 
Volleyball
2 

Full HD FullHD 44.28 25.65 39 
Full HD qHD 21.97 11.64 86 
Full HD SD 19.98 10.47 96 
SD SD 6.64 3.75 266 

Poznan_ 
Blocks2 

Full HD FullHD 40.75 23.04 43 
Full HD qHD 20.62 10.30 97 
Full HD SD 18.79 9.20 109 
SD SD 6.43 3.64 275 

qHD  (quarter HD) = 960 × 540, Full HD = 1920 × 1080,  
SD = 720 × 576, all video is 25 frames per second progressive 

 

The fluctuation of the processing times was mostly 
below ±20% for individual frames. The ratio of the time for 
virtual view synthesis to the total processing time was almost 
always within the interval 0.50 ÷ 0.57.  

The results from Table I demonstrate that a rendering 
server may be implemented on a PC computer than can serve 
even a number of viewers who navigate independently in the 
same scene. 

The latency of the network is very changeable, even 
assuming lack of network traffic congestions. The total bi-
directional latency between the rendering server and the user 
terminal is shown in Fig. 7. The values for individual packets 
are very different, therefore the distributions are shown. For 
the considered scenarios (Fig. 7), for more than 98% of 
packets the bi-directional latency was below 60 milliseconds.  

From the experiments, it is known that users accept the 
delay between finger motion and a scene motion up to 250 – 
350 milliseconds. Therefore, the total system latency is well 
below that limit.  

 

0

0.5

1

0 10 20 30 40 50 60
C
o
u
n
t 
re
la
ti
v
e
 

to
 m

a
x
im

u
m
 c
o
u
n
t

Latency [ms]

remote notebook cable remote notebook wifi remote smartphone wifi
local notebook cable local notebook wifi local smartphone wifi

 

Fig. 7. Distributions of the network packet latency due to 
transmission: 

 between remote location, ca. 10 kilometers within a city, 
or within local network in a single building, 

 using a notebook or a smartphone as the user terminal, 
 using the user terminal connected via cable or wifi.  
 

The AVC bitrates are about 15-20 Mbps for HD and 4-
6 Mbps for SD for fast virtual walking. 

The extended report on subjective quality cannot to be 
included here for the sake of brevity. Nevertheless, the 
quality in the central parts of the playfield is classified as 
“good” while artifacts occurs at the edges of the scene. 

 
7. CONCLUSIONS 

 

In the paper we consider an original architecture of the 
rendering server and its communication with the user 
terminal in a simple low-cost FTV system. To our best 
knowledge, such a solution was not presented elsewhere. A 
preliminary limited version of the system was demonstrated 
during ICIP 2017 conference with no description or the 
experimental result. Now, the paper provides an original 
implementation of the rendering server as well as 
communication with the user, in particular with untethered 
one. The advantage of the solution is that no dedicated 
software need to be installed in the user terminal. From the 
user side, the solution is “log in to a webpage and navigate”. 
Therefore, the solution is easy to be implemented 
commercially. All these results encourage us to believe that 
the development of usable FTV systems will be possible very 
soon. 
 

ACKNOWLEDGEMENT 
 

The research project was supported by The National Centre for 
Research and Development, Poland. Project no. 
TANGO1/266710/NCBR/2015. 



 
REFERENCES 

 

[1] M. Tanimoto, M. Panahpour, T. Fujii, T. Yendo, “FTV for 3-D 
spatial communication,” Proceedings of the IEEE, vol. 100, 
Issue 4, pp. 905-917, Feb. 2012. 

[2] O. Stankiewicz, M. Domański, A. Dziembowski, A. Grzelka, 
D. Mieloch, J. Samelak, “A free-viewpoint television system 
for horizontal virtual navigation,” IEEE Trans. Multimedia, 
Early access, 2018. 

[3] E. Bondarev, R. Miquel, M. Imbert, S. Zinger and P. H. N. de 
With, “On the technology roadmap of Free-Viewpoint 3DTV 
receivers,” in 2011 IEEE International Conference on 
Consumer Electronics (ICCE), Las Vegas, NV, USA, 2011, 
pp. 687-688. 

[4] G. Lafruit, M. Domański, K. Wegner, T. Grajek, T. Senoh, J. 
Jung, P. Kovács, P. Goorts, L. Jorissen, A. Munteanu, B. 
Ceulemans, P. Carballeira, S. García, M. Tanimoto, “New 
visual coding exploration in MPEG: Super-MultiView and 
Free Navigation in Free viewpoint TV,” in IST Electronic 
Imaging, Stereoscopic Displays and Applications XXVII, San 
Francisco 2016, pp. 1-9.  

[5] C.-C. Lee, A. Tabatabai, K. Tashiro, “Free viewpoint video 
(FVV) survey and future research direction,” APSIPA 
Transactions on Signal and Information Processing, vol. 4, 
Oct. 2015.  

[6] “Introduction to KDDI’s 5G network service”, presentation at 
H20 seminar during 121th MPEG Meeting, Gwangju, January 
2018.   

[7] M. Domański, M. Bartkowiak, A. Dziembowski, T. Grajek, 
A. Grzelka, A. Łuczak, D. Mieloch, J. Samelak, O. 
Stankiewicz, J. Stankowski, Krzysztof Wegner, “New results 
in free-viewpoint television systems for horizontal virtual 
navigation,” in 2016 IEEE International Conference on 
Multimedia and Expo (ICME), Seattle, WA, 2016. 

[8] M. Domański, A. Dziembowski, D. Mieloch, A. Łuczak, 
O. Stankiewicz and K. Wegner, “A practical approach to 
acquisition and processing of free viewpoint video,” in 2015 
Picture Coding Symposium (PCS), Cairns, QLD, 2015, pp. 10-
14. 

[9] C. Zhu, S. Li, “Depth image based view synthesis: New 
insights and perspectives on hole generation and filling”, 
IEEE Trans. Broadcasting, Vol. 62, pp. 82-93, 2015. 

[10] T. Tezuka, M. Tehrani, K. Tkahashi, T. Fuji, “View synthesis 
using superpixel based inpainting capable of occlusion 
handling aand hole filling”, Picture Coding Symposium, pp. 
124-128, 2015. 

[11] M. Köppel, K. Müller, T. Wiegand, “Filling disocclusions in 
extrapolated virtual views using hybrid texture synthesis”, 
IEEE Trans. Broadcasting, vol. 62, 2016, pp. 457-469. 

[12] A. Dziembowski, A. Grzelka, D. Mieloch, O. Stankiewicz, K. 
Wegner, M. Domański, “Multiview synthesis – improved 
view synthesis for virtual navigation”, in 32nd Picture Coding 
Symposium PCS 2016, Nuremberg, Germany, Dec. 2016. 

[13] L. Toni, G. Cheung, P. Frossard, “In-network view synthesis 
for interactive multiview video systems”, IEEE Trans. 
Multimedia, vol. 18, 2016, pp. 852-864. 

[14] B. Ceulemans; Shao-Ping Lu; G. Lafruit; A. Munteanu, 
“Robust multiview synthesis for wide-baseline camera 
arrays,” IEEE Trans. Multimedia, Early access, 2018. 

[15] J. Kim, J. Jang and D. H. Kim, “Design of platform and packet 
structure for the free-viewpoint television,” in The 18th IEEE 
International Symposium on Consumer Electronics (ISCE 
2014), JeJu Island, 2014. 

[16] T. Fujihashi, Z. Pan and T. Watanabe, “UMSM: A traffic 
reduction method on multi-view video streaming for multiple 
users,” IEEE Transactions on Multimedia, vol. 16, no. 1, pp. 
228-241, Jan. 2014. 

[17]  “Coding of audio-visual objects, Part 10: Advanced Video 
Coding,” ISO/IEC IS 14496-10, 2014. 

[18] “JPEG 2000 image coding system, Part 3: Motion 
JPEG2000,” ISO/IEC IS 15444-3, ITU-T Rec. T.802, 2007. 

[19] M. Domański, A. Dziembowski, T. Grajek, A. Grzelka, K. 
Klimaszewski, D. Mieloch, R. Ratajczak, O. Stankiewicz, J. 
Siast, J. Stankowski, K. Wegner, „Free-viewpoint television 
demonstration for sports events,” ISO/IEC JTC1/SC29/WG11 
Doc. MPEG/ M41992, January 2018, Gwangju, Korea. 

[20] O. Stankiewicz, K. Wegner, M. Tanimoto, M. Domański, 
“Enhanced Depth Estimation Reference Software (DERS) for 
Free-viewpoint Television,” ISO/IEC JTC1/SC29/WG11, 
Doc. MPEG M31518, Geneva, 2013. 

 
 
 


