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ABSTRACT This paper presents a new approach to statistical similarity assessment based on sequence
alignment. The algorithm performs mutual matching of two random sequences by successively searching for
common elements and by applying sequence breaks tomatchless elements in the function of exponential cost.
As a result, sequences varying significantly generate a high-cost alignment, while for low-cost sequences the
introduced interruptions allow inferring the nature of sequences dependence. The most important advantage
of the algorithm is an easy interpretation of the obtained results based on two parameters: stretch ratio and
stretch cost. The operation of the method has been simulation tested and verified with the use of real data
obtained from hardware random number generators. The proposed solution ensures simple implementation
enabling the integration of hardware solutions, and operation based on only two sequences of any length
predisposes the method to online testing.

INDEX TERMS Mutual dependence, pattern matching, random sequence, sequence alignment, series
similarity.

I. INTRODUCTION
Sequence analysis is a broad and important field of science
and technology, where digital signal processing in informa-
tion engineering is at the forefront. In this area, the sub-field
of comparing random sequences, although developed over
the past years [1], is recently gaining importance particu-
larly quickly, creating a separate domain in cryptography [2].
Therefore, a special case of sequence analysis is a comparison
of two sequences to answer the question, how are they similar
to each other and what is the peculiarity of their mutual
relationship. Due to the increasing demand for comparative
analysis, the discipline has developed tremendously in recent
years [3]–[6]. There are many different methods of assess-
ing sequence alignment and similarity, the most intuitive of
which still seems to be the correlation andmutual information
between sequences [7], [8]. Both methods are widely used
in telecommunications and cryptography to assess, e.g., ran-
domness of a signal [7], [9], [10]. However, they are of limited
usewhen simultaneous analysis of the temporal and statistical
properties of data sequences is required. As cryptographic
systems play an important part in various applications, e.g.,
ensuring secure data transmission, it is imperative that the
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provided sequences of random numbers are of appropriate
quality, i.e. expected to be possibly close to true randomness.
Therefore, sequences are subject to statistical testing, e.g.
defined in NIST SP 800-22 [11] or AIS-31 [12] standards.
However, statistical tests do not distinguish between truly
random and high-quality pseudo-random sequences. As such,
they cannot be used, e.g., to assess within a reasonable time
whether the generator is under attack. A convenient solution
for examining the determinism is the mechanism proposed
in [13], based on repeatedly starting the generator with the
same initial conditions. The described testing technique is
called the restart mechanism and can help to check if the
generator produces sequences as a result of deterministic
or non-deterministic phenomena. On the collected data set,
the chi-square test [14], standard deviation [15], or entropy
estimation is applied [16]. However, the restart mechanism
and following statistical tests require collecting many data
sequences, and thus are difficult to apply in online sequence
comparison and generator testing. Therefore, obtaining a
low-data demanding yet efficient method that processes
the currently obtained string against a single reference and
returns easy-to-evaluate information about the relationship of
sequences remains an open issue.

The solution to the considered problem may be sought in
areas facing similar challenges. The problem of assessing
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FIGURE 1. Characteristics of the proposed algorithm in comparison with
available solutions.

how two sequences are similar to each other is also known
in the analysis of natural language processing [17], [18].
The quantification of the similarity between texts is not
unique and unambiguous, and largely depends on the relative
importance attached to individual particles, letters, words,
phonemes, and grammar, and even on the general context of
its occurrence. More detailed descriptions of the methods can
be found in the work [19]. A related issue is also raised in
the science of molecular biology, where sequence compar-
ison is required in comparing primary biological sequence
information [20], such as protein, amino-acid, DNA, RNA,
etc. Methods used in biological research are mainly based on
word frequency, distances defined in Cartesian space by fre-
quency vectors, and information contained in the frequency
distribution [21]. Statistical algorithms involve, i.a., implicit
Markov models, Bayesian methods for hypothesis testing,
Kolmogorov’s complexity and chaos theory [22]. What is
more interesting in the context of considered problem is,
however, a narrow group of sequence alignment methods.
These methods are used in arranging molecular sequences to
identify regions of similarity which may be a consequence of
functional, structural, or evolutionary relationships between
the sequences. The use of alignment comparison appears in
numerous bioinformatics applications related to searching for
a template in a database, where similarity is used to infer
congruent structure or function [23].

Motivated by the desired functionality of random sequence
testing and inspired by the above-mentioned algorithms,
we propose an innovative algorithm for sequence com-
parative analysis. It combines the features of alignment,
alignment-free, and information theory sequence comparison
techniques, and is designed to compare random sequences
produced by the random number generator - one of the most
important elements required in cryptographic systems, and
based on a small set of input data return a reliable, easy-
to-evaluate result (Fig. 1).

The algorithm proposed in this paper requires only two
sequences of any length and tries to match one to the other by

FIGURE 2. An example of two random sequences with common
elements (top) adjusted by the algorithm (bottom).

applying sequence breaks to matchless elements in the func-
tion of exponential cost. As a result, sequences derived from
a non-deterministic phenomenon generate a high-cost align-
ment, while for a low-cost sequences the introduced interrup-
tions allow inferring the nature of the dependence between
the sequences. After applying the algorithm, the results are
obtained in the form of two metrics: stretch ratio and stretch
cost, whichmakes the proposed solution easy to use and inter-
pret. Moreover, the algorithm returns the stretched sequences,
providing readily available material for further match and
mismatch statistical analysis.

The rest of the article is organized as follows. Section II
describes the proposed alignment algorithm. Section III
explains the experiment methodology and shows numerical
results. Finally, Section IV gives the concluding remarks.

II. ALGORITHM DESCRIPTION
The algorithm proposed in the paper performs mutual match-
ing of two random sequences by successive searching for
common elements in both sequences and inserting gaps for
matchless ones (Fig. 2). An important feature of the algo-
rithm is the careful minimization of the introduced gaps. The
algorithm starts with the collection of two random sequences
S1 and S2. Then it successively compares the elements of
both sequences. In the case of a match, i.e., S1[k] = S2[k],
it increments index k and simply goes to the next comparison.
In the case of a mismatch, i.e., S1[k] 6= S2[k], it introduces an
auxiliary index p = k . Then it begins the search through the
sequence S1 by increasing index p, so as to find an element
matching the current element of S2, i.e., S1[p] = S2[k], where
p > k . Such an initial match generated in a straightforward
way would require the recognition that p − k elements from
S1 do not have their counterparts in S2, so the latter should
be filled with g = p − k gaps. The above represents the
worst possible case where gaps are inserted in series only
into sequence S2. Therefore, the algorithm checks whether
any of the elements preceding S1[p], i.e., those falling within
the range k to p, match any element following S2[k] in the
same range of indexes. The further operation of the algorithm
assumes transferring both fragments of sequences, that is
s1 = S1[k . . . p] and s2 = S2[k . . . p], to a sub-algorithm
searching for the optimal gapping in both subsequences
(Fig. 3). Detailed block diagrams of the alignment algorithm
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FIGURE 3. An example of the main algorithm operation with a call to
enhanced matching subalgorithm.

and the sub-algorithm for optimal sequences gapping are
presented in Figures 4 and 5.

At this point it is worth noting that the search of the pair
S1[p] = S2[k] is primarily aimed at limiting the length of the
sequences passed to the sub-algorithm. There is no limit to
increasing index p, and in a critical case, e.g., searching for
matchless element S2[k], the rest of both sequences will be
passed to the optimizing sub-function. In the paper, the same
set of values of both sequences is assumed, thus the presence
of unique elements is minimized. However, the range of the
search can be arbitrarily limited.

Searching for a better match of elements than the first in
s2 with the last in s1 requires creating an appropriate cost
function. The defined function should favour interrupting
both sequences evenly, rather than introducing long series of
gaps in just one of them. Therefore, the proposed sequence
gapping assumes an exponential increase in the cost for series
of gaps, i.e., for Gi consecutive gaps the cost equals 2(Gi−1).
The total cost of gap insertion into both sequences is therefore
equal to 2(G1−1) + 2(G2−1).
The sub-algorithm starts by reading both subsequences s1,

s2 and determining their current lengths I and J respectively.
Note that in the case of continually extending sequences
S1 and S2 their final lengths do not have to be equal. Thus
the lengths of last sub-sequences may differ.

Initially, the algorithm determines the maximum cost of
matching, i.e., for s1[I − 1] = s2[0]. Then, for a rolling
index a pointing the current reference element, i.e., s2[a] or
s1[a], it searches for a match from the opposing sequence.
The found element, with the lowest possible index i or j
preceding a, that is s1[i] or s2[j], respectively, is equivalent
to the minimization of the gapping cost.

An example of operation of the sub-algorithm is shown
in Figure (3). An initial match S1[p] = S2[k] would require
the insertion of three gaps into S2 between elements 9 and
6 with the cost of 22. The algorithm performs the search
through subsequences s1 and s2 for a lower-cost match by
a rolling comparison, i.e., s1[0] with s2[1], s2[1] with s1[1]
and s2[0] with s1[1], and further s1[0] with s2[2], s1[1] with
s2[2] etc. The approach enables it to find an optimal match,
i.e., s1[1] = s2[2], requiring the insertion of only one gap into

FIGURE 4. Block diagram of the main algorithm for two-way sequence
alignment.

s1 and two gaps into s2, thus generating the cost of 20 + 21.
The determined numbers of the gaps, marked as G1 and G2,
are returned to the main algorithm.

At this point, it is worth noting that the sub-algorithm
is complemented by conditions ensuring correct searching
in the case of subsequences of different lengths. Moreover,
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FIGURE 5. Sub-algorithm for finding optimal sequence gapping in the
function of exponential cost.

in order to avoid the occurrence of large numbers, while
determining the exponential cost function, for long series of
gaps the operation may be performed on the exponents only.
In this case, the algorithm will test the condition

i+ a < 2 (c− 1) (1)

and alternatively

a+ j < 2 (c− 1) (2)

where c is the exponent of the current minimum cost,
i.e., MC = 2c.

FIGURE 6. Sequences matched by the algorithm.

The main algorithm receives information on G1, adds an
adequate number of gaps after element S1[k] and updates
the index to the position k = k + G1. Then it receives the
information on G2 and inserts an adequate number of gaps
after S2[k]. This way, both sequences are stretched so that
gaps in S1 are inserted at the mismatch positions of S2, and
gaps in S2 are introduced for mismatched elements in already
stretched S1.
The final goal of the algorithm is to obtain two pairs of

metrics Si(ai, bi), describing each of the tested sequences:
• ai is a stretch ratio determined as the ratio of the length
of the gapped sequence L ′i to its initial length Li. Impor-
tantly, in both lengths, only the number of elements to be
matched is taken into account (Figure 5). As a result of
the algorithm, the sequences increase in lengths dynam-
ically. Consequently, in one of the sequences, a ‘‘tail’’ of
length Lt may be created. Lt is the number of elements
for which there were no more elements to match in the
opposite sequence. Considering the above, the stretch
ratio is redefined as

ai =
(
L ′i − Lt

)
/ (Li − Lt) (3)

• bi is the cost of stretching the sequence, calculated as

bi =
∑
j

2G
j
i−1/ (Li − Lt) (4)

where j indexes successive series of gaps, andGji is equal
to the number of gaps in the j-th series.

Figure 6 and equations (5) to (8) show the process
of computing the metrics for short sample sequences
S1 = [6, 9, 1, 4,B, 6, 5] of the initial length L1 and
S2 = [3, 1, 9, 6, 7, 4,C] of the initial length L2.
The metric for the first sequence S1(a1, b1) in the above

example would be calculated as

a1 =
(
L ′1 − Lt

)
/ (L1 − Lt) (5)

b1 =
2G

0
1−1 + 2G

1
1−1 + 2G

2
1−1

L1 − Lt
(6)

whereas for the second sequence S2(a2, b2)

a2 = L ′2/L2 (7)

b1 =
2G

0
2−1 + 2G

1
2−1

L2
(8)
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FIGURE 7. The meaning groups of the S(a, b) metric in the plane of
stretch and cost.

Both metrics have their strict limits. The maximum exten-
sion of one sequence may be the number of elements of the
other. Therefore, S1(a1, b1) metrics should be in the range

a1 ∈ 〈1,
L1 + L2 − Lt

L2
〉 (9)

b1 ∈ 〈0,
2L2−1

L1 − Lt
〉 (10)

An analogous relationship with the length of S1 takes place
in the case of S2(a2, b2).
Considering the operation of the alignment algo-

rithm, i.e., preferring interrupting both sequences evenly,
the obtained Si(ai, bi) metrics are expected to be similar.
Therefore, it is convenient to interpret a collective metric
S(a, b), where

a =
L ′1 + L

′

2 − Lt
L1 + L2 − Lt

(11)

b =

∑
i
∑

j 2
Gji−1

L1 + L2 − Lt
(12)

In the above case, the stretch ratio a ∈ 〈1, 2〉
is a measure informing about the mutual similarity of
both random sequences, whereas the cost of stretch
b ∈ 〈0,

(
2L1−1 + 2L2−1

)
/ (L1 + L2)〉 informs about the

average cost of processing each element, where a match costs
0. The described ranges reach given maximum values when
all elements of the sequences are aligned and no tail is formed,
i.e., Lt = 0. We can interpret the collective metric S(a, b) in
an a, b plane, as shown in Figure 7.
The metric can be classified into one of four general infor-

mative groups:

I low stretch ratio indicates high similarity of sequences.
Low cost is indicative of scattered and short interrup-
tions, therefore rare mismatches.

II low stretch ratio again means high similarity, while
high cost informs about the insertion of gaps in series,
i.e. cyclical convergences and divergences of both
sequences.

III high stretch ratio and high cost are the result of introduc-
ing long series of gaps interleaved with sparse matches,
thus informing about the negligible similarity of both
sequences.

IV high stretch ratio while maintaining low cost indicates
frequent insertion of single gaps, i.e., scattered short
matches and mismatches. The result is a premise for
inference about the statistical similarity of the sequences.

III. EXPERIMENT
To provide proof of the concept, test data were prepared. Each
test sequence has the length of 5000 elements, which take
values from 0 to 15, and it corresponds to a four-bit represen-
tation. Section III-A presents the comparisons of pseudoran-
dom sequences and section III-B shows the comparisons of
sequences from hardware random number generators based
on a Fibonacci Ring Oscillator (FIRO) [13].

A. PSEUDORANDOM SEQUENCES
In the first step of the test, pseudorandom number sequences
were generated with specific distributions. Four distributions
were chosen: Gaussian, Uniform, Rayleigh, and Poisson.
Sequences with the Gaussian distribution were generated
with the mean value equal to two, four, eight, and fourteen.
In sequences with the Uniform distribution, values from zero
to fifteen occur with the same probability. For the Poisson
distribution, the lambda parameter equal to two was cho-
sen and for the Rayleigh distribution, the sigma parameter
equal to two was set up. Compliance with the prepared data
against intended results was checked by plotting and veri-
fying histograms of the sequences. Additionally, to achieve
certain statistic and time properties, some manual modifica-
tions of the sequences were made, i.e., in a sequence with
the Gaussian distribution with the mean value of two and
sigma of one, non-matching series of elements were inserted,
and the extended length was truncated back to 5000. The
used non-matching value was seven, as it did not occur in
the original file. Insertions of lengths 100, 500, 1000, 2000,
3000, and 4000 were made. In total, 40 different files were
prepared to check the properties of the metrics. Then the cost
metric and the stretch ratio were calculated for all possible
combinations of the files. Figure 8 presents all 1600 results
in the stretch-cost plane. Data presented in Table 1 show how
the inserted non-matching elements influence the cost and
the stretch ratio. The dots highlighted in red show the data
presented in Table 1.
The cost corresponds to the size of the mismatched series

indicated by continuous gaps, while increasing the gap size
increases the stretch ratio, which is inversely proportional
to the percentage of matches. For example, when all values
match, the stretch ratio is equal to one, and when there are no
matches, it is equal to two.
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FIGURE 8. The pseudorandom sequences comparison results in the
stretch-cost plane.

TABLE 1. Experiment results of pseudorandom sequences comparison.

A comparison of different sequences with Gaussian distri-
butions shows that when the mean value difference is small,
e.g., for a mean of two and mean of four, the stretch ratio
remains low, but when the difference grows, and thus fewer
values of both distributions overlap, then the stretch ratio
also increases, reaching a maximum for the most distant pair,
i.e., with the mean of two and themean of fourteen. The effect
is visible for different distributions as well, e.g., the sequence
with Gaussian distribution and the mean of two is similar to
data with Rayleigh distribution and sigma of two, therefore
the stretch ratio for this pair is relatively low.

Data points presented in Figure 8 confirm the interpretation
of the groups presented in Figure 7. The stretch ratio shows
the coincidence of both sequences, while the cost describes
the matching pattern. Low cost indicates the insertion of short
gaps series, and high cost informs about long breaks. Figure 8
shows that for a stretch ratio close to maximum, the cost
varies from 500 to 5000.

FIGURE 9. The FIRO random generator comparison results in the
stretch-cost plane.

TABLE 2. Experiment results of true random sequences comparison.

On the other hand, for the cost of 2000, the stretch ratio
varies from 1.2 to 2. Thus, the obtained results fit into the
predicted state-space in the a, b plane.

B. TRUE RANDOM SEQUENCES
The second part of the experiment was focused on testing ran-
dom sequences obtained from hardware random number gen-
erators. Amajor part of the sequences comes from a hardware
generator implemented in an FPGA – Spartan 6 XC6LX16.
The data set is supplemented with pseudo-random sequences
from the Xilinx ISE Design Suite circuit simulator. Again,
40 different sequences were prepared, and all possible com-
binations of the pairs were examined. All results are presented
in Figure 9 and the data in Table 2 are highlighted in red.

Table 2 shows that in the control case, i.e., self-comparison
of a sequence, the match cost is 0 and the stretch ratio is 1.
However, for different sequences obtained from the same
generator, the stretch ratio remains low with the match cost
lower than 500. Careful analysis of the results clearly indi-
cates sequences similar to each other, i.e., those having a
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FIGURE 10. The results of the Needleman-Wunsch alignment algorithm.

FIGURE 11. The results of the proposed alignment algorithm.

match cost lower than 100 and a stretch ratio close to 1.7.
By analogy, totally different sequences reach the stretch ratio
close to 2 and the cost higher than 3000. When to different
pairs of sequences, the same stretch ratio is assigned, e.g.,
close to 1.75, it is possible to distinguish the nature of their
mutual convergence using a second metric. In such a case,
the match cost varies from 0 to 1500. Using two metrics
simultaneously provides a better overview of the similar type
of both sequences.

The experimental results described above cover different
types of dependencies, and once more confirm the expected
performance of the proposed algorithm.

The results provided in Tables 1 and 2 demonstrate the
wide application of the algorithm. The proposed method can
be an effective tool for direct sequence comparison, and thus
randomness assessment.Moreover, it can be used as a selector
of structures and constructions which provide the highest
match cost and stretch ratio, to ensure the high quality of
generated random sequences. The metric can also be used as
a general-purpose verification tool to compare the simulation
results with the gathered real data.

C. METHODS COMPARISON
Although the proposed method is derived from bioinfor-
matics, it significantly extends the matching methodology.
To show the fundamental difference and its influence on
the alignment result, we compare the operation of the algo-
rithm with the well-known Needleman-Wunsch (NW) tech-
nique [24]. For comparison purposes, four 128-bit random
sequences, i.e., R1-R4, were generated. The test data was
interpreted as strings of 16 characters mapped to the form
required by the given algorithm. In order to ensure the
appropriate randomness, generators based on ring oscillators,
implemented in Intel MAX10 and Xilinx Spartan 6 devices,
were used. The numerical results of the alignment are shown
in Figures 10 and 11.
Figure 10 shows the match score from the NW algorithm.

To systematize the interpretation of the alignment in the plot,
the obtained score was negated, thus the minimum value

FIGURE 12. Alignment of the (R1,R2) and (R1,R3) pairs using the
Needleman-Wunsch algorithm.

FIGURE 13. Alignment of the (R1,R2) and (R1,R3) pairs using the
proposed algorithm.

indicates the greatest similarity between the sequences, and
the maximum indicates the most differentiated pair. In the
discussed case, we can see that the NW algorithm is sym-
metric, indicating (R1,R2) as the most similar and (R1,R4)
as the most different.

Figure 11 shows the results for the proposed method. The
obtained metrics exhibit a linear tendency, reproducing the
order and symmetry of pairs (R1,R2), (R3, R4), and (R1,R3)
shown by the NW algorithm. However, there is an important
difference for the sequences (R2,R4) and (R1,R4). In these
cases, a difference in the stretch is due to the effect of produc-
ing the ‘‘tail’’, i.e., end mismatches. Moreover, pairs (R1,R4)
and (R2,R4) were rearranged in comparison with the ordering
of the NW results. Figures 12 and 13 explain the source of the
differences in detail.

In the considered case, the proposed algorithm, unlike NW,
recognizes the pair (R1,R4) as better suited than (R1,R3).
This is due to finding onemorematch in (R1,R4) than through
NW. However, for the comparison of (R1,R4) and (R1,R3) –
both with 5 matches, the most important is the exponential
cost of the alignment instead of linear. In the case of the pair
(R1,R3) it is required to insert longer gaps series than in the
pair (R1,R4). Whereas in the NW algorithm this difference
is insignificant. This case shows that the proposed algorithm
is as effective as NW in the sequence alignment. However,
by determining a more distinguishable cost function, it pro-
vides additional information allowing not only a binary eval-
uation but also an interpretation of the sequence alignment
properties.

IV. CONCLUSION
The algorithm described in the paper provides the results
of a comparative analysis in the form of the S(a, b) metric,
which primarily ensures easy interpretation. The returned
metric indicates the degree of mutual similarity of the
sequences and allows one to infer the nature of their depen-
dence. The expected behavior of the algorithmwas confirmed
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both by simulation, using strings with known properties, and
experimentally with the use of hardware random number
generators with a known structure.

An important feature of the algorithm is its simple imple-
mentation, based on iterations, increments, and comparisons.
This provides easy hardware realization as a build-in block
in FPGAs and ASICs, whereas the use of a single reference
enables the currently obtained sequence to be examined even
in soft real-time systems. Therefore, the algorithm can be
effectively used to follow the current operating state of the
generator, and successfully used at the design stage as well,
e.g., in the analysis of the similarity of sub-generators in more
complex structures.
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