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WydziaÃl Elektryczny

Instytut Elektroniki i Telekomunikacji
ul. Piotrowo 3A, 60-965 Poznań
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Chapter 1

Introduction

1.1 Scope of the Work

Accurate video segmentation plays an important role in many applications, such

as object-based video coding, video surveillance, interactive multimedia [93] and

video editing. Recent international standards such as MPEG-4 [30, 56, 58, 67]

and MPEG-7 [57, 81] are specially designed to support these applications. For

example, MPEG-4 allows different video objects to be encoded separately and

transmitted within separate data streams.

A lack of efficient real-time segmentation techniques is a significant obstacle in

widespreading and practical applications of MPEG-4 object-based compression.

This object-based approach gives the possibility of manipulating the transmitted

objects. A video object can be easily replaced by another one and transmitted

using different bandwidths depending on the required picture quality (e.g., less

important objects can be transmitted with a lower bitrate). To take advantage

of these features, the video sequence must be precisely segmented into objects.

MPEG-4 and MPEG-7 do not specify how to extract objects. The only require-

ment is that the objects must be defined prior to coding or indexing.

In most cases, video sequences of images segmentation is aimed at the ex-

traction of the so-called semantic objects (see Figure 1.1) that have meaning for

humans (e.g., man, car, table, etc.), but they are very hard to define using low

level features. Only such features can be extracted directly from a video sequence.
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It makes the process of the extraction of such objects from the highly textured

background very complicated.

Another type of video segmentation is temporal segmentation. Its purpose is

to extract shots limited by cuts and transitions within video sequences. Since it is

a different problem than object detection, this work will not deal with this kind

of segmentation. An extensive review of temporal segmentation can be found

in [71].

Segments extracted from video sequences can be used in the following disci-

plines of video processing:

• Video surveillance. For example, automatic detection of intruders in the

video picture.

• Video transmission. Here segmentation will permit the compression and

transmission of different objects in separate data streams.

• Editing. Keying without a special background, automatic rotoscopy, etc.

• Visual information search. Automatic indexing of visual databases.

Possibility of creating visual queries for such a database.

• Vehicle navigation. Automatic obstacle detection, recognizing road signs,

trajectory prediction based on the actual traffic condition.

• Interactive video services. Distant education systems, on-line shopping.

The desired quality of segmentation and the speed of the process of segmenta-

tion depend on the application. For off-line video editing applications, the most

important issue is quality, while speed is a secondary matter. On the contrary,

in many real-time applications such as vehicle navigation and surveillance, the

most important feature is the detection and location of moving objects, while

the determination of the exact object boundary is not so important. A method

that would be fully automatic, fast and accurate is still an open problem in video

segmentation.
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Figure 1.1: Example of sematic visual objects

In specially prepared sequences, for example, those created by chroma-keying,

object extraction is relatively simple, so it can be performed fast and accurately.

In artificial, computer-generated sequences, there are usually no problems be-

cause of the detailed scene information. However, object extraction from real-life

sequences is a very complicated task. Segmentation and object tracking are fun-

damental and yet not well solved problems in computer vision. Many recent

papers, e.g., [25, 33, 41, 45, 51, 82, 132, 133] are devoted to this problem and de-

scribe more or less accurate methods.

It is possible to detect a semantic object in a video sequence thanks to its

motion. However, in practice, it is a very difficult task, because the estimation

of a dense and highly accurate motion field is still an unsolved problem.

1.2 Assumptions, Goals and Thesis

The following assumptions are made in this dissertation:

• Segmentation is performed on natural sequences, i.e., sequences that repre-

sent the natural world as perceived through a camera, and not created by
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computer graphics tools.

• No object-oriented processing is applied (no chroma-keying, etc.).

• Parameters of the camera are unknown.

• Segmented sequences are non-interlaced (progressively scanned).

Sequences made with the use of specially prepared environments such as the

blue box are not taken into consideration. Such sequences have been successfully

segmented for a long time even by simple analog devices.

The goal of this work is the development of an unsupervised video segmen-

tation algorithm. The algorithm should detect semantic objects that are moving

with respect to the background. The complexity of this algorithm should be low

enough to allow real-time implementation using processors that will be available

within two or three years.

The proposed method is intended for the preparation of the source material

for object-based video processing and requires a high quality input, i.e., no com-

pression artifacts, low noise level, etc. For the sake of simplicity, the deliberations

are restricted to non-interlaced (progressive) sequences only [138,153]. Interlaced

video is used mostly by television both for broadcasting and surveillance. How-

ever, modern TV standards (such as HDTV [110, 153]) offer the possibility of

displaying non-interlaced material. It is more compatible with cinema standards

and provides better picture quality.

In a video sequence, semantic objects can be detected by motion analysis,

thus proper motion estimation is very important in video segmentation. Motion

estimation is beyond the scope of this work. This part of video processing is

widely used in video segmentation; however, it is a discipline for itself. Moreover,

motion estimation algorithms are still under intensive development in many sci-

entific centers all over the world. The speed and accuracy of motion estimation

is still being improved. Algorithms developed in this work will exploit the clas-
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sical motion estimation methods. Improved motion estimation may replace the

algorithms considered in the dissertation.

Active contour methods [17,65,72,97,140] are often used in the segmentation

of static images as well as video sequences (see Chapter 4). Among active contour

methods, a relatively new Fast Marching Method [113,119,124] (see Section 4.4)

is considered in this dissertation. The flexibility of this method allows adapting

it to a wide range of problems. Additionally, the Fast Marching Method has com-

putational complexity of class O(n log n), where n is the total number of points

in the computational domain [119]. Low computational cost is very important for

applications that require speed. In order to limit the dissertation to a reasonable

size, the research was limited to applications of the Fast Marching Method.

Thesis of the dissertation

The Fast Marching Method can be used for real-time unsupervised ex-

traction of semantic objects from frames in colour video sequences with

both a static and a moving background.

This thesis will be proved by means of a verified proposal of respective tech-

niques as discussed in Chapters 5 and 6.

1.3 Thesis Outline

Chapter 2 will highlight some general problems of image processing related to

video segmentation that are essential to the method developed in this work. This

chapter will also present problems directly related to video segmentation. In

Section 2.3.3, there will be proposed a procedure for efficiency improvement for

the existing motion estimation methods. Additionally, an original method of

quality evaluation for video segmentation will be proposed in Section 2.4.3.

Chapters 3 and 4 will give an overview of video segmentation methods. Al-

gorithms developed in this thesis are related to the group of methods presented

in Chapter 4.
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Chapter 5 will present an original method of foreground-background segmen-

tation based on the Fast Marching Method [119]. The contribution of this chapter

includes:

• development of an automatic initialization method,

• adaptation of the fast marching algorithm to the given problem,

• automatic calculation of the stop condition,

• method of segmentation quality improvement.

Chapter 6 will present an original method of the detection of multiple objects

in a certain class of video sequences. The method is based on multi-label fast

marching [124, 125], yet it contains significant extensions. The contribution of

this chapter includes:

• initialization with any number of labels ( the number of labels is unknown

prior to segmentation),

• simplification of propagation speed, which makes the algorithm more effi-

cient,

• dynamic motion vectors regularization,

• solution of the problem of unidirectional contour propagation.

Chapter 7 will contain some concluding remarks as well as directions of further

research.



Chapter 2

Selected Problems of Video
Segmentation

2.1 General Problems of Video Segmentation

The most important task in video segmentation is to extract semantic objects.

The problem is that there is no exact definition of the semantic object. Generally,

it is defined as an object that has meaning for humans. However, this definition

is very context dependent. For example, one person can consider a car as one

object while another person can distinguish the wheels, the body of a car and the

windows as separate objects. It is easy to notice that semantic decomposition of

the scene can be done on different scales.

The high-level definition of the semantic object is ambiguous. It is hard

to find a combination of low-level features that will clearly define such objects.

Usually, the low-level feature that is used for the detection of the semantic object

is its motion. Leaving out problems with motion estimation and considering

the perfect and dense motion field it is not easy to find semantic objects. Objects

with complex motion are difficult to segment. For example, walking people are

such a difficult case, because during the walk one leg is always static against

the surface while other parts of the body are moving at different speeds and in

different directions. The objects that are not moving are undetectable using this

approach.
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It has to be mentioned that the term motion used here is related to movement

in the image plane of the video, and not necessarily to real displacements of

objects. In some cases it is possible to detect objects that are not moving in

a real world. When a static object is seen against a static background that is

far behind the object and the camera is in motion, there can be measured the

so-called apparent motion caused by the parallax effect. Nevertheless, the moving

camera causes a lot of problems with object detection because, as will be shown

later, most segmentation algorithms are based on frame to frame differences. As

a consequence, they require a static or a motion-compensated background.

Video segmentation can be performed only within one shot. After a cut

or during a transition, the differences between consecutive frames are too big

for motion estimation and segmentation. Then the segmentation of a material

already cut is considered, the borders between the takes have to be detected first.

Such a process is called temporal segmentation [9,35,71,104] and is considered as

a separate problem in video processing.

Overlapping objects that appear in video sequences are a problem similar

to the moving background. In some parts of the sequence one object can be a

background for another. In this case, it is hard to detect the border between

them using the difference between the frames. It is a big problem for methods

that consider a stationary background.

Another problem in video segmentation are reflective and transparent objects.

Since the interior of such objects is constantly changing while the objects are

moving, it is very hard to estimate the motion properly for such objects and, as

a consequence, to detect such objects in a scene. A particulary vivid example of

such an object is water, where complex visual properties exist, such as reflections

and complex motion.

Noisy video sequences may be very hard to segment, not to mention viewer

perception issues. Of course, it depends on the amount of noise that the sequence

contains. The more noise, the more problems with segmentation. Since noise
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distribution is different in every frame, detecting objects by the frame difference

is difficult. Also, the methods of dense motion field estimation [53, 74, 76] have

problems in case of noise. The application of noise-reduction filters [1,90,106,136]

can help; nevertheless, this kind of filters usually introduce blurring and can be

time-consuming in more advanced implementations.

Despite some general problems with using motion as a feature that makes

object detection possible, motion estimation is a very complex task itself. This

subject is presented in Section 2.3.

2.2 Colour Models

2.2.1 RGB Colour Space

This is the most popular colour space in image processing. It consists of three

chromatic components: Red, Green and Blue [34,112]. The RGB colour space is

orthogonal and the colour gamut of this space forms a cube. In the center of the

coordinate system there is a black point, while the point defined by the maximum

values of the red, green and blue components is white. On the line defined by

the maximum values of the components and the center of the coordinate system

there are all achromatic colours.

This colour space is most popular in digital representation of images (storage)

and in display devices. Also, a large number of acquisition devices use this model.

Despite its popularity, the RGB colour space has some disadvantages:

• high correlation of components, which makes the RGB model unsuitable

for compression;

• it is hard to intuitively describe the colour using the R, G, B components;

• perceived differences in colour are not equivalent to the distances in colour

space (non-uniformity).

This model is not very suitable for segmentation applications because of its
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Figure 2.1: Cylindrical IHS colour space

sensitivity to illumination changes. Handling shadows or scenes with changing

lighting is very hard using the RGB colour model.

2.2.2 Perceptual Colour Spaces

Human eye contains receptors of the red, green and blue colours. Despite this

fact, it is very hard for an untrained person to describe colour in the RGB space.

It is much more natural to describe colour in the sense of its intensity (brightness,

lightness), hue and saturation [34,112]. Hue represents the dominant wavelength

in the stimuli. Intensity is related to the energy of the light while saturation

is related to the differences in amplitude between the dominant wavelength and

the remaining part of the spectrum. The maximum of saturation gives pure

chromatic light whilst zero saturation gives gray levels dependent on intensity.

Zero intensity gives black and the maximum of the intensity gives white.

The separation of luminance and chrominance gives the possibility of handling

easily illumination changes and shadows in segmentation applications [36,64,68,

148].

A typical perceptual colour space is the IHS1 cylindrical space (Figure 2.1). In

this space, Intensity is represented on the cylinder axis, Saturation is a distance

1Variations of this space are the HSV and HLS colour spaces.
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from the axis, while Hue is an angle of rotation from the point of zero hue.

Because of the complex transformation from the orthogonal RGB space to the

cylindrical colour space, there can be met different forms of representing H, which

are often a compromise between the accuracy of representation and the simplicity

of calculation. An exact calculation of H with the given RGB components can

be done according to the following formula [48,139]:

H = cos−1 0.5((R − G) + (R − B))
√

(R − G)2 + (R − B)(G − B)
, (2.1)

where if B > G, then H = 360 − H.

These colour models have some disadvantages:

• conversion from other models is not straightforward (there are many con-

version schemes used) and is computationally expensive,

• for low saturation values, colour information becomes less reliable,

• computation of differences is inconvenient because of the angular character

of the hue component (extreme values of this component are perceptually

almost the same).

2.2.3 Television Transmission Colour Spaces

These colour spaces were designed to minimize the bandwidth required for image

transmission. In these models, chrominance is defined as differences between

chromaticity components and luminance, hence this type of colour space is called

the opponent colour space [34, 112]. Because of a very low correlation between

the components, opponent colour spaces are widely used in image compression.

The YUV colour space is the basis of the PAL TV signal. The components

of this space are defined as follows:

Y = 0.177R + 0.812G + 0.011B

U = −0.147R − 0.289G + 0.437B = 0.493(B − Y )

V = 0.615R − 0.515G − 0.100B = 0.877(R − Y ).

(2.2)
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The YIQ colour space is used in the NTSC TV coding standard. The lumi-

nance component Y is identical as in the YUV (Equation 2.2) space. The I

component represents the orange-cyan axis and the Q component represents

the magenta-green axis. These two components are defined as follows:

I = 0.596R − 0.274G − 0.322B = 0.74(R − Y ) − 0.27(B − Y )

Q = 0.211R − 0.523G + 0.312B = 0.48(R − Y ) + 0.41(B − Y ).
(2.3)

The YCbCr was designed as an alternative to YUV and YIQ, independent

of the TV coding system. It is widely used in the digital coding of images.

The luminance component Y is identical as in the YUV (Equation 2.2) space,

while the chromaticity components are defined as follows:

Cb = −0.169R − 0.331G + 0.500B = 0.564(BY )

Cr = 0.500R − 0.418G − 0.081B = 0.713(R − Y ).
(2.4)

The YCbCr colour model is very convenient from the segmentation point of

view [4, 20, 73, 109]. Firstly, it separates luminance from chrominance, which

makes the handling of shadows and illumination changes very natural. Secondly,

it does not represent disadvantages of the IHS colour space: conversion to YCbCr

is straightforward and there is no problem with the calculation of differences.

An additional advantage of this colour space is that it is used by video encoders

and can be used directly by a segmentation algorithm designed for object-based

video coding.

Considering all the advantages described earlier, the YCbCr colour space has

been chosen as the working colour space for segmentation algorithms developed

in this work. Another argument for using this colour space is the fact that most

video sequences are available in the YCbCr or similar YUV and YIQ spaces.
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2.3 Motion Estimation

2.3.1 Importance of Motion Estimation in Video
Segmentation

To perform the extraction of moving semantic objects from a colour video se-

quence, additional information about the consistence of these objects is needed.

For video compression, block matching techniques [96, 138] are mostly used.

Those motion estimation algorithms do not provide a dense motion field and are

not intended to discover a real motion from a sequence. Their goal is to find

the closest match for the present block of pixels in the next frame. The above

assumptions make this kind of algorithms unapplicable for video segmentation.

Although motion information is essential for the method considered in this

thesis, the development of a new motion estimation algorithm is not intended.

There is intensive research in this field being conducted. One of the available

algorithms will be used.

2.3.2 Problems with Motion Estimation

Here some problems related to motion estimation are emphasized. A detailed

analysis of the problems along with examples of motion estimation algorithms

can be found in [96,138].

Apparent motion

Changes that we observe in video sequences are a result of the projection of a

3-D space onto a 2-D image plane. It is impossible to determine real object

motion without implicit knowledge about scene geometry. In natural sequences,

such information is unavailable. Such a 2-D projection of a 3-D motion is called

apparent motion. If a point moves in an image sequence, its motion is ambiguous.

This means that the same observed motion can be caused by all points whose

initial and final positions lie on the same line that crosses the center of projection

(see Figure 2.2). Such a 2-D vector of displacement in the image plane is also
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Figure 2.2: Apparent motion

called the correspondence vector.

Due to moving objects, pixels in consecutive images from the sequence change

its brightness. The rate of this change can be followed in time-space coordinates.

The vector that defines this changes is called the optical flow vector and is de-

fined as

(vx, vy) = (dx/dt, dy/dt), (2.5)

at a particular point (x, y, t) ∈ R3.

Theoretically, the projected motion and the optical flow should be identical.

In practice, these two values can be different because of:

• Movement of the smooth regions. When there is no gradient within the

moving area, the optical flow cannot be computed. For example, a uniformly

colored circle that rotates around its center will not produce any optical flow

(see Figure 2.3).

• Changes in illumination. When lighting in the scene varies from frame to

frame, the optical flow exists even if there is no physical motion in the

scene. The optical flow different from the real object motion can be also

generated by shadows or changes in shading caused by the rotated surfaces

(see Figure 2.4).
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Figure 2.3: Motion that does not produce the optical flow

Frame i Frame +1i

Figure 2.4: Optical flow produced by illumination changes
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Figure 2.5: Moving object is covering some parts of the background while
uncovering others

Occlusion

When an object in the scene moves from frame to frame, it covers some parts of

the background that were uncovered in the previous frame whereas some parts

of the background remain uncovered (see Figure 2.5). The part of the image

that was uncovered has no corresponding region in the previous image from the

sequence. This makes the computation of the optical flow impossible. By analogy,

a similar problem exists for the covered part of the picture.

Aperture

Most motion estimation methods perform within a certain window. A conse-

quence of that is the fact that the solution to the motion estimation problem is

not unique. It is only possible to determine the optical flow orthogonal to the

spatial image gradient. This kind of flow is called the normal flow. For example,

when a smooth square rotated by 45 degrees moves horizontally and its edge is

observed by a small window, it is impossible to determine the real direction of

the movement. Only the normal flow can be observed (see Figure 2.6).
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real motion

direction
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apparent motion

direction

within the window

Figure 2.6: Aperture problem

2.3.3 Some Methods of Dense Motion Estimation

The development of a motion estimation method is not the purpose of this work.

To avoid implementation problems, two state-of-the-art dense motion field esti-

mation methods were used. These methods include the Horn-Shunk method and

the Lucas-Kanade method. The former was chosen because of its robustness to

get stuck in local minima, the latter because of its speed connected with rela-

tively good reliability. Both methods have a very good support in the literature.

An additional factor was the performance comparison found in [38], where both

methods obtained the highest results.

Horn-Shunk Method

The motion estimation method introduced by Horn and Schunck in [53] is based

on the optical flow equation. According to this equation, the intensity I(x, y, t)

of the image remains constant along the motion trajectory:

dI(x, y, t)

dt
= 0. (2.6)

According to the chain rule, the above equation can be expressed as follows:

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0. (2.7)
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The values of dx
dt

and dy
dt

are components of the motion vectors to be estimated

and will be denoted by

u =
dx

dt
and v =

dy

dt
, (2.8)

for horizontal and vertical directions, respectively.

For the sake of clarity, let Ix, Iy, It be the image gradients with respect to x,

y and t, respectively. Now, Equation 2.7 can be expressed as follows:

(Ix, Iy) · (u, v) = −It. (2.9)

From Equation 2.9 it is possible to determine only the movement component in

the brightness gradient direction. In order to calculate the real optical flow, an

additional smoothness constraint must be applied. The smoothness constraint is

usually formulated in terms of Laplacians:

∇2u =

(

∂u

∂x

)2

+

(

∂u

∂y

)2

, (2.10)

∇2v =

(

∂v

∂x

)2

+

(

∂v

∂y

)2

. (2.11)

To calculate the flow vectors, the sum of errors in intensity displacement must

be minimized

Eb = Ixu + Iyv + It, (2.12)

and the smoothness constraint derived from (2.10, 2.11):

E2
c =

(

∂u

∂x

)2

+

(

∂u

∂y

)2

+

(

∂v

∂x

)2

+

(

∂v

∂y

)2

. (2.13)

Finally, the total error to be minimized has the following form:

E2 =

∫∫

Ω

(E2
b + α2E2

c )dxdy, (2.14)

where Ω is the image area and α is the weighting factor that controls smoothing.



30 Selected Problems of Video Segmentation

(a) (b)

Figure 2.7: Example of motion field magnitudes obtained by the
Horn-Schunck algorithm (500 iterations). (a) – horizontal component, and
(b) – vertical component

The above problem can be solved iteratively using the Gauss-Seidel method

according to the following equations:

un+1 = ūn − Ix
Ixūn + Iyv̄n + It

α2 + I2
x + I2y

, (2.15)

vn+1 = v̄n − Iy
Ixūn + Iyv̄n + It

α2 + I2
x + I2y

, (2.16)

where ū and v̄ are the local averages of motion components excluding the present

pixel. The higher value of the parameter α, the smother the resulting motion

field, and the same edges in the motion field have less correspondence to the

underlying object edges. Too small values of α makes the algorithm stuck in the

local minima. As the initial guess of (u, v), zero or the estimate from the previous

frame at the same pixel is usually chosen. The iterations are stopped when there

is no change in the motion field between two consecutive iterations. An example

motion field obtained from the ‘Bus’ sequence is presented in Figure 2.7.

Lucas-Kanade Method

This method was introduced in [76] as an image registration and stereo disparity

calculation technique. It was also successfully applied as a motion estimation

method [8,24,74].
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(a) (b)

Figure 2.8: Example of motion field magnitudes obtained by the
Lucas-Kanade algorithm (1 iteration). (a) – horizontal component, and (b)
– vertical component

The first step of the algorithm is the computation of the spatial and temporal

gradients Ix, Iy, It over the smoothed version of the images from the sequence.

Typically, this is done using a 5 × 5 convolutional filter.

In the next step, the following linear equation is constructed:

[
∑

W I2
x

∑

W IxIy
∑

W IxIy

∑

W I2
y

] [

vx

vy

]

= −
[

∑

W IxIt
∑

W IyIt

]

, (2.17)

where W (x, y) is a square window with the centre placed at (x, y) with weights

assigned to the elements according to the Gaussian function, namely, weights

values are higher for central pixels and lower for peripheral pixels.

The solution of this equation with respect to vx and vy gives the motion

components for the given pixel. An example motion field obtained with the

Lucas-Kanade method is shown in Figure 2.8.

The advantages of this method include:

• speed,

• accuracy,

• no iteration required (motion vectors are obtained in one pass of the algo-

rithm).
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(a) (b)

Figure 2.9: Example of motion field magnitudes obtained by the
Horn-Schunck algorithm with the result of the Lucas-Kanade method used
as an initial guess (1+20 iterations). (a) – horizontal component, and (b) –
vertical component

As disadvantages one can consider:

• problems with the solution of the ill-posed versions of Equation 2.17,

• maximum detected displacement dependent on the size of the window W .

Combined Method

To speed up the calculations, a combined method which merges the Horn-Schunck

(HS) and Lucas-Kanade (LK) algorithms is proposed in this dissertation. To

obtain a smoother motion field, after the LK estimation, several iterations of

the HS algorithm are performed with the result from the first step used as an

initial guess (Figure 2.9). This gives a significant reduction of computational cost

in comparison to the traditional HS method (Figure 2.7) with similar quality.

When starting from zero, the HS method after 20 iterations gives a motion field

which is far from the real motion present in the sequence (Figure 2.10).

A comparison of the HS method with and without initialization is presented

in Table 2.1. The error between the frames was calculated as a mean square of
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(a) (b)

Figure 2.10: Example of motion field magnitudes obtained by the
Horn-Schunck algorithm after 20 iterations. (a) – horizontal component,
and (b) – vertical component

motion compensated frame differences:

MSE =
1

w · h
w−1
∑

x=0

h−1
∑

y=0

(In(x, y) − In−1(x + mx, y + my))2, (2.18)

where w and h are image dimensions, mx my are motion vectors at the current

pixel and n is the frame number. In most cases, the initialized method obtained

better results in a much shorter time.

2.4 Quality Measures of Segmentation

Segmentation quality assessment is an important part of the video segmentation

problem. The problem is that it is very difficult to obtain an objective quality

measure that conforms with subjective assessments made by human observers.

Quality evaluation is very often omitted in publications. A reliable quality mea-

sure is essential for the development of segmentation methods.

2.4.1 Subjective Methods

All subjective test methods are based only on assessments made by viewers. The

tests should be performed under controlled viewing conditions. Such viewing

conditions are defined in the ITU-T Recommendation P.910 [98] for image and
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Table 2.1: Comparison of motion estimation quality for the Horn-Shunk
(HS) method started from zero and the HS method initialized by the Lucas-
Kanade method (LK-HS). MSE – mean square error between two motion
compensated frames

Sequence
Frame

no.

Time HS
(ms)

MSE HS
Time LK-HS

(ms)
MSE

LK-HS

Bus 60 9680 441.1 1324 411.1

Bus 120 9682 238.2 1318 210.5

Bus 240 9692 302.8 1324 298.3

Coast 1 9637 72.5 1332 141.9

Coast 130 9742 67.9 1340 133.8

Coast 264 9667 81.1 1341 148.5

Dance 45 9650 110.3 1308 98.2

Dance 100 9892 233.5 1328 190.9

Dance 160 9810 168.8 1337 138.8

Mobile 50 9677 183.1 1389 219.0

Mobile 130 9893 177.9 1357 228.2

Mobile 270 9791 96.4 1347 168.9

Stefan 30 9643 121.9 1320 111.8

Stefan 50 9740 21.4 1347 20.4

Stefan 215 9745 55.7 1339 54.7

video quality assessment, and can be adapted for segmentation quality assessment

as well.

An example of subjective tests applied to video segmentation can be found

in [84]. The test sequences were categorized by the number of visible objects,

place (indoor/outdoor) and illumination changes. The sequences were viewed

using high quality displays in a quiet surrounding according to the ITU-T rec-

ommendations.

The evaluation described in [84] was performed by a group of 24 people.

Half of this group were experts related to video technology, while the other half

included unexperienced users. Since colour was essential in the tests, all groups

had to pass the colour blindness test. The testers gave marks from a five point

scale on a form containing the criteria shown in Table 2.2.

The testing was performed according to a strict procedure. At the beginning,

the tester was watching an original, unsegmented sequence for a maximum of
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Table 2.2: Evaluation criteria and performance metrics (from [84])

Algorithm evaluation criteria Evaluation Method
1 Segmenting moving semantic objects from

the background
Subjective assessment

2 Tracking individual regions throughout the
video sequence

Subjective assessment

3 Providing an accurate region or, preferably,
object boundaries

Subjective assessment

4 Distinguishing between moving objects and
image perturbations (e.g., camera noise,
rain)

Subjective assessment

5 Segmenting objects into associated sub-
regions

Subjective assessment

6 Eliminating or correctly identifying shadows Subjective assessment
7 Low computational complexity Run-time data
8 Low number of configuration parameters Run-time data
9 Illumination invariance Post-assessment analysis

10 Segmenting well outdoor sequences Post-assessment analysis

three minutes. During this time, any part of the sequence could be seen. After

that time, the entire segmented sequence was presented once. Then the sequence

was divided into three parts. Every part could be seen for five minutes at most

and after that time it should be scored, before viewing the next part.

The results of the tests were the subject of statistical analysis. This approach

seems to be good since it promotes methods that are better perceived by the

viewer. However, such methods have some pitfalls. It is known that a statistical

test requires a large number of data to be representative. Moreover, the selection

of the testing group could have an impact on the results because of the individual

preferences. It is unclear whether the testing group should be chosen randomly

or represent the target customers of the tested segmentation method.

Subjective tests have some serious drawbacks:

• they are hard to manage (many people must be engaged),

• they are very time consuming,

• they are expensive.
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2.4.2 Objective Methods

There are two groups of such methods:

• Evaluation without ground truth

The techniques estimate segmentation quality by the use of measurements

of the object extracted. Such measures can be computed automatically

without user interaction.

• Evaluation with ground truth

Reference segmentation is used. The reference for natural sequences can be

prepared only by a human operator. The method results in the measure of

errors between the reference segmentation and the segmentation assessed.

Evaluation without Ground Truth

Here as an example the method of Erdem et al. [31] can be presented. They

assume that the colour histogram should remain unchanged inside the object

if segmentation is correct. With this in mind, another measure that can be

mentioned that characterizes the quality of segmentation is inter-frame colour

histogram differencing. The histogram is calculated from the differences between

the image segments at the frame n and n − 1. Another approach is to build

the histograms of the image segments at the frame n and a smoothed histogram

of objects from the images {n − i, . . . , n + i}. The histogram at the frame n is

denoted by Hn. It is represented as a vector containing concatenated histograms

from all colour components. The smoothed version of this histogram denoted as

Hn,av is constructed as follows:

Hn,av(j) = med{Hn−i(j), . . . , Hn+i(j)}, j = 1, . . . , B, (2.19)

where med denotes the median and B is the number of bins in the histogram.

The calculations consists in measuring the characteristics on the opposite sides

of the object contour. For the evaluation purpose, the YCbCr colour space is
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used. The points of measure are determined by short lines spaced equally and

aligned normally to the boundary of the segment (Figure 2.11). Along these lines,

interior

interior

exterior

exterior

object

boundary

Ci
O(n)

Ci
I(n)

Figure 2.11: Normal lines along the object boundary and the areas on which
metrics are computed. pI – interior point, pO – point outside the object.

a colour difference metric is calculated. The metric is defined as follows:

0 ≤ dCB(n) = 1 − 1

Kn

Kn
∑

i=1

dCB(n; i) ≤ 1 (2.20)

dCB(n; i) =
||Ci

O(n) − Ci
I(n)||√

3 × 2552
(2.21)

where Kn is the total number of normal lines placed in equal distances (Fig-

ure 2.11) at the object boundary at the frame n, and Ci
O(n) and Ci

I(n) are

average colour values calculated in the M × M neighbourhood for the interior

end exterior end of the normal line, respectively. Since the difference between

Ci
O(n) and Ci

I(n) is calculated as a distance in the Euclidean space, denominator

in Equation 2.21 provides normalization to the range 〈0, 1〉.

The difference between the histograms Hn and Hn,av is calculated using four

metrices: L1, L2, χ2 and histogram intersection. Because the length of the his-
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tograms can be different, the scaling parameters R1 and R2 have to be introduced:

R1 =

√

NHn

NHn,av

, R2 =
1

R1

, (2.22)

NHn
=

B
∑

j=1

Hn(j), NSHn
=

B
∑

j=1

H2
n(j), (2.23)

NHn,av
=

B
∑

j=1

Hn,av(j), NSHn,av
=

B
∑

j=1

H2
n,av(j). (2.24)

Another metric used to measure segmentation quality is the motion metric.

When computing this metric, the authors assume that the motion of the back-

ground is zero or can be compensated. This is a very serious limitation since

in the large amount of video sequences an accurate compensation of the cam-

era motion is impossible. Another assumption is that motion boundaries exactly

coincide with colour boundaries. This cannot be ensured by most motion estima-

tion algorithms due to the occlusion effect and other problems that make such

estimation inaccurate. The metric itself is defined as follows:

dM(n) = 1 −
∑Kn

i=1 dM(n; i)
∑Kn

i=1 wi

, (2.25)

dM(n; i) = d(vi
O(n), vi

I(n)) · wi, (2.26)

wi = R(vi
O(n)) · R(vi

I(n)), (2.27)

where vi
O(n) and vi

I(n) are average motion vectors at the ends of the normal lines

used for measuring the background and the object, respectively. The function

d(.) is the distance between two vectors:

d(vi
O(n), vi

I(n)) =
‖d(vi

O(n), vi
I(n))‖

‖d(vi
O(n)‖ + ‖vi

I(n))‖ , (2.28)

and R, which denotes the reliability of the motion vector at the point pi, is

expressed as

R(vi(n)) = e

(

−
‖vi(n)−bi(n+1)‖2

2σ2
m

)

· e
(

−
‖c(pi;n)−c(pi+vi;n+1)‖2

2σ2
c

)

, (2.29)

where bi(n + 1) is the backward motion vector and c(pi; n) is the image colour.

The parameters σm and σc are chosen empirically.
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The overall score is computed as follows:

D = µDCB + βDCH + γDM , (2.30)

µ + β + γ = 1. (2.31)

The parameters µ, β and γ are used to balance the importance of the score

components. For perfect segmentation, the value of this measure should be equal

to 1.

Another attempt to create a standalone evaluation method was made by Cor-

reira and Pereira in [22]. They defined some metrics that are used for segmenta-

tion quality assessment. These metrics are divided into two groups:

• individual object evaluation – when the object is evaluated indepen-

dently of the rest of the image,

• overall evaluation – when all objects from the sequence are evaluated at

the same time.

In the first group of metrics, one can find shape regularity. This quality

measure can be defined as compactness (compact):

compact(E) = max

(

perimeter2(E)

75 · area(E)
, 1

)

, (2.32)

where E is the evaluated object. Alternatively, it can be defined as a combination

of circularity and elongation (circ elong):

circ elong(E) = max

(

circ(E), max

(

elong(E)

5
, 1

))

, (2.33)

circ =
4 · π · area(E)

perimeter2(E)
, elong(E) =

area(E)

(2 · thickness(E))2
. (2.34)

Thickness is defined as a number of morphological erosion steps needed to com-

pletely erase a segment. The constant values are chosen empirically.

Another metric is spatial uniformity. It is defined as texture variance or spatial

perceptual information. The latter case, however, does not fit into the objective



40 Selected Problems of Video Segmentation

evaluation method since it relies on the subjective viewer response according to

the ITU-T recommendation P.910 [98].

The temporal stability metric is defined as a combination of absolute differ-

ences of metrics defined earlier, namely, size, elongation and circularity. The

motion uniformity metric is defined as a variance of motion vector values inside

the object.

In the second group there are defined two metrices. One of them is a local

contrast to neighbours defined as

contrast =
1

4 · 255 · Nb

∑

i,j

(2 max(DYij) + max(DUij + max(DVij)), (2.35)

where Nb is the number of border pixels and DYij, DUij and DVij are differences

between colour components on the opposite sides of the border. The second is

the difference between neighbouring objects. Here, many features describing the

objects (such as shape regularity, spatial uniformity, motion uniformity, etc.) can

be taken into account while computing the differences.

The results given by these measures are strongly content dependent. Not all

of them are adequate for all kinds of sequences. This feature is characteristic

also for other stand-alone segmentation evaluation methods. There can be easily

found an example segmentation that fulfils all the assumptions mentioned earlier,

but is still incorrect. In many disciplines, quality assessment is based on some

kind of reference. The problem with video segmentation is that the reference is

hard to obtain and it is not always easy to define the “right” segmentation.

Evaluation with Ground Truth

This group of segmentation quality assessment methods exploits reference seg-

mentation done mostly manually. The way of preparing reference segmentation

depends on the application. For example, in one application reference segmenta-

tion would result in objects with shadows, while another application would imply

objects without shadows in reference segmentation.
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A properly prepared reference segmentation can help in the selection of seg-

mentation methods that are best-suited for a given task. The problem of reference

segmentation will be discussed later in this chapter.

Segmentation evaluation with ground truth requires a definition of measure

that will describe the difference between the assessed object and the reference

object. This measure should reflect the general similarity of objects and should

be insensitive to less important errors like missalignments. This problem has been

considered by several authors [32, 44, 95, 150], who proposed a number of quality

indices.

Erdem and Sankur [19] introduced motion penalty as a discrepancy between

ground truth and the segmented object. This assumption goes too far, because

it requires an almost perfect motion field. According to this measure, a very

good shape will be rejected because of a motion different from ground truth. In

Chapters 5 and 6 it will be shown that segmentation can be performed even with

an erroneous motion field.

The above-mentioned motion penalty is defined as a distance function between

two time evolution surfaces described by the motions of the reference object Mn
gi

and the tested object Mn
si

at the frame n. The distance function is expressed as

follows:

DMi =
1

N

N
∑

n=1

||Mn
gi
− Mn

si
||

||Mn
gi
|| + ||Mn

si
|| , (2.36)

where i is the number of objects in the current frame.

Another measure used by Erdem and Sankur is the missclassification penalty.

It is based on the distance between the boundaries of ground truth and the

boundaries of the segmented object. The set of reference objects belonging to

one frame is defined as G = {gi, i = 1, . . . ,M}, while the set of segmented

objects is defined as S = {si, i = 1, . . . ,M}, where M is the number of objects.

These sets are accompanied by label functions that denote object membership
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for the pixel in the location (k, l) at the frame n:

Ln
G(k, l) ∈ {1, . . . ,M}, (2.37)

Ln
S(k, l) ∈ {1, . . . ,M}. (2.38)

The above functions are used by the indicator function expressed as follows:

In(k, l) =

{

1, if Ln
G(k, l) 6= Ln

S(k, l);
0, if Ln

G(k, l) = Ln
S(k, l).

(2.39)

Finally, the value of the penalty has the following form:

DP n
i =

∑

(k,l)∈(si∪gi)
In(k, l)wgi

(k, l)
∑

∀(k,l) wgi
(k, l)

, (2.40)

where wgi
(k, l) is a modified Chamfer distance described in [87].

Another quality index is the shape penalty, which describes the differences in

shape between ground truth and the object detected during the segmentation

process. To describe the shapes, the authors use the turning angle function. The

shape penalty measure has the following form:

DSn =
1

M

M
∑

i=1

(

∑P
s=1 |Θn

gi
(s) − Θn

gi
(s)|

P2π

)

, (2.41)

where Θ is the turning angle function and P denotes the number of contour ele-

ments. To make two turning angle functions comparable, they must be resampled

prior to the computation to have the same length.

The final measures of quality is a weighted average of motion, missclassifica-

tion and shape penalties. Weights can be adjusted in order to fit the measure

into certain needs. The weights have to be chosen experimentally.

Another method of segmentation evaluation can be found in [59]. In this pub-

lication Izquierdo et al. presented a method based entirely on contour comparison.

The contours of the reference object and the tested object are compared after a

piecewise linear approximation. To make this approximation more reliable, the

authors developed a new scale-space-based method.
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To make a good approximation of a given contour, the most relevant points

must be found. Such points are the points of a higher curvature. First, the

contour is represented as a parameterized curve:

C : S ⊆ R → R
2, C(s) = [x(s), y(s)], (2.42)

where s represents the curve arclength. A linear scale-space representation is ob-

tained by curve evolution. In the subsequent steps of the evolution, the param-

eterized curve is smoothed by convolution with the Gaussian kernel. A detailed

description of this procedure can be found in [59]. The points used later for con-

tour approximation can be calculated on any scale by finding the local curvature

extremes.

The contour of the object is approximated recursively starting from the coars-

est scale. For each segment, the point with the largest value of approximation

error is sought. Then, on a more detailed scale, the local extremum closest to

that point becomes a new point of approximating polygon. The recursion stops

when the desired level of accuracy is reached.

As a metric of comparison for simplified contours of the reference object and

the segmented object, the authors used the L2 norm between turning angle func-

tions Θ of these contours. The function is measured from the reference point.

This point is the point of the maximum curvature from the contour at the coarsest

level of approximation. To make two turning angle functions comparable, they

are normalized to the unit length. The distance between two polygons C̃1
0(s) and

C̃2
0(s) is defined as follows:

distT (C̃1
0 , C̃

2
0) =

∥

∥Θ1
C̃
− Θ2

C̃

∥

∥

2
, (2.43)

where‖.‖2 is the L2 norm and T is the given error for polygonal approximation.

Thanks to normalization, the functions are invariant with reference to trans-

lation, scaling and rotation. It is a convenient property; nevertheless, not only

the shape itself is important for segmentation evaluation. An object segmented
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out with the wrong position or size can be considered as an error by an observer

but will be assumed valid by this algorithm.

2.4.3 Evaluation with Soft Reference Objects

Despite the chosen similarity measure, there is a common problem with the def-

inition of reference segmentation. It is commonly assumed that segmentation is

binary. Namely, pixels are considered as either belonging to the object or not. In

the image, anyway, there is at least one pixel on the object border with uncertain

membership, due to low sampling resolution and blurring by optics. For these

pixels, the resulting values are a mixture of light coming from the object and

from the background. The problem is even more important for moving objects,

where, due to motion blur, the uncertain boundary can be even thicker. Ground

truth is always defined by a human and such uncertain pixels can cause problems.

It is hard to decide which pixel on the border should be considered as belonging

to the object or to the background. This leads to situations where for the same

sequence reference segmentations can differ when they are prepared by different

people. Reference segmentations may differ even when they are prepared twice

by the same person for the same frame from the sequence.

To overcome this problem, a new evaluation procedure is proposed in this

dissertation. Ground truth must be prepared in a different way than it is done

typically. It can be assumed that the operator is able to determine which pixels

belong to the object for sure and which pixels belong to the background. Namely,

two segments are prepared: the object and the background. Between these seg-

ments there must be at last one pixel uncertainty area. It is obvious that for more

blurred objects, the gap between the object and the background will be bigger.

To be more general and to permit an extension to non-binary segmentation,

deliberations are made in the continuous domain, i.e., they result in continuously

valued segmentation masks. It is assumed that the area inside the object has the

value equal to 1 and the area outside the object the value 0. The continuous-
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O

B
d1 d2p

Figure 2.12: Value of the point p is calculated according to the distances d1

and d2. O – object, B – background

valued mask is obtained by finding at the point p the ratio of the distances from

the object and background segments, d1 and d2, respectively (Figure 2.12). The

value of the membership function M is equal to the distance from the background

to the sum of distances to the background and the object:

M(p) =
|d2|

|d1| + |d2|
. (2.44)

To make a comparison possible, the tested object has to be represented in

a similar way as the reference. Since all present segmentation algorithms give

discrete results, the segmentation mask must be converted to the continuous form.

This is done by connecting the centers of the border pixels with straight lines and

interpolating the uncertainty surface between these two contours (Figure 2.13).

This gives a line with the angle equal to 45◦ on the border cross section for

binary segmentation. For a more blurred segmentation, the angle will be lower.

Figure 2.13 shows three possible positions of the evaluated object edge (solid line).

The absolute segmentation error is computed as a volume of differences between

the evaluated object and the reference object computed outside the tolerance area.
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Figure 2.13: Cross-section through the object edge. Areas that are erroneous
in the presence of tolerant ground truth are marked in gray

Namely, let Vr be the volume under the reference object under assumption that

the pixels which are fully assigned to the reference have value 1, while the pixels

that are totally outside the reference has value 0. Values of the remaining pixels

are computed according to Equation 2.44. Let Ve be the volume of the erroneous

area that is marked with gray in Figure 2.13. When the binary segmentation

is evaluated, calculation of the Ve can be simplified by assumption that all the

boundary pixels of the segmentation have value equal to 0.5 while remaining pixels

have value 1. Finally, the soft reference index SR can be defined as follows:

SR =
Ve

Vr

· 100%. (2.45)

The error value Ve can be used as an input to some metrics proposed in the

literature [19, 59, 87] to make it more comparable to the object area. However,

current SR index definition is good enough to make the proper quality assessment.

Presently, there are no methods of segmentation that give soft segments. How-

ever, it seems to be a natural direction of development in this field and such algo-
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rithms will appear soon. This evaluation method will naturally handle problems

with the evaluation of these new segmentation methods.



Chapter 3

Region-Based Segmentation

3.1 Segmentation Based on Differences

In the case of a static camera, techniques based on the frame difference (FD)

are the most straightforward techniques for moving object detection. They are

often used to segment video sequences [12, 18, 29, 85, 92]. To avoid the influence

of noise, the differences between consecutive frames are computed within some

window. A change is detected when the frame difference exceeds some predefined

threshold. The main problem is that the most significant differences are usually

located on the object border. This is especially visible when the object has a

uniform interior. The biggest problem is to obtain all pixels that belong to the

object from such incomplete data.

An example technique for filling in an incomplete boundary can be found

in [86]. First, the binary change detection mask is cleaned up by removing single

pixels. This is done using a morphological operator. Next, the remaining contours

are filled. Every row of the change mask is scanned for pixels containing borders.

The portion of the row contained between two pixels is considered as the object

interior and is filled. Then the operation is repeated for columns and again for

rows. The process is shown in Figure 3.1.

When the displacement of an object in a scene is small from frame to frame,

it is difficult to detect frame differences. An extension to segmentation based on

the difference that solves this problem is the accumulative difference picture [60].
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(a) Initial contour (b) Filled rows after the
first horizontal scan

(c) Object after the verti-
cal scan

(d) Final object after the
second horizontal scan

Figure 3.1: Filling of an object using an incomplete boundary

All changes in a sequence are measured against the reference frame. The value

of the accumulative difference picture is increased by one for every pixel that

is different from the corresponding pixel from the reference frame. To reduce

the noise influence, the difference between the pixels must be higher than some

predefined threshold. This technique is particulary useful for the segmentation

of the “head and shoulders” sequences, where the segmented object presents a

small movement that oscillates around one position.

A similar approach that is based on building a reference background over

several frames is presented by Li et al. in [75]. The method is limited to a static

camera only and an empty background must be acquired before the segmentation

process. To deal with changes in lighting conditions and shadows, the method
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uses the HSV colour space.

First, the statistical model of the background has to be built over the first few

images. The probability density function for the i-th point is defined as follows:

f(xi(t)) =
1

(√
2π

)3 ∏

K=H,S,V σKi

exp

(

−1

2

∑

K=H,S,V

(

xKi(t) − uKi

σKi

)2
)

, (3.1)

where xi = (xHi, xSi, xV i)
T is the i-th pixel, K is the value of the colour at the

i-th pixel, uKi is the mean colour value over the N tested background images and

σKi is its standard deviation.

Li et al. [75] discovered that colour components show higher variation in some

image areas than in others. This is mainly the result of the properties of the

HSV colour space. When the V value is low, the values of H and S become

less reliable. Also, for low saturation, the H component becomes less stable.

Under such conditions, the values of pixels are more sensitive to camera noise

and lighting conditions. To overcome this problems, the authors proposed to

divide the pixels into four classes according to the σKi value, namely V , V S, V H

and V HS. The resulting image is then smoothed using a 5 × 5 median filter.

The decision of assigning a pixel to the foreground or the background is based

on multiple clues. However, it is assumed that if a change in the value of V ex-

ceeds Hth, the pixel is assigned to the background. The value of the threshold is

set empirically to 75. The set of background pixels is denoted by B while of fore-

ground pixels by F . Condition1 is met when the V change is high while H and S

remain on the same level. This happens in the shadow areas. Condition2 decides

whether the background needs to be updated because of the global lighting con-

ditions change. The full decision process is presented in the following pseudocode:

for each pixel I

if |∆V | > Hth then

i ∈ F
else if Condition1 is met then

i ∈ B
else if Condition2 is met then
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αV = αV Illum

{check the proper components of H, S, V

according to to type model}

if |xKi(t) − uKi| < αKαKi then

for every usable component K

i ∈ B
else i ∈ F

After the processing, the result is smoothed using the following convolution

kernel:

1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1

.

When capturing a reference frame is impossible and when, additionally, the

camera is moving, the reference background can be reconstructed using the mo-

saicing [10, 11, 142, 146] technique. The main idea of this technique is to build

the background image using aligned parts that come from different frames. The

problem is that the process of aligning frame parts (registration) is difficult in the

case of a moving camera. Moreover, this technique is only applicable to off-line

processing, since it requires two passes: in the first pass the mosaic is built, in

the second pass the actual segmentation is done.

An exception from this rule is surveillance application [88] of mosaicing, where

the camera tracks the same scene and the camera movement is limited. In such

a case, the mosaic can be built in the “clean” area tracked by the camera. When

the reference background is ready, the tracking of any changes is easy.

Intruder detection can be much faster when the camera is equipped with a

position tracking device. In such a case, the position of the acquired frame on the

mosaic can be determined very fast without exhausting global motion estimation.
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3.2 Motion Segmentation

Motion video segmentation methods do not rely on differences between consec-

utive frames but take into account the motion field estimated for every frame.

Usually [13, 63, 108, 126], a dense motion field is used for segmentation to ensure

the highest possible segmentation quality. However, some authors attempt to

apply the sparse motion field used in video compression. The method developed

by Si and Park [62] uses the DCT coefficients and motion vectors provided by

the MPEG-4 encoder. This is a very attractive assumption because no additional

computation of motion is required; however, this motion field has two main draw-

backs. The first one is the fact that the motion field is sparse. In a compression

process, the vectors are estimated for the blocks. The second problem is the

fact that motion estimation algorithms used in the compression process are not

intended to find the real motion vector for a given block but to find the most

similar block in the previous frame. This means that the motion field which is

very good for compression may be totally useless from the segmentation point of

view. This can lead to significant segmentation errors.

3.2.1 Segmentation Using Parametric Motion Models

In some approaches [7, 55, 134], authors try to segment a scene by finding areas

with motion that conform to some parametric model. To reflect an apparent

motion of 3D objects onto the image plane, a number of parametric models are

used, including:

1. affine model with six parameters:

x′ = a1x + a2y + a3

y′ = a4x + a5y + a6,
(3.2)

2. model that takes into account perspective projection:

x′ =
a1x + a2y + a3

a7x + a8y + 1

y′ =
a4x + a5y + a6

a7x + a8y + 1
,

(3.3)
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3. parabolic surface model under perspective projection:

x′ =a1x
2 + a2y

2 + a3xy + a4x + a5y + a6

y′ =b1x
2 + b2y

2 + b3xy + b4x + b5y + b6,
(3.4)

where (x, y) and (x′, y′) are corresponding points in the frames n and n + 1,

respectively.

3.2.2 Multi-Valued Segmentation with K-Means

Video segmentation is often performed using approaches similar to static image

segmentation. A very popular algorithm that permits the segmentation of mul-

tivalued images is K-means. In its adaptation to video segmentation, motion

information is used as an extension of colour information [5, 14,69].

For example, in [69], the algorithm treats a number of consecutive images

as one three dimensional image. Additionally, the authors introduce a spatial

proximity constraint that prevents the creation of disconnected regions of the

same class. A modified version of the K-means algorithm which introduces the

connectivity constraint works in the following way:

Step 1 After a certain small number of iterations of the standard K-means

algorithm there are K regions with intensity centers CIk. Then spatial

centers are computed as CSk = (CSk,X , CSk,Y ), k = 1, . . . , K:

CSk,X =
1

Mk

Mk
∑

m−1

pk
m,X (3.5)

CSk,Y =
1

Mk

Mk
∑

m−1

pk
m,Y , (3.6)

where pk
m,X , pk

m,Y are the horizontal and vertical coordinates of the pixels

belonging to the class sk, accordingly. From the same set of data, differential

motion centers CVk are computed:

CVk =
1

Mk

Mk
∑

m−1

||Pk
m,t+1 − Pk

m,t||, (3.7)



54 Region-Based Segmentation

where Pk
m,t,m = 1, . . . ,Mk are the pixels of the k-th region at the time t.

The mean area of all segments is defined as

Ā =
1

K

K
∑

k=1

Mk. (3.8)

Step 2 For every pixel, a generalized distance is calculated according to the

following equation:

D(p, k) =
λ1

σ2
I

||I(p) − CIk|| +
λ2

σ2
V

||V (p) − CVk|| +
λ3

σ2
S

Ā
||p − CSk||

Ak

,

(3.9)

where V (p) = ||pk
t+1 − pk

t ||, σI , σV , σS are the standard deviations of the

respective parameters and λ1, λ2, λ3 are regularization parameters.

Step 3 A component labelling algorithm is applied to find all connected regions.

To each region, a unique label is assigned. Regions of a size below a certain

threshold are not labelled. The result of this process is L connected regions.

For these regions, intensity, spatial and motion centers are calculated.

Step 4 If changes in the intensity centers are below a certain threshold, then

stop, else proceed to Step 2 with K = L.

A general problem with the K-means algorithm is that the number of required

segments must be known before segmentation. If there is no information about

scene contents, it is impossible to automatically determine the number of required

segments. A solution to this problem was shown in the method presented by

Habili and Ngan in [46]. The authors use a multi-feature K-means algorithm. As

the components of the feature vector they use the colour in the Y CbCr space,

the position of the pixel and its motion. A block diagram of this segmentation

is presented in Figure 3.2 with F (x, y, t) denoting the pixel value and L(x, y, t)

denoting the cluster membership.

A complete set of n feature vectors is defined as C = u1, . . . ,un, while

C1, . . . , Ck is the partition of this set into k clusters. For the clustering pur-

poses, the authors minimize by means of the K-mens algorithm sums of squared
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Figure 3.2: Block diagram of the clustering-based segmentation

errors defined as

J =
k

∑

i=1

∑

u∈Ci

d2(u,mi), (3.10)

where

mi =
1

ni

∑

u∈Ci

u (3.11)

is the mean of the samples belonging to one cluster and

d(u,mi) = ||u − mi|| =

√

√

√

√

f
∑

l=1

(ul − mil)2 (3.12)

for the f -dimensional feature space.

All image features have different ranges of possible values. To make them

comparable and unify their influence on the clustering process, a normalization

procedure must be performed. In order to do that, for every feature the standard
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deviation σj is computed:

σ2
l =

1

n

n
∑

q=1

(uql − ml)
2, (3.13)

where

ml =

∑n
q=1 uql

n
. (3.14)

After the normalization it is easier to control the importance of each feature

by assigning the weights wl. Taking into account the weights, Equation 3.12 can

be expressed as follows:

d′(u,mi) =

√

√

√

√

f
∑

l=1

wl
(ul − mil)2

σ2
l

. (3.15)

Because the K-means algorithm works for a fixed number of clusters, some

method of the estimation of this number must be employed. In this implemen-

tation, the authors are investigating the behaviour of J for different numbers of

the clusters k. It is done sequentially for k = 1, . . . , kmax. The best number of

clusters k̂ is estimated based on the observation that the value of J decreases

rapidly for a growing k until k = k̂, then slows down and reaches zero for k = n.

It means that a corner on the J versus k plot appears for the best k. In practice,

this is realized by the following condition:

Jk

Jk+1

< θ, (3.16)

where θ is an empirically chosen sensitivity threshold.

Algorithms based on K-means offer high segmentation quality, even in the

presence of noise. Nevertheless, their iterative nature and computational com-

plexity make this group of methods inappropriate for real time applications.

3.2.3 Bayesian Segmentation

Bayesian methods are very often applied to the video segmentation problem [15,

91,103,145]. The general idea of Bayesian segmentation is to find a maximum a
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posteriori probability (MAP) estimation of the segmentation X for some given

observations O:

P (X|O) = P (O|X)P (X), (3.17)

where P (O|X) is conditional probability modelled as white Gaussian noise with

a zero mean and P (X) is the a priori likelihood. The segmentation X is usually

modelled as a Markov random field.

An example of such an approach can be found in [68]. Here, a pixel is treated

as a seven-element vector x = [x, y, Y, U, V, u, v]T , where (x, y) are spatial coordi-

nates, (Y, U, V ) denotes colour and (u, v) is a motion at the pixel position.

The image is segmented into n classes denoted by ci for i = 1, .., n. It is

assumed that the assignment for each pixel in the previous frame is known and

given by Lt−1(x, y), where t denotes the time index and 1 ≤ Lt−1(x, y) ≤ m.

The probability that the pixel (x, y) belongs to the class ci is given by P (ci|xt(x, y)).

Using the Bayes rule, it can be shown that

P (ci|xt(x, y)) =
P (xt(x, y)|ci)P (ci)

P (xt(x, y))
. (3.18)

Equation 3.18 can be used to find for each pixel probability of belonging to

each class. The class with the maximum probability is then assigned to this pixel

according to the following equation:

Lt(x, y) = arg max
i

{

P (xt(x, y)|ci)P (ci)

P (xt(x, y))

}

, (3.19)

where 1 ≤ i ≤ n. It can be further simplified because the denominator is always

positive and independent of i. Additionally, the authors introduce the logarithmic

likelihood relationship for better class identification:

Lt(x, y) = arg max
i

{ln(P (x(x, y)|ci)) + ln(P (ci))}. (3.20)

The segmentation process starts by iteratively computing for each pixel the

probability of belonging to one of the Gaussian distributions and recomputing



58 Region-Based Segmentation

the parameters of these distributions. This process is repeated a fixed number of

times. In the second step, these regions are used to compute classes, which results

in a new regions distribution. The second step is repeated until the regions stop

changing.

The large number of computations and the iterative nature of this method

make it very hard to implement in a real time.

3.3 Summary

There can be observed a lack of methods that fulfil all the assumptions given in

Chapter 1. Most of the methods require a static background. If the background

can move, it must be motion compensated, which results in a static background

as well. Some of the methods based on K-means can segment the frame only into

a fixed number of objects. If any method can deal with more complex cases, it

cannot perform in a real time.



Chapter 4

Active Contour Segmentation

4.1 Snakes

A snake is an active contour model introduced by Kass et al. in [65,66] and also

applied in [61, 89, 94, 140, 141]. It is a method of manipulating a closed planar

curve with a set of markers placed along the curve. Originally, a snake curve was

approximated by straight segments that connect markers.

The parametrization of the planar curve C is given as follows:

C : [0, 1] → R
2, p → C(p). (4.1)

This curve is placed over a two dimensional image I.

The following energy is distributed along the curve:

E(C(p)) = α

∫ 1

0

Eint(C(p))dp + β

∫ 1

0

Eimg(C(p))dp + γ

∫ 1

0

Econ(C(p))dp,

(4.2)

where the term Eint keeps the curve regular and smooth, Eimg is the component

dependent on image properties and Econ is the constraint that keeps the curve in a

certain domain. The image-dependent component is defined to attract the curve

to desired image features, for example, edges. During propagation every marker

is shifted in a direction that will lead to the minimization of contour energy.

This kind of active contour has some disadvantages. It requires initialization

in the close neighborhood of the expected solution. Additionally, the approxi-

mation error increases as the distance between the markers increases. Moreover,
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moving markers can create self-intersections of the propagating curve. This can

be reduced by a properly defined internal energy function that will increase the

rigidity of the contour. However, such a constraint makes the contour unable to

detect small details.

To provide better shape representation, snake markers can be connected using

B-splines. This technique was used in [21, 28, 107]. Thanks to B-splines, shape

can be better approximated using fewer markers, which increases the performance

of the method.

4.2 Geodesic Active Contours

Geodesic active contours represent a technique for curve evolution to minimize

some metric. This technique was introduced in [17] as an alternative for snakes.

If the metric to be minimized is defined depending on the object boundary, it can

be used for image segmentation [43,72,147].

Let the curve C(p) = {x(p), y(p)}, where p ∈ [0, 1] is an arbitrary parametriza-

tion. The function that describes the propagating contour is an arc-length pa-

rameterized functional:

S[C] =

∫ L(C)

0

g(C)ds, (4.3)

where ds is the Euclidean arc-length and L the Euclidean length of C(p). The

function g(.) is a scalar edge detector function. The value of this function should

be minimal on the object boundary. Typically [17,80], this function is defined as

g(C) =
1

1 + |∇Î|n
, (4.4)

where Î is the segmented image smoothed with the Gaussian function and p ∈
{1, 2}. The value of this function is taken at the point of the curve that is going

to be propagated.

Curve propagation towards a local minimum is performed using the gradient
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descent method by the following equation:

∂C

∂t
= g(C)κ ~N − (∇g(C) · ~N ) ~N , (4.5)

where t is the time moment of curve evolution, ~N = ∇C
|∇C|

is the normal vector to

the curve C, and κ is the curvature defined with the following equation:

κ = ∇ · ∇C

|∇C| , (4.6)

which is equal to the divergence of a vector field formed by normal vectors.

Contrary to the classical snakes, geometric active contours do not depend

on curve parametrization. Since the value of the function g is equal to zero

only on the object boundary, this method is relatively independent of the initial

conditions.

An application of geodesic active contour to video segmentation was also pro-

posed by Gastaud and Barlaud in [40]. This method deals with a moving camera,

which is a common problem in video segmentation. It is impossible to detect mov-

ing objects using solely image differences. The key idea of the method is to create

one big picture containing all the background that appears in the camera during

the entire sequence. This technique is called mosaicing [37, 49, 135]. It is not

suitable for on-line application because it requires two passes:

• first, the background mosaic is created,

• then, active contour segmentation is applied in order to detect moving ob-

jects.

During the segmentation stage the position of the current image has to be found

in the mosaic image. Then the contour is propagated on the basis of the absolute

difference between the background and the current image.

Geodesic active contours have also been applied to such problems as medical

image segmentation, volume reconstruction, object tracking.
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C

φ

Figure 4.1: Contour defined by a zero level set of a propagating surface

4.3 Level Set Methods

The Level Set Method developed by Osher and Sethian in [97] provides a solution

to stable curve evolution with changing topology. The idea consists in embedding

the propagating curve C as a zero level set of a surface φ. Then, instead of

propagating a parametric curve, one can propagate a strictly defined and well-

behaved function. The propagating contour can be always found taking a zero

level set of the surface φ at a certain time, which is shown in Figure 4.1. The

only problem is to define the propagation of φ in such a way so that its zero level

set will follow the original evolution equation ∂C
∂t

(p) = F (κ) ~N .

The above can be illustrated by the equations

{

C(p, 0) = {(x, y) : φ(x, y, 0) = 0},

C(p, t) = {φ(x, y, t) = 0}, C(t) = φ−1(0).
(4.7)

The zero level set of the surface φ is given by the equation

φ(C(t), t) = 0. (4.8)

Since the curve C must always match the zero level set of the surface φ during

evolution, the values of φ(C(t), t) should be always zero while the time changes.

Namely, the partial derivative of φ with respect to t should be zero. By the chain

rule,

∇φ(C(t), t) · ∂C

∂t
+

∂φ

∂t
= 0. (4.9)
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The curve C is evolving in a normal direction ~N = ∇φ
|∇φ|

with a given speed F ,

namely,

∂C

∂t
· ~N = F. (4.10)

From the above equation,

∂C

∂t
= F · |∇φ|

∇φ
. (4.11)

Substituting Equation 4.11 into Equation 4.9 yields an evolution equation for φ:

∂φ

∂t
+ ∇φ(C(t), t) · F · |∇φ|

∇φ
= 0, (4.12)

∂φ

∂t
+ F |∇φ| = 0, (4.13)

assuming that the initial condition φ(x, y, 0) is given. Usually [2, 79, 102], the

initial surface is defined by the signed distance function from the propagating

curve. The function returns positive values inside the contour and negative ones

outside of it.

The advantages of the level set approach are:

• It can be generalized to higher dimensions of C, for example, the method

can propagate a three dimensional surface that forms a zero level set of a

four dimensional hypersurface.

• Topology changes of the propagating contour are handled in a natural way.

Despite the splitting and merging of the propagating curve, the function φ

remains single valued.

• It can be adapted to solving many problems by a redefinition of the speed

function F .

• The values of the speed F may vary from positive to negative ones, which

permits very complicated propagation of the curve.

Exemplary applications of this method are presented in [6, 42,120].
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nondifferentialble

point (corner)

Figure 4.2: Possible evolution of a concave part of the contour

Figure 4.3: Swallowtail solution

4.3.1 Numerical Schemes

During evolution, the contour C as well as the level set function φ may become

undifferentiable. For example, such a situation is possible in concave parts of the

propagating curve, which is illustrated by Figure 4.2. To make the propagation

of the contour possible under any conditions, a numerical scheme that produces

an entropy-satisfying weak solution is required [97,111,114].

When the contour that formed the corner is further propagated along its

normal direction, it can cross itself forming the so-called swallowtail solution

(Figure 4.3). This situation is very hard to handle by the classical active contour

methods. To overcome this situation, two strategies can be used.

One of the strategies is to treat the moving contour as a propagating wave.
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Figure 4.4: Illustration of a solution based on the Huyghens principle

0
1
2
3
4
5

Figure 4.5: Curve evolution that uses an entropy-satisfying solution to the
gradient

By the Huyghens principle, every point reached by a propagating wave becomes

the source of a new wave. Following this rule, the propagation can be performed

by shifting a circle of a small radius along the curve. This circle will mimic waves

starting from every point of the contour. The line created by the edges of the

circles will be the new position of the propagating curve (Figure 4.4).

Another way to overcome the problem with self-crossing contours is the in-

troduction of an entropy condition [115]. This condition states that a point

once visited by a contour cannot be visited by another part of the contour (Fig-

ure 4.5),analogously to the fire moving through the forest. The trees once burnt

cannot be burnt one more time.

A numerical scheme producing the correct weak solution was proposed in [97].
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The surface φ is approximated on a rectangular grid where φij denotes the value

of the function at the grid point with the (i, j) coordinates. The step of the

surface evolution with the speed F defined for every point has the following form:

φn+1
ij = φn

ij − ∆t[max(Fij, 0)∇+ + min(Fij, 0)∇−], (4.14)

where

∇+ =[max(D−x
ij , 0)2 + min(D+x

ij , 0)2+

max(D−y
ij , 0)2 + min(D+y

ij , 0)2]1/2, (4.15)

∇− =[max(D+x
ij , 0)2 + min(D−x

ij , 0)2+

max(D+y
ij , 0)2 + min(D−y

ij , 0)2]1/2,
(4.16)

and n is the number of evolution step and ∆t is the size of the time step per iter-

ation. The finite difference operator D is constructed according to the following

scheme:

D+x
ij =

φi+1,j − φi,j

∆x
, D−x

ij =
φi,j − φi−1,j

∆x
, (4.17)

D+y
ij =

φi,j+1 − φi,j

∆y
, D−y

ij =
φi,j − φi,j−1

∆y
, (4.18)

where ∆x and ∆y denote grid spacing.

4.3.2 Level Set Segmentation

The level set approach has been widely used for image [47,52,123,137] as well as

video [50,82] segmentation.

A level set based method proposed by Konrad and Ristivojević in [70] treats

a sequence of images as the so-called “video cube.” It means that segmentation

is performed in a 3D space, where two dimensions are spatial dimensions of the

sequence and the third dimension is time. This methods exploits ideas similar to

those applied to 3D shape recovery from a cloud of points [151,152].

The problem is defined as the maximum a posteriori probability estimation

(MAP). The method consists in evolving a parameterized surface φ in the x, y, t



4.3 Level Set Methods 67

space. The surface is estimated on the basis of a subset of the image sequence I =

{In : n0 . . . n0 + N}, where n0 is the starting frame number and N is the number

of frames. It is assumed that motion is affine with constant or slowly varying

velocity. The motion inside φ is denoted by p while outside by p̄. Additionally,

it is assumed that motion trajectory for each image pixel can be computed from

p or p̄. The MAP is then formulated as follows:

max
φ,p,p̄

p(φ,p, p̄|I) = max
φ,p,p̄

p(It|φ,p, p̄, I \ {In})pp(φ,p, p̄|I \ {In}), (4.19)

where In is an image from the sequence at the frame n and p is probability

density. This method is able to track objects without strong intensity edges on

the object boundary. However, it requires a static background and only one object

can be segmented. The authors also report high computational complexity of this

approach, which, along with the requirements for the large number of frames to be

processed simultaneously, makes this method unsuitable for real-time application.

In the literature there can be also found approaches to video segmentation

that do not employ motion information. An example is the method presented by

Harper and Reilly in [50]. The segmentation process is based on colour informa-

tion only and in fact could be applied to static image without any modification.

The method is based on the classical Level Set Method.

The method is limited to the detection of human faces in video sequences.

As a feature space, the normalized rgb space was chosen. Since r̄ + ḡ + ḡ = 1,

only the r̄ and ḡ components are used in the segmentation process. To cover the

wide range of skin tones that vary for human races and lighting conditions, a 2D

histogram of the distribution Υ is built on the basis of the data from a database

prepared earlier. To remove noise and outliers, some morphological operations

are performed. Based on the number of samples in the database, a threshold tskin

is computed. Using this threshold, propagation speed for the level set algorithm

is computed. The speed depends on the likelihood of the pixel to belong to the
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distribution Υ:

F =

(

log

(

Υ(r, g) + 1

tskin

))

. (4.20)

The logarithm in Equation 4.20 helps to visually linearize colour distribution.

The strong dependence on the predefined database does not make this method

very flexible. The colour of the skin is not unique in nature. It is highly probable

that some objects can be wrongly segmented. The wider range of colours in the

database, the higher the probability of segmentation errors. Too small a number

of features used in segmentation (especially video segmentation) often leads to

problems with the detection of meaningful objects.

4.4 Fast Marching Methods

4.4.1 Description of the Fast Marching Algorithm

The Fast Marching Method [119] is an extremely fast version of the Level Set

Method, but it has some limitations. Namely, curve propagation speed must

be of a constant sign and a curve may propagate in one direction only. There

exists an opinion that this disadvantage should prevent fast marching equations

from being directly applied to video segmentation. Here, we are going to show

that fast marching can be applied directly in a quite efficient way. The main

advantage of the Fast Marching Method is its low computational complexity,

which is O(N log N), where N is the total number of points in the area of interest.

In a two dimensional case, a curve (contour) propagates with the speed F (x, y)

and arrives at the point (x, y) at the time T (x, y).

For the surface T (x, y), there is

|∇T |F = 1. (4.21)

The idea is to sweep the curve ahead by considering a set of points in a narrow

band around the existing front and to march this narrow band forward, freeze the

values of the existing points and bring new ones, also referred to as trial points,
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(a) (b)

(c) (d)

Figure 4.6: Front propagation: (a) – starting point, (b) – neighbour points
marked as trial, (c) – point with the smallest time value chosen for propaga-
tion, (d) – point chosen in the step (b) is marked as visited and its neighbours
are added to the trial list

in the narrow band structure (Figure 4.6). It is very important to select properly

a grid point in the narrow band to be updated. This can be done using the heap

sort algorithm. Every new accepted value is inserted into a sorted list of the

trial points values. Therefore, finding the next point to update takes almost no

time [113].

Equation 4.21 can be solved using the following numerical scheme

[

max(D−x
ij T,−D+x

ij , 0)2 + max(D−y
ij T,−D+y

ij , 0)2
]

=
1

F 2
ij

, (4.22)

where D+ and D− are the forward and backward difference operators and Fij is

propagation speed at the point (i, j).

The algorithm proceeds as follows:

1. All points in the initial conditions are tagged as Accepted.

2. All points in the neighbourhood of the accepted points are tagged as Trial.

3. The remaining grid points are tagged as Far.

4. The begin loop: find a Trial point with the smallest value of T .
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5. The chosen Trial point is added to Accepted and removed from the Trial
list.

6. All neighbours of the point chosen in Step 4 that are not Accepted are
tagged as Trial.

7. The values of all new Trial points are recomputed according to Equation
4.22.

8. Return to Step 4.

4.4.2 Fast Marching Segmentation

This method has been applied to a wide range of problems including image seg-

mentation [78,143,149], shortest path finding [27,144] and other problems [3,99,

121].

Because of its unidirectional propagation the Fast Marching Method is not

very often applied to video segmentation. Nevertheless, some applications can

be found in the literature [124, 127, 129]. An example of such an application

is the method presented by Sharma and Reilly [122], based solely on colour.

It is intended as a video segmentation method but it is in fact static image

segmentation since no motion or frame difference is used. Here colour decides

about propagation speed for the Fast Marching Method. Pixels from the image

I(x, y) are classified into four classes. Each class has a priority assigned. The

pixels that are most likely to be a face have the priority 4 while those forming a

background the priority 1.

Here a typical problem with fast marching used in a segmentation task is also

present. Namely, due to one-way propagation of the contour, it tends to overshoot

the desired object boundary. To overcome this problem, the authors proposed

the following stop condition: The percentage of pixels with the priority 4 and

belonging to the level set are computed and compared to the threshold value. If

the result is above the threshold, it is assumed that a solution was reached.

To make colour invariant of lighting conditions and shadows, the YCbCr

colour space was used. Choosing this colour space has some advantages. It gives

a convenient separation of colour and intensity and in many cases it is the stan-
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dard working space (e.g., in the MPEG and JPEG compression). Additionally,

it was shown that skin tones fall into a quite narrow range of the Cb and Cr

values. However, a problem with the missegmentation of the objects with colour

similar to a face (e.g., wooden furniture) was also reported.

The idea of the multi-label fast marching method was first introduced by

Sifakis and Tziritas in [124, 125]. The motion of the objects in the scene is

detected on the basis of frame differences computed with statistical methods.

Initially, pixels are divided into three classes: changed pixels, unchanged pixels

and uncertain pixels.

After labelling two sets of pixels as static and mobile, the label propagation

is started using the fast marching algorithm. Both regions grow to an unlabelled

space with respective speeds. Propagation speeds for both classes are defined

explicitly. The algorithm stops propagation when two regions meet on the object

boundary and there is no unlabelled pixel left.

Because each of the two classes has an individually defined speed, extension

to more classes is not straightforward. It is impossible to segment the sequence

to an unknown number of segments using this approach.

4.5 Summary

Most active contour methods require clear distinction of properties for object

interior and exterior. As was shown in this chapter, a typical solution to this

problem is checking if the point is moving or not. This is possible when frame

background is stationary or motion compensated. A method that deals with the

problem of a moving background and offers high segmentation quality will be

presented in Chapter 5.

Another problem with active contour segmentation is that it divides the frame

into two areas, namely, the foreground and the background. Even when the fore-

ground can consist of several separated parts, these parts are undistinguishable.

When two foreground objects overlap, they are detected as one. A method of ac-
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tive contour segmentation that can divide the frame into multiple objects will be

presented in Chapter 6.



Chapter 5

Two-Step Object Segmentation

The Fast Marching Method (see Section 4.4) is a very efficient end elastic al-

gorithm; nevertheless, it has an essential drawback. Namely, contour propaga-

tion can be performed only in one way. This makes the correction of wrongly

segmented objects impossible, for example, when the contour leaks inside the

object. This problem was also encountered by other authors (see Section 4.4).

As a consequence, most researches [23, 82, 83, 101] prefer the slower Level Set

Method because it permits bidirectional contour propagation. Here, a method

will be presented for this kind of problems.

To exploit the speed of the Fast Marching Method and to avoid its drawbacks

at the same time, an original two-step method will be proposed in this

dissertation. In the first step, an image from a sequence will be coarsely but

fastly segmented using the Fast Marching Method. A stop condition for this step

must be defined in such a way so that the contour stops at some distance from

the expected object boundary. This prevents the contour from leaking into the

object. Such an error cannot be corrected since the Fast Marching Method can

move the contour only in one direction. The second step is intended to improve

segments from the first step by merging them with the results of colour-based

static segmentation. In static segmentation, the edges of segments are well cor-

related with real object edges, but the image is usually oversegmented. Static

segmentation cannot detect semantic objects without some knowledge of a high
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Figure 5.1: Architecture of the segmentation algorithm. Yellow blocks denote
originally developed parts

level. In a typical video segmentation, only low level features are available. The

speed of the static segmentation algorithm is a secondary matter, since segmen-

tation is essential only in the contour neighbourhood; the segmented area may

be significantly reduced.

A general block diagram of the method is presented in Figure 5.1. Blocks

marked in gray use the standard methods, whilst parts represented by yellow

blocks were developed in this work. Such a construction of the algorithm permits

simple replacement of parts of the algorithm as well as pipelined and parallel

processing.

5.1 Colour and Motion-Based Segmentation

Using Fast Marching

The key element in the Fast Marching Method that allows adapting it to many

problems is the contour propagation speed F (see Section 4.4). In this work, the

speed function F is defined as a product of two terms, i.e., an image-related term

F1 and a curvature-related term F2:

F = F1F2. (5.1)

In the original Fast Marching Method, there is no curvature-dependent term. A

curvature term that is typically used in the Level Set Method (Equation 4.6)

can have both positive and negative values and therefore cannot be used directly.
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Propagation speed in the fast marching algorithm must be of a constant sign. The

multiplication of the propagation speed F1 with the positive curvature term F2

allows keeping this condition. Here the neutral element of the curvature equals 1.

Values from the range 〈0, 1) will slow down the propagation, while values greater

than 1 will speed it up. A more detailed explanation of this aspect will be given

in Section 5.1.2.

The next sections will give definitions of propagation speed components. Also,

there will be proposed an automatic initialization method as well as a stop con-

dition for the first stage of initial segmentation.

5.1.1 Image-Based Term

The definition of an image-based part of propagation speed is an important is-

sue for the method. The detection of the moving object cannot rely solely on

the motion field, since in many cases motion estimation methods produce erro-

neous motion vectors. On the other hand, using only image properties for the

segmentation of semantic objects is inadequate when both the object and the

background are highly textured. The main idea of this method is to exploit the

advantages of motion and image segmentation. As was shown in Section 2.3, the

smoother the image, the less reliable the motion vectors. Usually, in smooth areas

of moving objects, motion vectors are zero or have random values due to ill-posed

numerical problems. On the contrary, motion can be estimated well near object

edges and on highly textured areas. If both the object and the background are

highly textured, the object boundary is more difficult to detect using only image

properties.

Considering the above observations, the properties of the speed function can

be defined as follows:

• contour propagation speed should be high for uniform image areas,

• for uniform image areas, the influence of motion values should be negligible,
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Figure 5.2: Profile of propagation speed defined with Equation 5.2

• propagation speed should be high for areas with a uniform motion field,

• where motion is uniform, image properties should have no influence on

propagation speed.

Propagation speed defined with the above properties should be low on the object

boundary and high for the rest of the image. The first attempt at defining the

speed function presenting these properties was made in [127, 128]. The image-

dependent part of the speed was defined as follows:

F1(x, y) = 1 −
(

cos

(

π/2

1 + dI(x, y)

)

· cos

(

π/2

1 + dM(x, y)

))

, (5.2)

where dI and dM are image and motion differences, respectively. The definitions

of these differences will be provided later in this section. An S-shaped cross-

section (Figure 5.3) of the speed profile should help in precise object detection.

Such a function has good properties and the detection of objects was good, and yet

the speed was not satisfactory due to complex calculations. Additionally, image

and motion differences had different ranges of values, i.e., the range of the motion

difference was only a fraction of the image difference. As a result, the speed was
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Figure 5.3: Cross section of the speed profile from Figure 5.2 along the A-A
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varying in the ranges 〈0.5, 1〉. Segmentation quality was on a satisfactory level;

nevertheless, the complex shape of the function made the calculations inefficient.

It was necessary to find a function with similar properties but with a simpler

definition.

Further research led to the speed function that was introduced in [130]:

F1(x, y) =
1

min(α · dI(x, y), β · dM(x, y)) + 1
, (5.3)

where α and β are normalizing coefficients. Such a function fulfils all conditions

given at the beginning of this section and is defined in a much simpler way than

the function given in Equation 5.2. The general form of speed is similar to those

presented in [125]. However, instead of statistical properties of the image, colour

and motion differences were used.

The maximum value of the colour change depends on image representation in

computer memory and is fixed. From the definition of image difference (Equa-

tions 5.9, 5.10 and 5.11), it can be shown that the maximum image difference has
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Figure 5.4: Profile of propagation speed defined with Equation 5.5

the following value:

dImax = 2552
√

2. (5.4)

The maximum values of differences in luminance and chrominance are equal to

255 and 255
√

2. The difference in chrominance is defined as the length of a

vector with endpoints defined by colour values of two points in the Cb, Cr plane

(Equation 5.11). The maximum value results from Equation 5.9, where both

values are combined by multiplication.

The maximum value of the difference in motion can vary from sequence to

sequence. This assumption helps to simplify Equation 5.3 and leave only one

normalizing coefficient:

F1 =
1

min(dI, α · dM) + 1
. (5.5)

To keep the sense of function min from Equation 5.5, the values of dM must be

mapped to the same range as the image difference by multiplying them with the α

coefficient. This parameter is measured during the motion estimation phase based

on the minimal and maximal values of horizontal and vertical motion components.
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Finally, the definition of the normalizing coefficient has the following form:

α =
dImax

dMmax

, (5.6)

where dMmax is the maximum motion difference calculated according to Equa-

tion 5.12. As input values, two extremum displacements are used. These dis-

placements are found during the motion estimation process.

Computation of Image Differences

Image difference estimated by typical convolution filters is not suitable for contour

speed computation. In such a difference image, edges are not well defined and are

influenced by noise. Applying some noise reduction techniques such as smoothing

or median filtering leads to creating gaps on the edges. The fast marching algo-

rithm is very sensitive to such defects. Even a small gap on the object edge can

lead to the leaking of the contour inside the object. This kind of segmentation

error cannot be corrected since the Fast Marching Method can propagate the

contour in one direction only. Using more sophisticated edge detectors such as

the Canny operator [16] can improve the weak edge definition, but on the other

hand, the problem of gaps in the object boundary still exists.

In order to overcome problems with gaps it was necessary to calculate differ-

ences in a way that will prevent the contour from leaking into objects through

small gaps. The calculation procedure proposed in [128] is based on comparing

image properties from some area visited by the contour to those that are at the

front of the contour. The definition of the luminance component is expressed as

follows:

dLum(x, y) =

∣

∣

∣

∣

∑

W Y (x, y)

|W| − Yσ(x, y)

∣

∣

∣

∣

, (5.7)

where W is a set of pixels that were visited by the contour and are covered by a

certain window centered at (x, y) (Figure 5.5), and Yσ is the luminance value from

the current frame blurred with the Gaussian convolution kernel in order to reduce

the influence of noise. The radius of the window and the radius of the convolution
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W

Figure 5.5: Difference operator that compares the current point with the
area visited by the contour

kernel are the same. This helps to avoid contour leaking through gaps that are

smaller than the window diameter. However, in some cases, where propagation

direction was parallel to the object boundary, edges were not detected properly

and the results of the segmentation were wrong.

To avoid the problem described above, the object edge should be detected

even if the active contour is in a perpendicular position to the object edge. The

most desirable situation is when the contour is parallel to the object edge. The

propagation of the active contour can be turned towards the object by slowing

down the parts of the contour that are close to the object boundary while the

remaining part propagates with higher speed.

To achieve the behaviour described above, a difference operator that aligns

itself to contour orientation was introduced by the author in [130]. The shape of

the operator forms a four arms cross, where each arm covers a 1/8 section of a

circle (Figure 5.6). The arms of the operator marked with a are always aligned

to the normal direction while the pair b is aligned with a tangent.

The term dI is computed using the curve-oriented difference operator and is
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contour

visited points

tangent

normal direction
A1

A2

B1

B2

Figure 5.6: Curve-oriented difference operator

defined as follows:

dI = max(dA, dB), (5.8)

where dA is the difference between the parts A1 and A2 while dB is the difference

between the parts B1 and B2. Both differences are defined analogically, thus only

a definition for the dA will be given.

Every part of the cross gives an average of several pixels to reduce noise

influence. The difference dA is composed with the differences in luminance dLum

and chrominance dCrom:

dA(x, y) = dLum(x, y) · dChr(x, y). (5.9)

The above definition promotes ‘strong’ edges, i.e., edges that appear in luminance

as well as in chrominance. This prevents the edges of the shadows from being

detected as the object edges. The difference in luminance for the parts A1 and

A2 of the difference operator is defined as follows:

dLum(x, y) =

∣

∣

∣

∣

∑

A1
Y

|A1|
−

∑

A2
Y

|A2|

∣

∣

∣

∣

, (5.10)
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W

B

Figure 5.7: Areas on which the difference dM is computed

where A1 is the part at the front of the contour, A2 is the part behind the contour,

Y denotes the luminance component and |.| denotes the number of elements in

the set. It is an absolute difference between the mean values of the luminance for

the parts A1 and A2 of the difference operator.

Since chrominance components form vectors on the CbCr plane, a good mea-

sure of the difference among them will be the length of the vector that is a result

of vector subtraction of components from the parts A1 and A2. To reduce noise

influence, a values of the Cb and Cr are averaged over the A segments of the

difference operator. Finally, the difference in chrominance can be written as

dChr(x, y) =

∣

∣

∣

∣

(

∑

A1
Cb

|A1|
,

∑

A1
Cr

|A1|

)

−
(

∑

A2
Cb

|A2|
,

∑

A2
Cr

|A2|

)∣

∣

∣

∣

. (5.11)

The term dM should be robust and resistant to noises in the motion field. The

most important information is how the motion of the pixels behind the contour

differs from the motion of the pixels at the front. Therefore, the motion difference

is computed by a comparison of mean motion vectors at the opposite sides of the

curve and as a sum of absolute differences between the horizontal and vertical
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motion vector components:

dM =

∣

∣

∣

∣

∑

W Vx

|W| −
∑

B Vx

|B|

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

W Vy

|W| −
∑

B Vy

|B|

∣

∣

∣

∣

, (5.12)

where W is the set of pixels that form the part of the window placed at (x, y)

that is currently located inside the curve, B is the set of pixels that forms the

part of the window outside the curve, Vx and Vy are the horizontal and vertical

motion components, respectively (Figure 5.7). A square window was used to

simplify the calculations. Anisotropy introduced by the window shape does not

have a significant influence on segmentation quality. Moreover, its regularity

makes memory operations more efficient than for a circular window.

A sample evolution of the contour according to the method presented in this

section is shown in Figure 5.8.

5.1.2 Curvature-Based Term

In the original Fast Marching Method [118, 119], there is no curvature-related

term. However, practice has shown that without smoothing the contour used

for segmentation may become too contorted. In such a case, the length of the

narrow band increases radically, which implies a loss of efficiency. The idea of the

smoothing term was borrowed from the original Level Set Method, but underwent

an essential modification. In the Level Set Method the smoothing term is summed

with the main term. This works when speed can change the sign. The smoothing

term with the same sign as the main term increases speed whereas that with

the opposite sign reduces it. In the Fast Marching Method, speed must have a

constant sign, let us say, a positive one. When trying to use the same idea it is

possible to obtain in some cases a negative speed, which is invalid. Moreover, if

the term F2 was limited to non-negative values, it would only be able to increase

contour speed.

It was necessary to include the smoothing term in another way. The inclusion

procedure should have a neutral element and allow increasing and decreasing

propagation speed. Using multiplication allows keeping the essential features of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Curve evolution computed by the Fast Marching Method
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area visited by the curve

γ

γ

Figure 5.9: Local curvature definition. The angle (γ) is measured at the side
already visited by the curve

the smoothing term, which can be found in the Level Set Method. F2 is neutral

when it has the value 1, it slows down the propagation for values less than 1 and

increases speed for values greater than 1. A detailed description of the calculation

of the curvature-based term is given in the subsequent section.

The standard curvature definition given by Equation 4.6 is not applicable to

to the Fast Marching Method because it gives positive as well as negative values.

This section offers a proposition of a new way of calculating the local curvature.

Since the propagation of the contour does not have to be strictly curvature-

dependent like in some level set applications [79, 97, 116], precise calculation is

not required. In this case, the curvature term acts only as a smoothing term.

At the point of the curve where the component F2 has to be estimated, a

circle of a small radius is placed (Figure 5.9). The angle defined by the circle

centre and curve intersection points defines the local curvature:

F2 =







0.1, if γ < 90◦;
10, if γ > 270◦;
1, in other case.

(5.13)

The curvature-based term F2 should have values below 1 for cusps and a value

greater than 1 for corners. A simplified local curvature estimation is proposed to

keep the performance of the algorithm at the high level. This term also helps to

keep the contour as short as possible. The shorter the contour, the smaller the

number of elements in the narrow band list to be sorted.

Alternatively, a non-negative curvature can be defined on the basis of the
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Figure 5.10: Regions with the dfd value equal to zero

curvature from Equation 4.6. The definition of the positive curvature κp is as

follows:

κp =

{

1 + κ, if κ ≥ 0;
1

1+|κ|
, in other case.

(5.14)

5.1.3 Initialization

Typically, video segmentation algorithms based on active contour methods are

initialized at boundary pixels of a frame [40, 50, 122]. This is a very convenient

assumption but objects that are partially visible in the frame may be not detected.

This happens because the initial contour intersects such objects as well as the

background.

The application of the Fast Marching Method [2, 117, 119] makes it possible

to start in any point of the background and segment out object thanks to the

possibility of performing a contour topology change. It is even possible to make

foreground-background segmentation in presence of multiple moving objects.

A serious problem is to find automatically a good initialization point [131].

An initialization procedure based on displaced frame difference estimation will

be proposed. It is quite possible that the largest, uniformly moving region will

be the background region. The displaced frame difference at the point (x, y) is
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computed as follows:

dfd =
1

9

1
∑

i=−1

1
∑

j=−1

|In(x + 1, y + j) − In−1(mx + i,my + j)|, (5.15)

where mx and my are the position of the point in the previous frame according to

motion information and n is the frame number. Such a computation procedure

has two purposes: reducing image noise influence and rejecting single points as

starting region candidates. All connected pixels with the dfd value equal to zero

are connected as one region (Figure 5.10). As the initialization point, the center

point of the largest region is chosen.

5.1.4 Stop Condition

In typical applications of the active contour, the stop condition is defined de-

pending on the energy value calculated along the whole contour. Moreover, in

the classical geodesic active contour and level set methods calculations are per-

formed along the whole contour even when some parts of the contour have reached

the solution. In the implementation of the Fast Marching Method presented in

this paper, the stop condition is defined locally. This means that those parts of

the contour which reached solution are no longer considered in the calculation.

When the speed of the contour at a certain point drops below the threshold value

Fth, this point is considered to be within the solution. A good threshold estimate

is the standard deviation of speed function values computed for the whole image:

F 2
th =

1

n

n
∑

i=1

(F − F̄ )2, (5.16)

where n is the number of points in the image, F is the contour speed at the n-th

point and F̄ is the mean speed in the image. A similar approach can be found

in [46]. The points that have reached a solution do not propagate (the narrow

band is not updated for them) and are removed from the narrow band. This

approach allows reducing the length of the narrow band list and improving the

performance of the algorithm. The algorithm stops when the narrow band list is

empty.
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The verification of the speed threshold calculated with Equation 5.16 was per-

formed experimentally. The results of the experiment are shown in Figures 5.14

and 5.15. The contour stops at a proper distance from the object for threshold

values around the computed value.

5.2 Enhancement Step

The first step of the presented algorithm stops the contour before the object

boundary. This is necessary because the Fast Marching Method cannot move the

contour back. If the object boundary is passed by the propagating curve at any

point, the curve will leak into the object connecting it with the background.

In the second step of the algorithm, segment borders are moved towards the

nearest edge detected in the picture by static image segmentation. The segmen-

tation of the whole image is not necessary. Only the part that is contained in the

band around the curve developed in the first stage is considered. The thickness of

the segmentation area around the contour must be wider than the diameter of the

difference operator described in Section 5.1.1. For simple and fast static segmen-

tation algorithms, the segmentation of the whole frame will be effective enough

and limiting the surface area will not be necessary. In most tests, a watershed

was used as a static segmentation algorithm. This algorithm was chosen because

Figure 5.11: Segmentation by histogram clustering
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(a)

(b)

Figure 5.12: Watershed segmentations with different levels

it allows controlling the size of the resulting segments. Thanks to this, the entire

method was tested for different levels of segmentation. Example segmentations

of the sample images are shown in Figures 5.11, 5.12(a) and 5.12(b).

After static segmentation is performed, its result must be merged with the re-

sult of fast marching segmentation. If it is assumed that a full frame is segmented,

static segmentation can be done parallel to fast marching segmentation. It can be

very convenient if computation time for both methods is similar. Since the whole

method is intended to work in a real time, the merging procedure must be simple.

Because the contour propagating in the first step stops at some distance from the

object edge, it can be assumed that it has no common parts with the segments

that belong to the object. This assumption simplifies the merging procedure to
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green: result 

of the first step

dark colours: segments 

willl not be added

partially covered regions

will be added to the result

from the first step

Figure 5.13: Illustration of the merging procedure

the Boolean union of the result from the first step and the segments produced

in the second step (Figure 5.13). Namely, let sri be an i-th region from static

segmentation and fmr a region from fast marching segmentation. The merging

procedure can be written as follows:

for i=0 to n

if sri ∩ fmr 6= ∅ add sri to fmr

where n is the total number of segments obtained from static segmentation. The

segments with the common parts are connected.

5.3 Experiments

5.3.1 First Step, Threshold Estimation

To ensure proper segmentation, the first step of the algorithm should stop prop-

agating the segmenting contour at some distance from the expected edge. The

stop condition based on the speed threshold defined in Equation 5.16 was tested

experimentally. Segmentation with an automatically chosen threshold is good

enough to ensure good results after the second step of the segmentation. Sample
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results for a different level of the speed threshold are presented in Figures 5.14

and 5.15 to compare them with the threshold chosen automatically. The chosen

threshold gave results suitable for processing in the second step of the algorithm.

The contour is stopped at some distance from the object boundary. Some errors

in the highly textured area are unavoidable because of the motion estimation

errors. Most of them are usually corrected in the second step.

5.3.2 Quality of Final Segmentation

Example results of the segmentation are shown in Figures 5.16 and 5.17. Exper-

iments shown that algorithm performs well when the motion can be estimated

correctly. For the frames with large object displacements the segmentation is

inaccurate because of the large motion estimation errors. More examples are in-

cluded at the end of this chapter. The results of segmentation was assessed with

some quality indices. Exemplary quality measures are shown in Table 5.1. A

soft reference (SR) quality index was presented in Section 2.4.3. This index is

compared with other indices that are using the binary reference. These indices

are defined as follows:

• DPC – number of pixels that differ from reference segmentation,

• POD – percentage of DPC to the number of pixels in reference segmenta-

tion,

• MD – mean absolute distance between the contours of reference and the

evaluated segmentation; the mean is calculated over all points belonging to

the reference contour,

• MSD – mean distance between the contours of reference and the evaluated

segmentation, where the displacement outside the reference is calculated as

positive, while the displacement inside the reference is calculated as neg-

ative; the mean is calculated over all points belonging to the reference

contour,
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(a) Fth=0.15 (b) Fth=0.12

(c) Fth=0.11 (d) Fth=0.1

(e) Fth=0.095 (f) Fth=0.08

(g) Fth=0.07 (h) Fth=0.05

Figure 5.14: Results of fast marching segmentation (first step) of the sequence
‘Stefan’ for different levels of the Fth threshold. The computed threshold was
equal to 0.095
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(a) Fth=0.15 (b) Fth=0.1

(c) Fth=0.07 (d) Fth=0.04

(e) Fth=0.0366 (f) Fth=0.03

(g) Fth=0.025 (h) Fth=0.02

Figure 5.15: Results of fast marching segmentation (first step) of the se-
quence ‘Table Tennis’ for different levels of the Fth threshold. The computed
threshold was equal to 0.0366
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(a) Original image (b) Reference segmentation

(c) Segmentation after the first step (d) Segmentation after the second
step

Figure 5.16: Frame 47 from the ‘Dance’ sequence segmented using two-step
fast marching

• AD – absolute distance between the contours of reference and the evalu-

ated segmentation, calculated as a sum of absolute distances over all points

belonging to the reference contour,

• ASD – distance between the contours of reference and the evaluated seg-

mentation, where the displacement outside the reference is calculated as

positive, while the displacement inside the reference is calculated as neg-

ative, calculated as a sum of distances over all points belonging to the

reference contour.

Unfortunately, most of the authors [18,39,62,68,70,77,82,100,102,124] does not

give any quantitative measures for their results. Even speed of the methods is

seldom presented in publications. Usually only the pictures presenting segmen-
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(a) Original image (b) Reference segmentation

(c) Segmentation after the first step (d) Segmentation after the second
step

Figure 5.17: Frame 218 from the ‘Stefan’ sequence segmented using two-step
fast marching

Table 5.1: Segmentation quality measured for exemplary frames. Frame
number is in the braces. Quality indices: SR – soft reference, DPC – different
pel count, POD – percent of difference, MD – mean distance, MSD – mean
signed distance, AD – absolute distance, ASD – absolute signed distance

Seq. name SR DPC POD MD MSD AD ASD
Dancer (100) 0.85 710 5.38% 0.81 0.43 687.72 367.25
Stefan (50) 31.23 1974 49.69% 3.2 -1.66 2137.8 -1108.78
Stefan (218) 37.96 2113 55.31% 3.83 -2.28 2171.43 -1165.87

Football (117) 13.56 3427 36.38% 4.39 -0.13 5841.56 -173.77
Football (340) 12.4 4769 20.76% 2.5 1.33 3941.53 2092.84



96 Two-Step Object Segmentation

(a) Dancer (100). (b) Stefan (50) (c) Stefan (218)

(d) Football (117) (e) Football (340)

Figure 5.18: Segments evaluated in Table 5.1

tation results are available. This makes a precise comparison of the methods

impossible. Instead of this, a functional comparison of some methods will be

presented in Section 5.3.3.

When motion estimation fails, proper segmentation is impossible. Figure 5.19

shows such a situation. Segmentation presented in Figure 5.17 is less accurate

because of motion estimation errors correlated with the highly textured back-

ground. Motion in the presented frame was too high for the implemented algo-

rithms. It was observed that displacement higher then 3 pixels per frame was not

detected correctly. Increasing aperture size in Lucas-Kanade algorithm could help

in detecting larger displacement but at the cost of higher blurring of the object

motion edges. However, for the tests, only basic motion estimation algorithms

were used. Using a more precise estimation method would improve segmentation

quality. Figures 5.20 to 5.25 show exemplary segmentations.It can be seen, that

second step improved segmentation quality significantly. However, some small

false objects was detected due to motion estimation errors.
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(a) Segmentation after the first step (b) Segmentation after the second
step

Figure 5.19: Frame 200 from the ‘Stefan’ sequence segmented using two-step
fast marching. Segmentation failed because of wrongly estimated motion

Table 5.2: Comparison of features from different segmentation methods. 0 –
proposed method, 1 – method by Pargios [102], 2 – method by Sifakis [124],
3 – method by Konrad [70], 4 – modified K-means [69], 5 – DCT-based
method [62]. + – feature exists, ◦ – partially exists, − – feature unavailable

0 1 2 3 4 5
foreground-background segmentation + + + + − +

multiple objects ◦ ◦ ◦ − + ◦
moving background + − − − − −

real time + − − − − +
colour segmentation + − + − + +

object tracking − + − + − −
overlapping objects ◦ ◦ ◦ − + ◦

partially visible objects + − + − + +
high segmentation precision + + + + + −

5.3.3 Functional Comparison

In this section will be given a functional comparison of several video segmentation

methods. Table 5.2 shows a breakdown of features available in the compared

methods. The compared features are as follows:

• foreground-background segmentation – segmentation method divides

frame into two classes only, without recognizing individual objects; minus

sign informs that method is able to distinguish multiple objects,

• multiple objects – multiple objects can be detected in the scene; + means
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that objects are marked individually by the algorithm; ◦ means that the

algorithm can detect multiple, non-overlapping objects but they are not

distinguished; − the algorithm can detect only one object,

• moving background – the algorithm can segment sequences taken with

moving camera,

• real time – complexity of the method allows real-time implementation,

• colour segmentation – the method uses colour information during the

segmentation process; − means that only gray-scale images are used,

• object tracking – the segmented objects can be tracked over time,

• overlapping objects – the method can detect overlapped objects; ◦ means

that overlapped objects are detected as one object; − only one of the objects

can be detected,

• partially visible objects – the method can detect objects that are not

fully visible in the scene,

• high segmentation precision – the method is able to give pixel-level

segmentation.

Most of the features are present in the method shown in this chapter. The pre-

sented method has a unique ability to segment objects over a moving background

even when an object is only partially included in the scene.

5.3.4 Execution Times

The mean segmentation time for the sample set of sequences was 1250 ms on

a computer with a 1.4 GHz AMD AthlonXP processor and 512 MB of RAM.

Example timing for the different sequences is presented in Table 5.3. The speed

of the segmentation was dependent on the length of the contour. If the contour

was propagated smoothly, the segmentation time was shorter. If the segmented
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object was complicated, the segmentation was performed for a longer time. The

profiling of the code showed that 75% of the execution time was related to the

sorting function used by the fast marching algorithm. It has to be mentioned that

the code was optimized neither for speed nor for memory consumption and has

a big overhead related to debugging. Nevertheless, the complexity of the method

suggests a real time implementation. The current version does not use any ad-

vanced processing functions such as MMX or SSE. A significant performance gain

could be achieved by rewriting the part responsible for fast marching propagation.

Currently, sorting is realized using dynamically allocated objects. This solution

is convenient from the application point of view but it is relatively slow. The

Heapsort algorithm used in the Fast Marching Method can be implemented on

static arrays. The maximum length of such an array is the number of pixels in

the processed image. This gives the possibility of porting to the assembler all

functions that are responsible for handling contour points. Additionally, fixed

memory location gives the possibility of better memory cache utilization than in

the case of dynamic memory allocation. Assembly language implementation of

the most often executed functions can give a several times faster code. This could

allow the method to approach the real time on the 1.4 GHz AMD AthlonXP pro-

cessor. A bottleneck of the method is also the speed of the memory and system

bus because of the large number of memory operations. This means that mod-

ern computers with fast memory are able to make calculations in a real time for

sequences in the CIF resolution.
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Table 5.3: Sample execution times of the proposed method for different se-
quences. The mean execution time was 1250 ms

sequence name frame number execution time (ms)
Table Tennis 7 1333
Table Tennis 91 892
Table Tennis 141 1359
Table Tennis 187 1347

Dance 24 1263
Dance 45 1230
Dance 96 1278
Dance 133 1202
Stefan 41 1239
Stefan 50 1323
Stefan 212 1301
Stefan 312 1228

(a) Segmentation after the first step (b) Segmentation after the second step

Figure 5.20: Frame 22 from the ‘Basket’ sequence segmented using two-step
fast marching
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(a) Segmentation after the first step (b) Segmentation after the second step

Figure 5.21: Frame 80 from the ‘Basket’ sequence segmented using two-step
fast marching

(a) Segmentation after the first step (b) Segmentation after the second step

Figure 5.22: Frame 253 from the ‘Basket’ sequence segmented using two-step
fast marching
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(a) Segmentation after the first step (b) Segmentation after the second step

Figure 5.23: Frame 215 from the ‘Football’ sequence segmented using two-
step fast marching

(a) Segmentation after the first step (b) Segmentation after the second step

Figure 5.24: Frame 340 from the ‘Football’ sequence segmented using two-
step fast marching

(a) Segmentation after the first step (b) Segmentation after the second step

Figure 5.25: Frame 43 from the ‘Hall Monitor’ sequence segmented using
two-step fast marching



Chapter 6

Extraction of Multiple Objects
Using Multi-Label Fast Marching

In some applications, foreground-background segmentation is not sufficient. The

detection of all objects in the scene would be more appropriate. The original

method that would be presented in this chapter is aimed at performing such a

task. As the main tool the multi-label Fast Marching Method will be used. The

idea of simultaneous propagation of multiple contours using the Fast Marching

Method was introduced by Sifakis et al [124,125]. However the method presented

in this chapter shares with the Sifakis approach merely the idea of multi-label

fast marching. In the original method only two labels are used, and each of

them has individual propagation speed. Such an approach is hard to extend to

multiple object segmentation, especially when the number of objects is unknown.

The approach presented here uses the same propagation speed for all labels,

thus the number of labels does not influence algorithm work. Moreover, there

is no limitation to a static or motion compensated background. An additional

advantage of this approach is that it is easy to define the stop condition since

the contours are propagating toward each other. In the original method, the

algorithm stops when the contours meet. In the method presented in this section

some additional actions can be performed when two segments meet.
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6.1 Initialization

The initialization procedure is based on the displaced frame difference (dfd) be-

tween two consecutive frames and requires the dense motion field to be computed

prior to the initialization. Here it is assumed that the motion field was computed

using one of the already known methods, as was done in Section 2.3.3.

It is assumed that regions with zero dfd are likely to be inside objects pre-

senting the same motion properties. The procedure is similar to that presented

in Section 5.1.3. This makes such areas good starting points for contours propa-

gation. The displaced frame difference at the point (x, y) is computed as follows:

dfd =
1

9

1
∑

i=−1

1
∑

j=−1

|In(x + 1, y + j) − In−1(mx + i,my + j)|, (6.1)

where mx and my are the position of the point in the previous frame according to

motion information. Such a computation procedure has two purposes: reducing

image noise influence and rejecting single points as starting region candidates.

All connected pixels with the dfd value equal to zero are labelled as one region

with an additional constraint on motion uniformity. This prevents the regions

on the border between the object and the background with zero dfd but with

different motion properties from merging into one region. Each region is assigned

an individual label. Such regions will be seeds for contours propagated with the

Fast Marching Method (Figure 6.1). The number of seed regions is always larger

than the number of final segments.

6.2 Initial Segments Propagation

All segments initialized earlier are propagated outwards using a modified fast

marching algorithm. The segment labels for the points visited by contours are

positive integers. The trial points for each contour are marked with negative

numbers of segment labels. All trial points from all segments are included into

the same sorted list. Thanks to this, no additional time synchronization be-
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Figure 6.1: Seed regions overlayed on the original frame from the sequence

tween the segments is required. This situation is naturally handled by the fast

marching algorithm since it can propagate contours of any topology. At this

stage of propagation, there is in fact no difference between the standard and the

multi-label implementation apart from the fact that the new label for the trial

point is inherited from the segment that propagates at the current algorithm step

(Figure 6.2).

Propagation speed is based only on the current image properties. It is pro-

portional to the inverse gradient value combined with blurred image components:

F =
1

max(∇Yσ,∇Cbσ,∇Crσ) + 1
, (6.2)

where σ denotes Gaussian blurring. Such a speed definition makes contour motion

fast in smooth areas and slow as they approach edges. Thanks to this, contours

are likely to meet on the object edge rather than inside the object.

6.3 Dynamic Regularization of the Motion Field

Since estimation starts from the points where motion vectors are estimated cor-

rectly, these correct vectors are propagated along with the contour and replace the

originally computed motion vectors. This situation is correct until the contour
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Figure 6.2: Segments during the initial stage of propagation

(a) (b)

Figure 6.3: Regularized motion field for the frame 190 from the ‘mobile’
sequence. a – horizontal component, b – vertical component

stays inside the object from which the propagation started. When the contour

crosses the object border, motion vectors that belong to that object are assigned

to the background or another object. Such a situation leads to two errors: seg-

ments are missaligned with real objects and some parts of the frame have erro-

neous motion vectors assigned. This situation will last until two contours meet.

Section 6.4 will give a solution to the errors introduced in this step.

After segmentation is finished, every segment has a uniform motion field. The

final result is shown in Figure 6.3.

Such a simplification reduces the application of this method to sequences with
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translational motion of rigid objects. For example, traffic monitoring sequences

fall into this group. Nevertheless, the application of a more sophisticated motion

regularization method and using full motion information will extend the reliability

of this method. This is possible since the only requirement of this segmentation

method is motion consistency within the propagating segment.

6.4 Segments Merging and Pushing

The expansion of the segment described in Section 6.2 is performed as long as

new trial points can be set on the area not visited by any of the propagating

curves. When a new trial point is going to be set in a place occupied by a trial

point from another segment, two actions can be performed: the segments can be

merged or one contour can be pushed back by another.

6.4.1 Segments Merging

When two segments meet, the motion of these segments is compared. The meeting

point is a trial point from one segment that must be placed over a trial point from

another segment (Figure 6.4(c)). Since motion within segments is the same for all

points, it is sufficient to take one point from each segment for comparison. Motion

from the segment A is compared with motion from the segment B according to

the following expression:

|mxA − mxB| < ε ∧ |myA − myB| < ε, (6.3)

where mx and my are motion vector components and ε is an empirically chosen

merging threshold. During tests that were performed on a number of sequences,

the best results gave ε = 0.9. This means that segments with motions different by

less than one pixel per frame are connected. Motion vectors are estimated with

sub-pixel accuracy. Additional research is needed to find a way of automatically

adjusting ε. When the expression 6.3 is true, the segments A and B are merged.

To ensure maximum efficiency, labels from the smaller segment are changed
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point with the smallest

time value

A B

(a) Segments are one point away

point with the smallest

time value

A B

(b) Segments are touching each other

overlapped

trial points

A B

(c) Trial point overlaps the existing one.
Motion similarity is checked

B

(d) Segments merged together

Figure 6.4: Procedure of merging segments with high motion similarity. Trial
points are marked in a brighter colour
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to the value of those from the larger segment. Also, trial points from smaller seg-

ments are assigned with the value from larger segments (Figure 6.4(d)). Motion

vectors from smaller regions are replaced with motion vectors from larger regions

to ensure motion uniformity within segments.

6.4.2 Segment Pushing

If two segments that meet are not classified to be merged, the propagating seg-

ment can push back another segment under certain circumstances.

When a trial point from the propagating segment A is going to be placed at the

position (x, y) occupied by a trial point from another segment B (Figure 6.5(a))

and motion similarity is not high enough, then the displaced frame difference is

computed for both segments:

dfdA =
1

9

1
∑

i=−1

1
∑

j=−1

|In(x + 1, y + j) − In−1(mxA + i,myA + j)|, (6.4)

dfdB =
1

9

1
∑

i=−1

1
∑

j=−1

|In(x + 1, y + j) − In−1(mxB + i,myB + j)|, (6.5)

where In is the n-th image from the sequence, mx, my are motion compensated

positions of the pixels, and the indexes A and B denote the segment being the

source of motion information. If dfdA < dfdB, then the trial point from the

segment A replaces the trial point from the segment B. In the case when dfdA >

dfdB, the trial point from the segment A is not placed and no further propagation

is performed. The latter case means that the meeting point belongs to the segment

B. At that point only the segment B has the possibility of propagating further,

because the trial point from the segment A was not set. If the point considered

lies on the object border, the segment B cannot propagate either because the

trial point from B will have higher dfd than the point from A set earlier. The

segment B can propagate further if the segment A passed its object border and

the meeting took place on the object that belongs to B. The segment B will push

back the segment A to the nearest object border.
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overlapped

trial points

object

boundary

A B

(a) dfd is computed for both overlapped
trial points

gap in 

contour B

object

boundary

A B

(b) Trial point B replaced with the trial
point A

object

boundary

A B

(c) Segment A approaches the object
boundary

object

boundary

A B

invalid 

trial point

(d) New trial point cannot be placed.
dfd from the segment A higher than
those from segment B

Figure 6.5: Segment A with lower dfd pushes the segment B with higher dfd
back to the object boundary
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The replacement of the point from the trial list of the segment B creates a gap

in the segment boundary (Figure 6.5(b)). Nonetheless, it has no influence on the

further propagation of neither the segment B nor the segment A. The replaced

point has no chance of propagating anyway because its dfd was higher than

those of the segment A. The remaining portion of the segment B is propagated

normally. The fast marching algorithm does not require a closed contour for

propagation.

The segment A stops pushing back the segment B on the boundary of the

object which has motion properties similar to those represented by the segment

B. In such a case, the segment A cannot propagate further, because its dfd for

the trial point that is going to be set inside the object occupied by the segment

B will be higher than those for the segment B (Figure 6.5(d)).

When a contour has no possibility of propagating further, no new trial points

are set. This implies the reduction of the total length of the sorted list used by

the fast marching algorithm and the same performance improvement.

6.5 Stop Condition

The presented algorithm stops propagation when all image points are assigned

to segments and there is no segment that could push back another segment.

The algorithm cannot run infinitely because oscillations between segments are

impossible. No segment can visit twice the same area. Namely, when a segment

was pushed back by another segment, it cannot get back the lost pixels.

6.6 Experiments

The proposed method of segmentation using multi-label fast marching was eval-

uated experimentally. The algorithm was able to segment complex scenes with

multiple overlapping objects and with objects partially visible in the scene. An

example of such a scene is presented in Figure 6.6.
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(a) Original image (b) Segmented image

(c) Motion in the x direction (d) Motion in the y direction

(e) Regularized motion in the x direction. (f) Regularized motion in the y direction

Figure 6.6: Frame 112 from the ‘Bus’ sequence segmented using multi-label
fast marching
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(a) Original image (b) Segmented image

Figure 6.7: Frame 78 from the ‘Coast Guard’ sequence segmented using
multi-label fast marching

(a) Original image (b) Segmented image

Figure 6.8: Exemplary frame from the semi-artificial ‘Car’ sequence seg-
mented using multi-label fast marching
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(a) Original image (b) Segmented image

(c) Motion in the x direction (d) Motion in the y direction

Figure 6.9: Frame 8 from the ‘Bus’ sequence segmented using multi-label
fast marching. Problems with the erroneous motion field

The algorithm requires a partially reliable motion field for correct perfor-

mance. This means that the motion estimation algorithm must be able to produce

at least some parts of the motion field, with motion vectors that point precisely

onto the corresponding pixels from the previous frame (dfd for these points is

zero). An example of such a motion field is shown in Figures 6.6(c) and 6.6(d).

The algorithm fails when there is no reliable motion field. Figure 6.9 shows the

segmentation of Frame 8 from the ‘Bus’ sequence. For this frame, motion was too

fast for the currently implemented motion estimation algorithm. Motion vectors

are mostly erroneous and the consequence is a wrongly segmented image. How-

ever, for the testing purposes, only simple classical motion estimation algorithms

were implemented. The implementation of a fastest and more precise motion

estimation method will improve the performance of the segmentation algorithm.

In this implementation only the sequences with translational and rigid motion

can be segmented. However, this limitation is dependent on the motion regular-
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(a) Original image (b) Segmented image

(c) Motion in the x direction (d) Motion in the y direction

Figure 6.10: Frame 166 from the ‘Cheer’ sequence segmented using multi-
label fast marching. Problems with complex elastic motion

ization method, which is an integral part of the algorithm and can be replaced

with another method without interference into the core algorithm. Figure 6.10

presents a sequence with complex non-rigid motion that causes problems for the

algorithm.

Computational efficiency of this method is similar to this presented in Chap-

ter 5. Nevertheless, the total time of frame segmentation is now higher despite the

much simpler propagation speed. The current speed definition allows calculating

speed for the whole frame before propagation begins using fast convolution filters.

During the propagation, speed is only read from the table. However, the total

length of the propagated contour is much bigger than it was in the method from

Chapter 5. As a consequence, segmentation with multi-label fast marching can

last even three times longer. This is a proof of the fact that the biggest impact

on the performance comes from the implementation of the sorting algorithm used

by the Fast Marching Method.
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Multi-label propagation was implemented using Sifakis’s [124] approach, namely,

by a single sorted list. This approach has some advantages when all the prop-

agated contours must be synchronized in time. They share the sorted list, thus

the fastest point of all from all the contours is always propagated. For Sifakis

this was essential since two propagated contours were expected to meet on the

object boundary. In his method, there is no possibility of correction when the

boundary is missed.

In the method presented in this chapter, such time synchronization is not

essential. It is important because the first stage of propagation is much faster

than segment pushing but it is not critical. This opens the way for parallel

implementation of propagating contours. Each contour can be propagated by a

different thread until the contours are merged. During the merging, the thread

the with the smaller segment is destroyed and its contour is took over by the

thread with the bigger segment. The implementation of segment pushing can

be virtually the same as in the version with the single list since threads do not

process points already visited by the contour.

The performance analysis from Section 5.3 is also applicable in the case of

multi-label fast marching. Despite longer execution times in comparison to the

method from Chapter 5, for a single processing thread (about three times), the

method presented in this chapter can be computed using a larger number of

processors. Real time can be achieved using only four processors of the Pentium

IV class. This is a very good property because complexity grows linearly with

the frame size.

Figure 6.11 shows a comparison of a frame segmented with the method pre-

sented in this chapter and with the method presented by Patras in [105]. While

segmentation quality is on a similar level, algorithm complexity is much lower in

the method developed in this thesis. Patras uses for segmentation several steps,

and each of them converges iteratively to the final solution. However, Patras’s

method deals better with large object displacements.
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(a) Original image (b) Segmented image

(c) Result obtained by Patras in [105]

Figure 6.11: Frame 2 from the ‘Coast Guard’ sequence segmented using
multi-label fast marching compared to the result obtained by another author

Figures 6.12 to 6.15 show exemplary segmentations obtained by the method

developed in this thesis. Objects with large displacements are usually unde-

tectable, which is caused by limitation of the motion estimation method used for

tests. In some cases the method tends to oversegment frame. Or live small false

objects (Figure 6.15). A way of keeping the segments more consistent must be

found in further development of the method.
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(a) Original image (b) Segmented image

Figure 6.12: Frame 199 from the ‘Coast Guard’ sequence segmented using
multi-label fast marching

(a) Original image (b) Segmented image

Figure 6.13: Frame 11 from the ‘Table Tennis’ sequence segmented using
multi-label fast marching
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(a) Original image (b) Segmented image

Figure 6.14: Frame 165 from the ‘Mobile’ sequence segmented using multi-
label fast marching

(a) Original image (b) Segmented image

Figure 6.15: Frame 143 from the ‘Bus’ sequence segmented using multi-label
fast marching



Chapter 7

Conclusions

7.1 The Two Original Methods

The algorithms developed in this dissertation allow segmentating colour video

sequences in the presence of a moving background without the necessity for global

motion compensation. Both algorithms are designed to segment individual frames

without object tracking. The motivation of such an approach is the fact that there

is a large number of object tracking algorithms [28,45,54,55,82] that require prior

manual initialization of the object boundary. However, there exists a problem of

automatic search of objects at the beginning of the sequence.

Two methods were proposed by the author. Both of them fulfil the assump-

tions given in Section 1.2, which proves the thesis given at the beginning of this

dissertation.

The first algorithm separates foreground objects from the background.

Combining the Fast Marching Method with static image segmentation allows

developing a two-step method which is fast and accurate. The first step based

on the Fast Marching Method is designed to provide fast and rough segmenta-

tion of the video frame while the second step refines the result using information

that comes from static image segmentation. Correct performance of the method

requires a reliable motion field on the object boundary. Motion estimation errors

in highly textured areas may result in segmentation errors. The motion field in

smooth image areas is ignored, thus segmentation errors in those areas have no
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influence on the algorithm.

The second segmentation algorithm was designed to segment the video

frame into multiple separated objects. The main assumptions are the same as in

the first method, but they are additionally limited to rigid objects with transla-

tional motion. Here the main concern was algorithm speed and stability rather

than segmentation quality. The current version of the algorithm cannot deal with

complex motion and sometimes may produce oversegmented frames. Neverthe-

less, its generality permits further extensions and performance improvements.

7.2 Original Achievements

The Fast Marching Method developed by Sethian [119] has been used in some

video segmentation application (see Section 4.4.2). However, it is not as popular

as the other active contour method because of its ability to propagate contour

only in one way, which causes many problems with segmentation quality. The

new approach presented in this work lets exploit the speed of the Fast Marching

Method and ensures high segmentation quality. The author’s original contribu-

tion to the first method includes:

• Introduction of a second colour-based step that enhances the results of fast

marching segmentation.

• Adaptation of the Fast Marching Method to frame segmentation that in-

cludes propagation speed design. Speed is designed in a way that permits

segmentation even with an erroneous motion field.

• Reduction of segmentation errors by introducing a special difference oper-

ator that controls curve behaviour.

• Automatic initialization method that can deal with objects partially in-

cluded in the frame.
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The second algorithm developed in this work is based on the idea of multi-label

fast marching that was introduced by Sifakis [124]. Nevertheless, the realization

proposed in this thesis is totally different from the original. The original method

is limited to a sequences with static background and is able to propagate only

two segments with individually defined speed functions. The method presented

in this work can deal with sequences with moving background and is able to

propagate any number of segments. The author’s original contribution to the

second method includes:

• Development of the multi-label version of the fast marching algorithm that

can perform with any number of contours propagating at the same time.

• Extension to multi-label propagation that removes the limitation of one-

way contour propagation. This facilitates the adopting of the algorithm to

a much wider range of problems than segmentation, which was reserved for

slower, bi-directional active contour models.

• Significant simplification of the algorithm contrary to the method known in

the literature [124,125], which permits easy parallelization of calculations.

Additionally, a novel method of segmentation quality assessment was pro-

posed in Section 2.4.3. This method is based on soft reference objects, which

makes it more insensitive to false assessments due to an imprecise preparation of

reference segmentations. Moreover, the method can be directly applied even to

segmentation with fractional membership functions, which are a possible way of

further development of image and video segmentation methods.

Some performance improvement of the motion estimation method was pro-

posed in Section 2.3.3.

7.3 Direction of Future Research

Further research should include work on segmentation quality improvements as

well as the reliability of the method in the presence of noise and motion estimation
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errors. The integration of segmentation methods developed in this dissertation

with object tracking techniques may lead to a significant improvement in perfor-

mance.

The second of the proposed segmentation algorithms requires a more sophis-

ticated method of motion regularization, which would make the segmentation

of sequences with complex motion possible. Additionally, it will be a necessary

verification if the proposed methods of merging and pushing objects are also

applicable to objects with non-rigid motion.

Further research related to the second algorithm proposed may also include

its adaptation to problems other than video segmentation, for example, medical

image segmentation or the reconstruction of objects from unstructured data.

Further performance improvement can be achieved by the parallelization of the

fast marching algorithm. An example was proposed by Dejnozkova and Dokladal

in [26].
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[132] P. Steć, “Metody automatycznej segmentacji sekwencji wizyjnych,” in
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