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Abstract—Blind spectrum sensing (BSS) is a valuable tech-
nique for identifying unknown signals in scenarios where prior
knowledge is limited. However, traditional methods encounter
difficulties when dealing with unknown and time-varying signals
in the presence of noise. This paper addresses these challenges
by enhancing machine learning (ML) features through a novel
statistical signal processing approach. The proposed BSS ap-
proach integrates cumulative distribution functions (CDFs) into
an unsupervised ML process, allowing for the effective clustering
of distinct transmission states without making assumptions about
specific noise distributions. Furthermore, the paper introduces
a temporal decomposition technique that utilizes shorter Fast
Fourier Transforms (FFTs) to enhance learning, reduce system
inertia, and minimize the amount of data required for retraining
in changing conditions. Simulation results presented in this paper
demonstrate a good detection rate in a generic transmission
scenario (i.e., receiving a Gaussian pulse disturbed by additive
white Gaussian noise) while maintaining a constant false alarm
rate. These findings indicate the efficacy of the proposed BSS
approach in handling unknown signals and its potential for
practical implementation.

Index Terms—Blind detection, cumulative distribution func-
tion, machine learning, spectrum sensing, unknown signals.

I. INTRODUCTION

Blind spectrum sensing (BSS) is a powerful technique that
enables the detection of unknown signals in scenarios where
little or no prior knowledge about the signal is available.
Traditional detection methods may prove ineffective in sce-
narios where the signals are unknown, vary over time, or are
surrounded by significant levels of noise and interference. One
of the significant challenges of blind detection is the need
for large amounts of data, computational expense, and less
accurate results compared to methods with prior knowledge
of the signal. However, the ability to detect unknown signals
can be highly valuable in a wide range of applications.

Wireless communications and cognitive radio networks re-
quire the detection and tracking of signals from multiple
sources to avoid harmful interference [1]. In radio astronomy,
it is often necessary to detect unknown signals from distant
sources [2]. Passive radar systems rely on naturally occurring
signals, such as TV or FM signals, as the source of illumina-
tion rather than an active transmitter [3]. In medical imaging,
it is necessary to detect and locate small or faint signals within
a large amount of data. The above-listed detection constraints
can also be encountered in different situations.

A diverse range of advanced and well-established tech-
niques have been successfully applied across this interdisci-
plinary domain. Among these, subspace methods are widely
used for blind spectrum sensing. Principal component analysis
(PCA) and independent component analysis (ICA) are two
popular subspace techniques that aim to identify a low-
dimensional subspace that captures the most essential features
of the signal [4]. Although subspace techniques are efficient
in separating mixed or correlated signals and are relatively
easy to implement, they require large amounts of data and
can be sensitive to noise and outliers. Cyclostationary feature
detection is another technique that can be used for blind
detection. This method relies on the cyclostationarity property
of signals, which refers to the statistical dependence between
the signal and its time-shifted versions. Cyclostationary feature
detection is known for its robustness to noise and interference,
but it applies only to a limited range of signal types, such
as narrowband signals [5]. Sparse representations, a recent
technique for BSS, including compressive sensing, aim to
represent the signal as a sparse linear combination of basis
functions. Sparse representations can effectively extract mean-
ingful information from signals, even in the presence of noise
and interference. However, they require a significant amount
of data and can be affected by the selection of basis functions
used [6].

In recent years, the field of BSS has seen a surge of
interest in developing novel algorithms and techniques to
improve the performance and robustness of signal detection.
Researchers have focused on several areas of investigation,
such as the development of new subspace-based techniques
and sparse representation methods. Notably, Machine Learning
(ML) approaches have garnered considerable attention as well
[7]–[11]. These methods employ ML algorithms that can
adapt to the signal and noise characteristics. However, two
significant challenges remain open in ML-based BSS research:

1) Development of versatile ML features that can handle
non-stationary and non-linear signals independently of
their characteristics is essential. Such features should
enable the detection of unknown signals without prior
knowledge of their frequency, modulation, or structure
and adapt to signals with time-varying characteristics.

2) Requirement of large amounts of data for achieving high

Authorized licensed use limited to: Politechnika Poznanska. Downloaded on February 02,2024 at 12:29:03 UTC from IEEE Xplore.  Restrictions apply. 



accuracy using machine learning-based methods can be
a prohibitive factor, especially in scenarios with limited
data or computationally intensive detection tasks.

Overcoming these challenges is critical for the advancement
of BSS utilizing ML techniques.

The aim of this paper is to address the challenges iden-
tified in ML-based BSS. To this end, we extend the avail-
able range of ML features with a novel statistical signal-
processing method. By integrating cumulative distribution
functions (CDFs) into the ML process and utilizing unsu-
pervised ML, the proposed model effectively discriminates
between statistically distinct states without assuming a specific
noise distribution. The temporal decomposition technique en-
hances learning by employing multiple shorter FFTs within a
single time frame, reducing system inertia and minimizing data
requirements for model retraining under changing propagation
conditions.

The remainder of the paper is structured as follows: Section
II introduces the ML-based Blind Spectrum Sensing (BSS)
system, providing an overview of the commonly utilized mea-
surements and features. In Section III, the system model and
the statistical foundation for CDF-based detection are intro-
duced. Section IV introduces the CDF-based approach to ML-
based detection, presenting simulation results concerning CDF
measurements in BSS and discussing the accomplished en-
hancements through the utilization of CDF-based techniques.
Finally, Section VI presents the conclusion, summarizing the
obtained findings and outlining potential avenues for future
research.

II. MACHINE LEARNING IN BSS

Machine learning has emerged as a powerful technique
for signal detection in recent years [7]–[11]. These methods
aim to extract meaningful information from signals, even in
noisy environments, without prior knowledge of the signal’s
characteristics, by learning the underlying patterns in the
data. Various features can be extracted from the received
signal to classify the presence of an unknown signal in the
noise. The most common features used in ML for spectrum
sensing include power spectral density, autocorrelation, and
cyclostationary features such as cyclic correlation and cyclic
spectral density. Other popular features are based on signal
statistics, such as the mean, variance, skewness, and kurtosis
of the received signal. Additionally, machine learning algo-
rithms may use time-domain features such as energy, entropy,
and correlation coefficient between different subcarriers. The
choice of features depends on the specific application and
the characteristics of the signal being sensed. In some cases,
a combination of multiple features is used to improve the
algorithm’s accuracy and handle the non-stationary and non-
linear nature of the signals [8]. A good overview is given by
domain-specific surveys like [7], [8].

ML algorithms enhance the decision-making capabilities
of detectors by learning from past experiences and through
efficient information inference. In [9], unsupervised and su-
pervised learning methods are combined to perform spectrum

sensing under multiple transmit powers. The approach first
discovers the transmission patterns and statistics through a
learning phase based on a modified K-means algorithm and
then distinguishes energy feature vectors using support vector
machines (SVM). In [11], a random forest spectrum sensing
algorithm is introduced for signal recognition in low signal-to-
noise ratio (SNR) environments. The proposed method extracts
the characteristic parameters with the largest extraction energy
and uses the mean and variance of the signal cycle spectrum to
classify and detect the deterministic signals. Supervised and
semi-supervised learning algorithms were also developed in
[10], where the eigenvalues of the received signal covariance
matrix are utilized as features. Given the received signal
energy and likelihood ratio test statistic with different SNRs,
a binary classification-based artificial neural network (ANN)
was adopted in [12]. In [13], both the received signal power
and cyclic prefix-induced correlation are used as features. A
wideband detection scheme is proposed in [14] that improves
the detection performance by exploiting the regression and
compressive sampling techniques.

To further enhance ML-based detection, three approaches
are considered:

1) In [15], an ML-based cooperative sensing algorithm is
introduced. The classifier is initially trained on a set of
samples containing energy test statistics along with their
corresponding decisions about the presence or absence
of the signal, and then it is used to predict the decision
against the new samples with new energy test statistics.
In [16], an SVM-based model for cooperative sensing is
proposed that utilizes the signals grouping methodology
to decrease the cooperation overhead and enhance the
spectrum sensing performance.

2) A hybrid model combines different modeling ap-
proaches, such as physical models, data-driven models,
or rule-based models, to capture the strengths of each
and produce more accurate and reliable results. This
can lead to a better understanding of the system and
improved decision-making. One example of a hybrid
solution is the energy/entropy-based model developed in
[17]. Energy detection plays a crucial role in physical-
driven detection, supported by entropy as a data-driven
approach, both feed as feature vectors to the classifier.

3) Important aspect of hybrid modeling is the decision
function. Paper [18] highlights the importance of in-
corporating decision-making into the modeling process.
This involves identifying the optimal solutions based
on the model outputs and taking into account various
factors, such as cost, feasibility, and environmental im-
pact. In [19], several ML techniques, including SVM,
random forest, decision tree, K-NN, logistic regression,
and NBC, are trained, validated, and tested.

Up to this point, it should be noted that although integrat-
ing ML approaches into hybrid solutions utilizing traditional
spectrum sensing features, such as energy/covariance analysis,
can yield substantial improvements in spectrum sensing perfor-
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mance, such methodology can come at the cost of increased
processing time and implementation complexity. Developing
accurate and reliable spectrum sensing models typically in-
volves handling large amounts of data generated from spec-
trum measurement campaigns. As a result, designers of such
models must carefully consider the trade-off between model
accuracy and processing efficiency. While the primary focus
of this paper is to optimize data utilization, it is important
to acknowledge that dimensionality reduction (DR) techniques
can also yield substantial benefits by reducing data complexity
without compromising accuracy. For a more comprehensive
understanding, please refer to [20].

III. SYSTEM MODEL

Incorporating domain-specific knowledge into detection
models is a challenging task, particularly when dealing with
complex spectral signals affected by various factors such
as fluctuating propagation conditions or frequency-dependent
propagation and attenuation. The presence of signal source
non-uniformity further complicates the detection process.
To address these challenges, statistical feature analysis has
emerged as a promising research avenue. This approach avoids
relying on predetermined signal parameterization and instead
identifies external signals as outliers or rare events within
a presumed homogeneous noise environment. The effective-
ness of this methodology has been demonstrated in previous
studies [21]. Moreover, [22] demonstrates the integration of
Goodness-Of-Fit-based spectrum sensing into a conventional
wideband spectrum sensing scheme, showcasing an accurate
technique with a short sensing time. Their study offers em-
pirical evidence that supports the validity of the statistical
approach for wideband signals.

Additive white Gaussian noise (AWGN) is a widely em-
ployed channel distortion in radio environments due to sev-
eral reasons. Firstly, radio channels in practical scenarios
are susceptible to multiple noise sources, including thermal,
atmospheric, and man-made distortions. The central limit
theorem postulates that the sum of numerous independent
random variables approximates a Gaussian distribution. In a
radio environment, multiple noise sources can be assumed
to be independent, random variables that contribute to the
overall noise on a channel. Consequently, AWGN is an ap-
propriate choice for modeling the overall noise on a radio
channel. Secondly, AWGN is a well-defined statistical model
that closely approximates several noise sources’ characteristics
[23]. Additionally, the Gaussian distribution has some con-
venient mathematical properties, such as being closed under
convolution, which makes it easy to analyze the effects of
noise on a signal. Lastly, Gaussian noise represents a worst-
case scenario for many radio systems. If a communication
system can effectively function in the presence of AWGN, it is
likely to perform well in the presence of other types of noise
sources. Thus, investigating the effects of AWGN facilitates
the design of communication systems that exhibit robustness
toward a diverse range of noise sources [24], [25].

In the considered system model, we introduce the following
variables: L, the number of sampling points; sn, the signal
under investigation; xn, the deterministic signal to be detected;
zn, complex Gaussian noise with normal distributed iid sam-
ples of zero means and variance σ2. Additionally, we define
H0 and H1 as the hypotheses corresponding to ”no signal
transmitted” and ”signal transmitted”, respectively. The signal
mixed with Gaussian noise is expressed as

yn =

{
zn, if H0

xn + zn, if H1

. (1)

To determine the single-sided spectrum of s(n), we first need
to apply a Fourier transform to the received signal

S(k) =

L−1∑
n=0

s(n)e−j2π k
L , k = 0, 1, 2...

L

2
− 1, (2)

next, we can use the fact that s(n) is a mixture of x(n) and
z(n), and the properties of the Fourier transform to write

S(k) = X(k) + Z(k), (3)

where X(k) and Z(k) are the Fourier transforms of x(n) and
z(n), respectively. Thus, the kth bin in the power spectrum
can be expressed as

P (k) =
1

L

(
(XR(k) + ZR(k))

2 + (XI(k) + ZI(k))
2
)
. (4)

The notation XR(k) and XI(k) denotes the real and imagi-
nary components of the signal, respectively. Analogously, the
notation ZR(k) and ZI(k) represent the real and imaginary
parts of the noise, respectively. The probability distribution of
spectrum bins in the states H0 and H1 can be determined by
analyzing the statistical properties of the received signal s(n)
under each hypothesis.

Following the considerations/justification derived in [22],
consider the Fourier coefficients distribution of AWGN. As
a weighted sum of Gaussian random variables, the Fourier
coefficient Z(k) for any given frequency bin k will be
Gaussian distributed. Therefore, a complex Gaussian noise
process z(n) ∼ N (0, σ2) produces complex Gaussian Fourier
coefficients Z(k). As z(n) has zero means, the mean of Z(k)
also equals zero. It is also known from probability theory that
if Z(i) and Z(j) are two independent random variables with
variance σ2

i and σ2
j respectively, then the random variable

Z(i) + Z(j) has variance σ2
i + σ2

j . Hence, the variance of
Z(k) can be calculated as [22]

var(Z(k)) =

L−1∑
n=0

|e−j2π kn
L |σ2 = Lσ2, (5)

thus Fourier coefficients in follow distribution ∼ N (0, Lσ2),
with L being the length of the DFT.

Consequently, we can also state that the k-th power spec-
trum coefficient P (k) follows a Chi-squared distribution with
two degrees of freedom [22], [26], [27], given by

2|Z(k)|2

Lσ2
∼ χ2

2. (6)
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as a χ2
2 distribution is defined as the distribution of the

sum of the squares of independent standard normal variables,
the factor 2/Lσ2 comes from normalizing the real and the
imaginary part of the coefficients Z(k) to ∼ N (0, 1) [22].

Under H1, the received signal is a mixture of the signal
x(n) and the noise z(n). Since x(n) and z(n) are independent,
their Fourier transforms are also independent. Therefore, under
H1, the power spectrum bin follows a non-central Chi-squared
distribution P (k) ∼ χ2

2(λk) with two degrees of freedom and
non-centrality parameter, given by

λk =
1

σ2
|X(k) + Z(k)|2 . (7)

The central chi-squared distribution arises from the sum of
squared independent standard normal distributions, while the
noncentral chi-squared distribution extends this concept to
include normal distributions with any mean and variance. This
property enables the incorporation of deterministic narrow or
wideband signals in noise, resulting in non-centrality. The
presence of non-centrality is a crucial foundation for the
detection mechanism, as outlined in the subsequent section.

IV. PROPOSED SOLUTION

By referring to the research findings [22], we can gain
insights into the effectiveness of BSS for both narrowband and
wideband signals in the presence of AWGN, specifically by
analyzing the centrality of the chi-squared distribution. To this
end, our proposed methodology utilizes detection anchored
in control of the cumulative distribution function, which is
introduced as a statistical feature in the machine learning-
based approach. Although integrating a new feature into the set
of machine learning parameters may not pose a considerable
challenge, the issue of handling increasing data quantities
remains an open question. Prior considerations have involved
the aggregation of data from multiple FFT measurement
campaigns in generating empirical distributions of individual
spectral peaks. Our solution also addresses this problem by
minimizing the amount of data required for effective empirical
distribution analysis.

A. Algorithmic outline

The detection is based on a single capture of the signal time
frame and three assumptions:

• adjacent noise samples, as iid, can be arbitrarily combined
without changing the statistical parameters,

• the temporal form of signals can be subsampled without
loss in average power,

• the imperfect matching of the sampling frequency and the
frequency of the analyzed signal, causes energy leakage
into adjacent FFT bins.

Up to this point, the singly captured sample vector s of length
L is transformed according to the following procedure:

1) we determine the decimation coefficient d,
2) we create a measurement matrix m with dimensions of

d x ⌊L/d⌋,

3) the rows of m are filled with samples of s in a non-
overlapping, interleaved pattern:

m(i, j) = S ((j − 1)d+ i) , (8)

4) proceed d times the ⌊L/d⌋-point FFT, i.e., for each row
of the matrix m,

5) for row-oriented FFTs matrix determine the column-
oriented empirical CDFs,

6) resolve a center of a polyfigure for each CDF curve,
7) evaluate centroids of the CDFs with respect to the

demarcation of the points clustered in the ML procedure.
The approach presented in this discussion offers several

significant advantages. Firstly, it integrates a straightforward
representation of CDF into the ML process. The previous
solution [22] tested the goodness-of-fit with the expected
distribution’s pattern. However, by introducing ML, we only
assume that the two states are statistically distinguishable and
rely on the unsupervised clustering performed by ML instead.

Furthermore, temporal decomposition allows for the pro-
cessing of multiple, substantially shorter FFTs, thus, enabling
the acquisition of a sufficient CDF representation for both
H0 and H1 states from a single measurement capture. This
methodology also helps reduce the system’s inertia and de-
creases the amount of data needed to relearn the model when
faced with changing propagation conditions that force the
algorithm’s relearning.

B. Simulation

To assess the performance of the proposed algorithm, we
have developed a simulation setup capable of generating ran-
dom occurrences of a deterministic signal in a complex AWGN
environment. The analysis focuses on non-overlapping time
frames, each consisting of 4096 samples of complex noise.
With a probability of 0.5, a complex Gaussian-modulated
sinusoidal Radio Frequency (RF) pulse is added to the frame,
as depicted in Figure 1a. The clear signal at the output of the
transmitter is denoted as Tx, while the received noisy signal
is represented as Rx, indicating the real and imaginary parts
as in-phase and quadrature-phase, respectively. The remaining
parameters are as follows: Rx bandwidth (BW) of 120 MHz,
RF pulse fractional bandwidth ∼ N (0.5, 0.1) and center
frequency ∼ N (0.1, 0.01) of BW, and the phase position of the
pulse within the frame is controlled by a uniform distribution.

Considering weak signals, i.e., with an SNR below 0 dB,
as seen in the full-scale FFT (Fig. 1b), there is no evident
indication of signal presence. In the proposed solution, how-
ever, we decimate a frame into 32 subframes. As a result
of this operation, instead of calculating a single 4096-point
FFT, for a row-oriented subframe matrix, we calculate 128
times a row-oriented 32-point FFT. Then, a column-oriented
CDF is determined, representing the empirical distributions for
individual spectral bins (Fig. 2).

The non-centrality (shift) of the CDFs of the spectral bands
that carry the signal is distinctly observable. Subsequently, it
is necessary to transform each curve into a more manageable
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Fig. 1. Single capture of a time frame (a) at the transmitter (Tx) and the
receiver (Rx); FFT of the received signal (b).
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Fig. 2. Column-oriented CDFs of 128 row-oriented 32-point FFTs.

representation. At this stage, the centroid of the polyfigure is
determined for each CDF curve (Fig. 3).

Fig. 3. Polyfigure of a single CDF.

The determined centroids are subjected to unsupervised ma-

chine learning for the purpose of separating two groups. At this
point, the Cosine Distance is utilized as a similarity measure
in the KMeans clustering approach. An exemplary clustering
was conducted based on 10 frames generated from a previously
described random pattern (Fig. 4). Effective clustering enables
the assignment of subsequent points to groups while also
allowing for the determination of a demarcation line. In the
constant false alarm rate (CFAR) scenario, this line facilitates
the adjustment of detector sensitivity.
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Fig. 4. Cluster assignment.

The performance of the algorithm is measured by the
average percentage of correctness in 1000 trials of assigning
frames to groups of signal-with-noise or noise-only. Owing to
the simulation limitations—i.e., finite number of samples and
finite precision of computations—the probability of detection
is approximated by the detection rate, while the probability of
a false alarm is replaced by the false alarm rate. Figure 5 shows
the detection rate in the assumed CFAR scenario, indicating a
decrease in the assignment accuracy with a decrease in SNR.
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Fig. 5. Detection rate in CFAR scenario.

The obtained results clearly show the usefulness of the
proposed approach with regard to even very weak signals,
ensuring a 95% detection efficiency down to -12 dB while
maintaining a false alarm rate of 0.015.

V. CONCLUSIONS

The BSS approach presented in this study offers several
significant benefits compared to alternative methods. It incor-
porates the representation of the CDFs into the ML process
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and, by leveraging unsupervised ML, effectively distinguishes
between two statistically distinct states without assuming a
specific noise distribution. The temporal decomposition sig-
nificantly improves the learning process by utilizing multiple,
shorter FFTs from a single time frame capture. Such an ap-
proach reduces system inertia and minimizes the data required
to retrain the model when encountering changing propagation
conditions.

In conclusion, the outcomes obtained through our approach
are promising and emphasize the importance of ongoing
research and exploration. It is crucial to contextualize our
findings within specific scenarios, such as the identification
of BPSK-modulated pilot signals in wireless transmission,
as this will provide valuable insights relevant to practi-
cal situations. Additionally, it is reasonable to compare our
methodology with other statistical-based machine learning
approaches and goodness-of-fit testing in these applications.
Overall, our proposed approach demonstrates advantages in
terms of integration, efficiency, and adaptability, establishing
a solid foundation for future advancements in this field.
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