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High-Accuracy Stereo Matching Based on
Adaptive Ground Control Points

Chenbo Shi, Member, IEEE, Guijin Wang, Member, IEEE, Xuanwu Yin, Xiaokang Pei, Bei He, and Xinggang Lin

Abstract— This paper proposes a novel high-accuracy stereo
matching scheme based on adaptive ground control
points (AdaptGCP). Different from traditional fixed GCP-based
methods, we consider color dissimilarity, spatial relation, and the
pixel-matching reliability to select GCP adaptively in each local
support window. To minimize the global energy, we propose
a practical solution, named as alternating updating scheme of
disparity and confidence map, which can effectively eliminate
the redundant and interfering information of unreliable pixels.
The disparity values of those unreliable pixels are reassigned with
the information provided by local plane model, which is fitted
with GCPs. Then, the confidence map is updated according to the
disparity reassignment and the left—right consistency. Finally,
the disparity map is refined by multistep filers. Quantitative
evaluations demonstrate the effectiveness of our AdaptGCP
scheme for regularizing the ill-posed matching problem. The top
ranks on Middlebury benchmark with different error thresholds
show that our algorithm achieves the state-of-the-art performance
among the latest stereo matching algorithms. This paper provides
a new insight toward high-accuracy stereo matching.

Index Terms— Stereo matching, ground control points,
confidence map, alternating updating, weighted median filter.

I. INTRODUCTION

STEREO matching is vital for many applications such as
3D reconstruction, robot navigation, object segmentation,

detection and tracking, etc. Generally, stereo matching
combines the information of the same scene from several
different viewpoints, and estimates the dense depth map using
the disparity of objects in the image pairs.

The major problem in stereo matching is the ambiguity
in occluded and textureless regions. The ambiguous pixels
cannot be matched with their corresponding ones in another
image based on their own information. We have to resort to
the messages from those reliable neighbor pixels to estimate
their disparities. According to the scheme of message merging,
stereo matching algorithms can be divided into local and
global approaches [1]. In local schemes, the disparity at a given
pixel only depends on the data cost within a finite window.
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Most early local based methods, such as line scanning [2]
and adaptive windows [3], improved the performance by
posing space constraints to neighboring pixels. However, it
was difficult to handle textureless regions and occlusion due
to the limited window size. In recent years, weighted support
window were proposed to evaluate the importance of
each pixel [4]. Similar to the bilateral filter, Yoon [4] weighted
each pixel by measuring the space and color similarity between
pixels. Defined as the shortest path connecting two pixels in
the color volume, geodesic distance was used by Hosni [5] as
the support weight. These methods were able to obtain the
disparity in textureless regions and kept the discontinuity
property on the edge, however with huge computational cost.
Gupta and Cho [6] proposed binary window technique to
choose the pixels in the support window for speeding up. But
their model was not suitable for slant planes and was sen-
sitive to the algorithm parameters. Confidence-based support
window (CSW) proposed by Shi [7] selected reliable pixels
for the local disparity plane fitting and achieved good results,
but still left some errors in ambiguous areas.

Global methods typically make explicit smoothness
assumptions and treat the disparity assignment as a global
optimization problem in Markov Random Field (MRF).
Traditional global optimization algorithms were proven to be
suitable to compute the global minimum, such as dynamic
programming (DP) [8], Belief Propagation (BP) [9] and Graph
Cuts (GC) [10]. However they performed poorly on the
discontinuous edges. Recently better results were achieved
by combining new constraint hypothesis such as color seg-
mentation [11], [12] matting [13], [14] and weighed support
window [15]. But most global optimization algorithms need
a complex global model and were sensitive to algorithm
parameters. In recent years, Ground Control Points (GCP)
based approaches also got good results and attracted a lot
of attention. Dense depth map could be estimated by these
sparse reliably matched GCPs. These GCP based algorithms
were reviewed in detail in Section I-A.

In this paper, we propose a novel high-accuracy
stereo matching approach with confidence-based adaptive
GCP selection. Different from general energy optimization,
we formulate an energy function that incorporates the coarse
disparity map and confidence map, and then present a practical
alternating scheme to update the disparity map and confidence
map. A Confidence-based Support Window (CSW) is defined
for each pixel with the reliability of disparity value, color
similarity, and spatial constraint. And then matching involves
an iteration process of two steps, 1) select high-confidence
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pixels to conduct local plane fitting and then re-assign
the disparity of all points in the CSW using the fitted
plane. 2) Update the confidence map by the re-assigned
disparity map and the left-right consistence to reselect GCP
set. The iteration will terminate until the confidence map
converges. In the iteration process, adaptive GCPs can reduce
the sensitiveness of the disparity map to input parameters.
After the iteration, multi-step filters are applied to refine
the disparity map. Extensive experiments demonstrate the
effectiveness and superiority of our proposed scheme.

The rest of the paper is organized as follows.
In Section I-A, some related work is introduced. In Section II,
we briefly overview the motivation and theory of our stereo
matching algorithm and present the proposed framework.
Section III describes the detailed implementation of our
algorithm. Section IV presents the experimental results on
the public well-know benchmark and various datasets, and
investigates the overall performance in each module and over
various parameters. The last section presents our conclusion
and some potential improvements as future work.

A. Related Work

The notion of Ground Control Points (GCPs) was firstly
introduced by Bobick and Intille [16]. GCPs were sparse
points that can be matched reliably. The disparity values of
the other points are estimated by merging the messages from
GCPs. Thus, a semi-dense disparity map could be obtained
directly [17]. Wei [18] combined GCPs messages with image
segmentation. To deal with the half-occlusion problem,
Xu and Jia [19] defined the Outlier Confidence by the
probability of pixel occlusion. With the outlier confidence,
they defined a penalty term for occlusion and added it to the
energy function to be optimized. Good results were achieved
in both occluded and non-occluded areas. Sun et al. [20]
proposed an algorithm of reliable pixels’ message propagation
by line segments along 1-D direction. Different
from [17], [18], their algorithm only propagated the
reliable seed points’ messages through the scanning lines.
Single-direction propagation was used to avoid the highly
complex and unstable color segmentation. However, owning
to the uncertainty of the endpoints of the line segments, line
segments could be affected by the stripe defect problem.
Wang [21] used MRF as the global optimization model with
GCP as inputs. Their energy function consisted of three terms:
the energy constraint with GCP, the smoothness constraint
between neighboring pixels and the data term measured
by absolute difference (AD) between the left view and the
right view. The top rank in the Middlebury website of their
method proved that GCP was a good expression of regional
discrimination. GCP-based algorithms could strengthen the
useful information of the scene.

II. THEORY AND FRAMEWORK

The concept of confidence has been adopted in previous
research works [3], [19], [21], where the main goal of applying
the confidence is to choose initial pixels for subsequent
processing. In this work, the confidence is firstly derived

from the disparity cost and will be utilized throughout the
optimizing process.

This section firstly gives some notions, then formulates
the GCP based energy function, and finally presents our new
alternating updating framework.

A. Definition

1) Confidence Definition: According to [3], the estimated
disparity at pixel p can be written as the sum of the ground
truth d∗

p and the noise Np :

dp = d∗
p + Np . (1)

Different from [3], we assume Np as a zero-mean uniform
distribution U(−ωp, ωp), where ωp indicates the range of the
possible candidates. Generally, the matching cost Cost (p, d)
at pixel p should be smaller when d = d∗

p. ωp can be
expressed by the signal to noise ratio (SNR),

ωp ∼

∑

d �=d∗
p

1
Cost (p,d)

1
Cost (p,d∗

p)

=
∑

d �=d∗
p

Cost (p, d∗
p)

Cost (p, d)
(2)

On the other hand, by the smoothness assumption in disparity
map, the disparity of the p-th pixel can be estimated with its
neighbors. ωp can also be affected by the disparity variance
in the neighborhood, which is expressed as

ωp ∼
⎛

⎝1

n

∑

q∈A(p)

(dq − d∗
q )2

⎞

⎠

1/2

, (3)

where A(p) is the neighborhood of p. The confidence of
disparity at pixel p is defined as the probability of estimated
value being equal to the true value. Thus the relationship
between the confidence and the noise is expressed as follows,

f (p) ∝ 1

max(wp, 1)
. (4)

Accordingly, the confidence can be expressed in either
the matching cost data space or the disparity space. In the
initialization, the confidence of the p-th pixel is evaluated by
the ratio between the maximum and secondary value, called
Peak Ratio (PKR), of the matching cost. While during the
updating stage, the new disparity value is estimated by the
reliable disparities in the neighborhood, and the confidence is
described by the consistency of them.

According to the definition above, the confidence is closely
related to disparity matching cost, which is a vector of
dimension Drange = Dmax − Dmin , with the search range
Dmin ∼ Dmax , as shown in the Fig. 1 (Left). Generally,
Dmin = 1. In practice, the cost vector is always reduced to two
dimensions as (dm , f ), where dm is the disparity achieving the
lowest matching cost, and f is the associated confidence.

The pixel with high confident disparity are selected as
Ground Control Points (GCPs). Messages are propagated from
GCPs to the low confident pixels and high-accuracy depth
estimation can be achieved.
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Fig. 1. The dimension reduction of the intensity data cost by the confidence.

2) Local Plane Model of Smoothness Assumption: In gen-
eral MRF based global algorithms, the smoothness assumption
keeps the smooth property in the same object and the
discontinuity between different objects. It can be expressed
as the disparity constraint between pixels in neighborhood as
follows:

Vp,q(dp, dq) = V {dq , dp + Fp(q)} = V {�dpq, Fp(q)}, (5)

where Fp(·) denotes the smoothness assumption model at p
and �dpq = dp − dq denotes the disparity difference between
p and q . In general, Fp(q) is a function related to the location
between p and q . If Fp(q) ≡ 0, the smoothness model is
the front parallel plane, which is simple but not suitable for
obviously slant disparity planes. In this paper, the local plane
model [22] is used, which is defined as

Fp(q) = A p(qx − px) + Bp(qy − py), (6)

where A p and Bp are the plane parameters. Similar to [22],
the continuity of the plane parameters between adjacent pixels
is taken into account.

B. Energy Function

Different from the previous color image based MRF
formulation, we initialize the global energy with the coarse
disparity map and confidence map, and then iteratively
minimize the energy function in a coarse-to-fine way. The
coarse disparity dcor and confidence f cor are formulated as
dcor = {dL

cor , dR
cor } and f cor = { fL

cor , fR
cor }, respectively.

The maximum a-posteriori estimation of disparity map is
derived as follows,

arg max
d

p(d|dcor , f cor ) = arg max
d

p(dcor , f cor |d)p(d)

p(dcor , f cor )
. (7)

Since p(dcor , f cor ) is fixed, (7) is reduced to

arg max
d

p(d|dcor , f cor ) = arg max
d

p(dcor , f cor |d)p(d). (8)

The first item p(dcor , f cor |d), called data term, represents
the maximum likelihood estimation given observation
dcor and f cor . Assumed that the disparity of each pixel has
independent identical distribution, we express the data term of
the whole image as

p(dcor , f cor |d) ∝ exp

⎛

⎝−
∑

p∈S

Data(dp)

⎞

⎠, (9)

where S represents the set of pixels in the whole image. The
data cost Data(·) of pixel p at disparity dp can be computed
with p’s coarse disparity dcor

s and confidence f cor
p ,

Data(dp) = g( f cor
p · T (dcor

L ,p − dcor
R,p+dp

)). (10)

The function g(·) is formulated as

g(x) = exp (−β · x), (11)

where β is a constant to balance the penalty for the disparity
shifting from the coarse value. T (�d) is a truncation function
of disparity difference with the form

T (�d) =
{
αK i f |�d| < TD

K otherwi se,
(12)

where K is the unit cost, α a constant greater than 1
(Typical 5 ∼ 10) and TD is a threshold.

The second item in the right-hand side of equation (8),
called smoothness term, represents the model inherent in the
disparity map. The smoothness term pp(d), at pixel p, is
the accumulation of the potentials Vp,q between p and its
neighborhood q

p(d) ∝ exp

⎛

⎝−
∑

{p,q}∈N

V{p,q}(dp, dq)

⎞

⎠, (13)

The potential Vp,q in equation (13) evaluates the smoothness
cost between pixel p and q , expressed as

V{p,q}(dp, dq) = g(u{p,q} · T (�d)), (14)

where u{p,q} is the color similarity measured by

u{p,q} =
{

f p i f |I (p) − I (q)| < Tc

0 otherwi se,
(15)

where Tc is a constant threshold and T (�d) is the same as
equation (12). �d is the disparity smooth constraint with the
form

�d = (dp + Fp(q) − dq) = Fp(q) − �dpq , (16)

where Fp(q) represents an offset given by the local plane
model. If q does not fit to the smooth model, i.e., �d in (16)
is too large, T (�d) is large accordingly. This means the
contribution of pixel q to p gets smaller by (13) and (14).
Thus the total smoothness energy is formulated as the sum of
each pixel’s energy

∑

{p,q}∈N

V{p,q}(dp, dq)

=
∑

{p,q}∈N

g(u{p,q} · T (dp, dq))

=
∑

p∈S

⎛

⎝g(
∑

q∈A(p)

fq · T (Fp(q) − �dpq))

⎞

⎠. (17)

The neighborhood N in (13) and (17) is defined/interpreted
by A(p). A(p) is not the typical 4-connected or 8-connected
neighborhood, instead it refers to the point set satisfying the
color similarity condition u{p,q} defined in (15). The total
matching energy is

E = Edata + Esmooth =
∑

p∈S

(

g
(

f cor
p · T (dcor

L ,p − dcor
R,p+dp

)
)

+ g

( ∑

q∈A(p)

fq · T (Fp(q) − �dpq)

))

(18)
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Fig. 2. Minimize the energy of the fused messages by the dimension
reduction. Top: the estimated disparity at the same value; Bottom: the
disparities at different values.

This is the target function to be optimized. We will introduce
our optimization strategy in next section.

C. Adaptive GCP Optimization Framework

In the last section, we formulate the energy minimization
problem utilizing the coarse disparity and confidence maps.
Different from the belief propagation in grayscale images [9],
we propose a novel optimization based on adaptive GCP.

The smoothness term in equation (17) transfers the disparity
messages from each pixel q in A(p) to pixel p. The message
here is different from those based on the matching cost.
It is a vector of dimension Drange, with the form of mq =
[0, . . . , 0, fq , 0, . . . , 0]. Only the value at dq -th dimension
is fq , while other values are all set to 0.

The optimization includes the following steps:
1. Initialize the disparity maps and confidence maps by the

matching cost from input color images; For each pixel, the
initial disparity is chosen to be the d giving the minimum
cost and the initial confidence is obtained by the PKR of the
cost function.

2. In the k-th iteration, firstly the disparity smoothness
model Fk

p (q) is calculated based on the GCP set in the
neighborhood A(p) of a pixel p according to the confidence
constraint. In this work, a local plane is used for the
smoothness model (please see Section III-B). The smoothness
messages are obtained as

m∗
p =

∑

q∈A(p)

mk
q · T (Fk

p (q) − �dpq), (19)

where m∗
p is the fused message.

3. Combine the smoothness messages with the data item
and minimize the total energy. The minimization is equivalent
to maximize the combined message as follows,

mk∗
p = mk

p · T (dcor
L ,p − dcor

R,p+dp
) + m∗

p⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dk+1
p = arg max

d
(mk∗

p (d))

mk+1
p =

⎧
⎨

⎩

mk∗
p (d)

∥
∥
∥mk∗

p

∥
∥
∥

i f d = dk+1
p

0 otherwi se

(20)

where m∗
p(d) denotes the value at d-th dimension and mk+1

p is
the message of pixel p for the next iteration.The energy at
pixel p, decreasing in confidence message, has multiple pulses
as shown in the left figure of Fig. 2. Denote the smooth-
ness item by (dk+1

L , dk
L) and the data item by (dk+1

L , dk+1
R )

Fig. 3. The flow chart of the proposed algorithm.

in equation (10). Similar to the description in II-A,
the disparity value yielding the minimum cost will be chosen
as the new candidate and the PKR of the message changes
because of the cost on different dimensions. And thus, if the
fused messages accumulates at the same disparity (Top-right
in Fig. 2), the confidence should be increased, otherwise the
confidence will be decreased (Bottom-right in Fig. 2). In prac-
tice, the confidence is updated according to the consistence of
the multi-estimated disparity values (please see Section III-C).
Then the GCP set will be re-selected based on the newly
updated confidence map that is more reliable. The adaptive
GCPs propagate more precise and reliable information to
other pixels.

Once most of the confidence map pixels converge to higher
values, the optimization will terminate. Based on the above
processing, the algorithm framework is proposed as shown
in Fig. 3, which including 4 main parts.

1) Initialization of the Disparity and the Confidence Maps:
This module aims to get the initial disparity map and
confidence map according to the input image pair. Our
framework is compatible with various matching cost functions,
such as SAD, CENSUS [23], Adaptive window [4],
Geodesic [5], etc. The confidence is defined according to
the feature of each cost function. Different representations
of confidence is evaluated in [24]. Considering the features
of different cost functions, we design a new initialization
method combining AD with CENSUS dissimilarity measure
in Section III-A.

2) Disparity Map Updating: In this module, we apply local
plane fitting for each Confidence Support Window (CSW) [7].
Smoothness messages are merged and are used to reassign
the low confident pixels by combination with the data cost.
The parameters (CSW window size and color similarity) are
adaptively set to achieve better results during the alternating
updating process. More details are described in Section III-B.

3) Confidence Map Updating: Confidence map updating
aims to minimize the cost energy in each iteration. In the
initialization, the confidence of each pixel is evaluated by the
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TABLE I

PARAMETER SYMBOLS LIST

PKR of the matching cost. During updating stage, the variance
of confidence is reflected as the fluctuation of neighbors, refer-
ring to equation (3). Each pixel should converge to the ground
truth by received voting information from reliable neighbors.
If the disparity of one pixel remains unchanged between
iterations, its confidence will be increased and updated.

4) Refinement of the Disparity Map: Disparity Refinement
is one of the important steps in stereo matching. In order to
deal with the missing disparities on object boundaries and
occluded regions, a multi-step refinement is applied, including
left-right check and weighted median filter referred in [25].

III. IMPLEMENTATION DETAILS

Table I shows some parameters and their symbols referred
in this paper. The parameters of window size are denoted
by w and the parameters of color and confidence threshold
are denoted by T .

A. Auto-AD & Census Initialization

According to [26], color space can give better results in
measuring distortion regions while CENSUS is more effective
for grey-scale images. Wegner [27] proposed a new cost
function using the product of AD and CENSUS. Sun [20]
used the sum of AD and CENCUS as the integrated cost data.
However the measure criterions of AD and CENSUS are
different. The directly fused function will easily result
in reduction of entire dissimilarity. In our initialization,
we present a new hybrid SAD and CENSUS, called
Auto-AD&CENSUS, as our matching cost to obtain a valid
set of GCPs. First the matching cost data is calculated by
SAD in the small windows wa and CENSUS in the large
windows wc. Then confidence maps fa and fc are obtained as
equation (4). Since the SAD measuring has better similarity
than CENSUS in silent regions, it will be given priority in
the selection. The disparity map and the confidence map are
initialized as follows.

d(p) =
{

da(p) i f fa(p) > Ta

dc(p) otherwi se

f (p) =

⎧
⎪⎪⎨

⎪⎪⎩

max( fa(p), fc(p)) i f da(p) = dc(p)
fa(p) elsei f fa(p) > Ta

fc(p) elsei f fc(p) > Tc

min( fa(p), fc(p)) otherwi se,

(21)

Fig. 4. The quantity and inlier of GCPs corresponding with different
initializations. Comparing with AD, CENSUS, Wegner [27] and Proposed
method, the curves show Inlier (left) and absolute number(right) in 5 test
images.

where the items with subscript a and c represent SAD and
CENSUS respectively. Fig. 4 shows the quantity and inlier of
the correct GCPs by four different algorithms when the AD
and CENSUS window size is 3 and 11. The curve of AD shows
better inlier precision but less correct points while CENSUS is
on the contrary. Auto-AD&CENSUS improves inlier rate by
more than 3% over the CENSUS while retaining the absolute
number. The better initial disparity map can bring benefit to
the following updating process.

B. Disparity Map Updating

Because of the ambiguity in smooth and occluded regions,
there are many error pixels in the initial disparity map. The
updating process aims to re-assign the disparity value of those
pixels. The CSW algorithm presented in [7] which takes into
account both the color similarity and confidence is applied in
this section.

The pixels of low confidence need to be reassigned, and they
are chosen as the center of the support windows. Suppose that
Rp is the support window centered at p of a constant size.
Firstly, we generate a binary mask Sp for Rp ,

Sp(q) =
{

1 i f dLab(p, q) < Ts

0 otherwi se,
(22)

where q ∈ Rp and dLab(p, q) is the Euclidean color distance.
Applying morphology filtering to Sp , we can obtain a more
reliable set S′

p , in which all the pixels are thought to be
similar to p in color. With S′

p , the CSW E p is obtained
by picking up all GCP pixels whose confidences are larger
than a threshold Tcon f (we set Tcon f = 2c f , where c f is the
confidence updating step, see below).

E p(q) =
{

1 i f Con f (q) > Tcon f , S′
p(q) = 1

0 otherwi se.
(23)

Then we use the pixels in E p to calculate optimal local
plane model to re-assign the disparity for each pixel in S′

p .
To reduce the effect of outliers, RANSAC [28] is employed
in local plane fitting as in equation (6). The disparity will be
reassigned only when the RANSAC succeeds.

Since the continuity of the disparity surface of the same
object, the pixels that need to be reassigned in a CSW are
expected to have similar disparity plane parameters. Observing
this, we do not need to choose a CSW for every pixel in current
iteration. To speed up, we choose sparse window centers that
can form a ‘cover’ for the whole image. Specifically, the CSWs
are chosen such that they overlap at least half size of
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Fig. 5. Comparing results in different size of support window. (a) the original
image, (b) CSW with window size of 67, (c) CSW with window size of 47;
the first and second frames show better results under wb = 67 and wb = 47,
respectively.

Fig. 6. Sub-precision Results on sphere surface compared with [29].
Left: the result of [29], Right: the result of this paper. The performance of
this paper is more accurate than [29] on the ball surface.

the window. The multi-reassigned pixel will choose the dis-
parity value that is closest to the support window center. More
details are referred in our previous work [7].

The local plane fitting at different regions require different
window sizes. In Fig. 5, for example, the proposed algorithm
gives the most accurate depth estimation of the fence on the
Cones data when wb = 47, while on Teddy data, the most
accurate depth estimation of the roof is achieved when
wb = 67. To make the messages propagate more efficiently
between distant pixels, we adjust the parameters adaptively
during the disparity updating process.

{
T k

s = min(Tmax _s , T k−1
s + 0.1)

wk
b = min(wmax _b, w

k−1
b + 1)

(24)

where k is the iteration number. Tmax_s and wmax_b refer to
the upper limit of the color and space dissimilarity. Since
the selected CSWs are kept to overlap, the suitable plane
models of adjacent CSWs keep the smoothness of disparity
map. Similar to soft-segmentation [11], the proposed approach
achieves better smoothness than segment-based algorithms.
Fig. 6 shows disparity results on a sphere surface computed by
our proposed algorithm and [29]. The result of our proposed
approach achieves sub-pixel precision on the bowling and
retains better smoothness than the segment-based method
presented in [29], verifying that the local plane model is a
good approximation for the curved surface.

C. Confidence Map Updating

The confidence map is mostly determined by the variance of
disparity neighbors between iterations, therefore we update the
confidence map after the disparity map is updated. As shown
in Fig. 2, the smoothness message is described by dk+1

L and dk
L .

The new disparity dk+1
L is evaluated by the neighborhood.

The variance of the disparity neighbors could be described
by divergence of disparities between adjacent iterations. The
confidence adjustment of the updating term is as follows.

� f k+1
1 (p) =

{
λc f |dk+1

L (p) − dk
L(p)| < T U pdate

D−c f otherwi se,
(25)

where c f and λ refer to the update step and a constant factor.
If the disparity value of the same pixel remains unchanged
between iterations, the confidence will be increased, and vice
versa. The data item is denoted by dk+1

L and dk+1
R , which is

similar to the left-right consistence. The confidence updating
of the data item is simplified as

� f k+1
2 (p) =

{−c f |dk+1
L (p) − dk+1

R (p′)| > T L RC
D

0 otherwi se.
(26)

If the pixel doesn’t satisfy the left-right consistence, the con-
fidence is decreased by a constant. Otherwise, the confidence
keeps the same. The updated confidence is the combination of
the two incremental terms above.

f k+1 = f k + � f k+1
1 + � f k+1

2 . (27)

The adaptive GCP set is re-selected by the updated confidence
map. In related works [19], neighbors are determined by
the color or distance similarity and are not changed. Some
segment-based methods [11], [30] arrange the size of the
window via reselect referred pixels. Compared with those
algorithms, our adaptive GCP scheme selects more reliable
neighbors. Moreover, the confidence map updating can make
the approach converge more quickly.

D. Multi-Step Refinement

After the matching process, filters are often used to
remove some mismatches and fill the holes. Considering that
the discontinuous edges always come along with the color
differences, we applied a color-weighted median filter [25].
We designed a multi-step combining refinement process which
is able to get refinement effect in different regions, with steps
described as follows:

• Left-Right Consistency Check Refinement: when the
difference of disparity value between the left and right
pixel is greater than Ts , then take the smaller disparity
value to eliminate errors resulting from occlusion;

• Conventional Median Filter: a 5×5 median filter is used
to deal with discrete noise and holes in the disparity map;

• In-situ Median Filter: a 7 × 7 weighted median filter is
used to refine the discontinuous edges and smooth areas.
Different from [25], the filter operation is done in-situ
which is more effective for occluded area.
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Fig. 7. The disparity maps and the error maps on Middlebury dataset. Top: the final disparity maps obtained by our algorithm. Middle: the corresponding
error maps of CSW results without updating [7]. Bottom: the corresponding error maps of final results.

TABLE II

THE VALUES OF WINDOW PARAMETERS

TABLE III

THE VALUES OF COLOR AND CONFIDENCE THRESHOLDS

IV. EXPERIMENTS

In this section, we evaluate our scheme on various datasets.
The proposed method is implemented using C++ under
Windows XP OS with Intel CPU (E8400), 3.0GHz
and 2G RAM. Tables II and III show all the parameters used in
our experiment for all test images. In this section, experiments
are presented in 5 parts. The results and ranks on Middlebury
website are shown in the first part. After that, experiments
with different parameters indicate the wide adaptiveness of
our algorithm. The third part gives the performance in terms
of sub-pixel precision. In the remaining two parts, more
results on different datasets are shown. Experimental results
verify the effectiveness of our algorithm and the acceptable
computational cost.

A. Ranks on Middlebury Benchmark

Fig. 7 shows comparing results on Middlebury benchmark.
Tsukuba image is suitable for testing algorithms on forward
parallel plane objects. Since we integrated the advantages
of CSW and adaptive GCP, the performance is more robust.
As shown in Fig. 7, even in regions such as lamp shade and
bracket, the disparity values are estimated accurately and the
region behind the bookrack is smoother. Slant regions
under different levels are verified in Venus image,

including texture-less regions simultaneously. Due to
the consideration of slant plane model and the updating
scheme, more accurate results are achieved by proposed
method. Additionally, the multi-step refinement would reduce
errors along discontinuous edges. As AD and CENSUS
are combined in our algorithm, high-accuracy confidence
map is obtained in Teddy image. For example, the complex
region of the flowerpot is estimated effectively, i.e. leaves
under different levels could be separated correctly. Disparity
results in the left border of the image are improved though
errors in the bottom slant plane arise slightly. Cones image
contains several complex scenes, such as occluded regions,
hole regions, and non-texture regions. Our algorithm achieves
more accurate results on most of those regions. Though
regions out of the boundary could not be matched reliably,
disparity values are correctly estimated since the model of
these regions coincides with the correct matched regions.
Our algorithm achieves excellent results since several
texture-less regions along the right edge are estimated via
AD and CENSUS followed by refinement on discontinuity
edges.

Global optimization based methods rank top on the
benchmark. Our results get rank 1 when the error threshold
is 1.0 as shown in Fig. 8. For Cones image, our results get
rank 1 on all the three error thresholds. Especially on the
non occlusion region, the error rate decreases to 1.81 while
ObjectStereo [31] takes the second place by 2.2%.

B. Convergence and Parameters

1) Convergence Performance: The confidence updating
scheme brings lots of benefits to the convergence of the
algorithm. Fig. 9 presents the updating process on an artificial
image which includes a slant textureless plane and texture
front parallel background. The initial disparity map has many
error values because of the color ambiguities. Only those
pixels on the boundary of the slant plane have correct
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Fig. 8. The print screen of ranks on Middlebury website corresponding with error threshold = 1.0.

Fig. 9. Convergent process on Slant image [32] with textureless foreground
and front parallel background. The left two frames is the input images, and
after that is the iteration 1, 2, 3, 4, 6, 9, 11, 13, 15, 18, 23, 98, 99 in order.
The last row shows the results and error map corresponding with error
threshold = 1.0 and 0.5.

disparity values. In the first several iterations, the disparities
are drastically changed and the GCP set cannot be selected
correctly. The slant plane is separated into several models.
Since the confidence updating depresses the difference
between messages and keeps the correspondence of maximal
probability model, the disparity map is gradually stable after
about 10 iterations. It can be seen that the process converges
after 20 iterations. The final result shows high accuracy at both
pixel and sub-pixel precision.

We also verify the convergence in the actual scene. Taking
Cones for example, the number of unconfident pixels and

Fig. 10. Convergence performance on Cones Data. Left: The number of
unreliable pixels and the accumulated time cost with the iterations.
Right: The error rate with the iterations for pixel and sub-pixel accuracy.

Fig. 11. The error rate under different parameters on Venus images.
Left: the error rate changing with the size of support window when TN = 2.0.
Right: the error rate changing with color thresholds when wb = 67.

the error rate versus iteration times are listed in Fig. 10.
In the initialization, 12,000 pixels are used as center points of
CSW and the process costs 7∼10s. Along with iterations, the
number of unconfident pixels decreases quickly and it costs
only 1s for each iteration. The iterative process terminates
when it reaches the maximum number of iterations or the
number of unconfident pixels and the error rates are lower than
corresponding thresholds. It can be drawn out that the error
rate decreases faster than unconfident pixels. As shown by the
yellow dashed line, the error rate converges to a stable state
after 14 iterations. The total processing time of our algorithm
on Cones image is less than 50s.

2) Initial Parameters: We also discuss the influence of
different parameters, such as the color similarity threshold Ts

and the window size of CSW wb. These two parameters
influence the matching results by adjusting the neighborhood
of each pixel. Fig. 11 gives the matching results on Venus
data with different parameters. The error curve is shown in
the left figure with wb changing from 31 to 95 when the
color threshold takes a typical value Ts = 2.0. The right
figure shows the error curve with Ts changing from 1.0 to 3.0
with the window size wb = 67. The error rate are restricted
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TABLE IV

THE TOP RANKS ON WEBSITE [37] UNDER DIFFERENT ERROR THRESHOLDS

Fig. 12. Sub-pixel error map and precision on partial data in Middlebury
dataset. From left to right in order, there are Cloth1, Cones, Baby1, Rocks2,
Bowling2 and Lampshade2.

between 0.32% ∼ 0.13% and 0.23% ∼ 0.14% in these two
cases, which shows that the proposed approach is insensitive to
input parameters. The performance benefits from the adaptive
updating framework with better flexibility and robustness.

C. Sub-Pixel Precision

Compared with other sub-pixel algorithms, We achieve the
top results under different error thresholds in Table IV. Our
algorithm ranked as top 3 with all error thresholds. In details,
our results get rank 1 when the error threshold is 1.0, 1.5, or
2.0, and get rank 2 and rank 3 when the error threshold is 0.5
or 0.75. The average rank of our algorithm is 1.6. Mei [33]
get the best results when the error threshold is 1.0 and 2.0.
However, the performance decreases severely when the
error thresholds are 0.5 and 0.75. Mizukami et al. [34]
improves the sub-pixel precision based on [33] and achieves
higher ranks. The average rank of some typical methods,
such as Yang et al. [35], Wang [36] and Klaus [29],
is 7.4, 8.2 and 11.8 respectively. Our algorithm is competitive
to these start-of-the-art algorithms.

Fig. 12 shows the sub-pixel results on other examples by our
algorithm. The correct rate of all pixels is labeled in Fig. 12 for
each image with the error threshold set to 0.5. The error maps
show good performance on the continuous smooth surface,
such as the cloth and the bowling. Most of the estimated
disparities in the textureless regions of Lampshade2 image
are correct. The discontinuous edges in the Baby1 and Cones
images are also kept well.

Fig. 13. Result and precision on Baby1, Baby2, Baby3, Aloe and
Lampshade1 images. From left to right in order, there are original images,
disparity maps, error maps and precision (error threshold is 1.0).

D. Overall Middlebury Dataset Results

Fig. 13 shows more results under different scenes. The
correct precision is close and stable. Fig. 14 compares our
proposed algorithm and Bleyer’s method [40] by measur-
ing the error rates on the non-occlusion regions of another
30 image pairs in the Middlebury dataset. Note that the same
parameters are used for different image pairs in our algorithm.
In Bleyer [40], AD measuring function, linear truncation as the
smoothness term, and Simple Tree based dynamic program-
ming are utilized. The Blue, red and green curves represent
results via different similarity measurements of gray, RGB and
LUV color spaces respectively in [40]. The orange curve is the
performance of the proposed method. As shown, the average
error rate of our algorithm is the lowest. The average error
rate of the occlusion regions is 7.74%, lower than 13.7% of
Bleyer’s. Our algorithm all outperforms Bleyer’s except for
Cloth2 and monopoly images. For “Baby1” ∼ “Baby3” and
“Cloth1,” “Cloth3,” “Cloth4” images, we achieve error rate
less than 4%, which is more accurate. Comparing with the best
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Fig. 14. Error rate in Non-occluded regions on 30 images in Middlebury dataset by proposed algorithm and [40]. Blue, red and green curves represent
results on Gray , RGB and LUV space by [41]. The orange curve is the result by this paper. The average error rate reduces about 6% overall.

Fig. 15. Results from proposed algorithm on gray images. From left to right
in order, there are Map, Pentagon and Rocks images.

result from [40], error rates of “lampshade1,” “lampshade2,”
“Bowling1,” “Bowling2,” “Flowerpots,” and “wood2” decrease
more than 15%. Additionally, our results are robust besides
Plastic, Midd1, and Monopoly images. As these images have
texture-less regions including wall and curve, even human
could not figure out the true depths, it is understandable that
current matching methods do not work well on such regions.
The average error rate of non-occluded regions excluding the
above three is less than 4.4%. Further more, the average error
rates of all regions are 10.9% and 21.1% while the error
thresholds are 1.0 and 0.5 respectively for all the 30 images.

E. Other Discussions

1) Gray-Scale Images: In [40], methods based on color
similarity could not achieve good results because of the low
distinctiveness of color texture. With little modification, our
scheme can be extended to gray images straightforward.
We utilize CENSUS to make our algorithm adaptive to gray
images. Our algorithm selects similarity color pixels strictly.
The initial color threshold and updating step of gray images
are 1/3 of the ones of colorized images while other parameters
remain the same. The result of Map image is shown in the first
column in Fig. 15. Results based on segmentation are poor
due to the lack of color information. The error rates
are 99.28% and 97% without and with sub-pixel
accuracy respectively due to jagged errors introduced by
non-discriminative gray levels. The result of the pentagon

Fig. 16. Results under different illumination and exposure. From left to right,
there are left images, right images, corresponding results and results under
the same illumination. The first row includes illum2-Exp0 and illum2-Exp1
Aloe images. The second row includes illum1-Exp1 and illum2-Exp2 Cloth1
images.

from CMU dataset is given in the second column. We can see
that the middle pentagon region is extracted accurately and
hollows are achieved among pentagon regions. Additionally,
some high buildings outside the pentagon could be figured
out from the depth map. As the road piled with stones in the
image is noisy, initial disparity values are cluttered. The result
in the right column verifies the effectiveness and smoothness
of our algorithm.

2) Differernt Illuminance: Due to the difference between
equipments, the binocular camera would capture images under
different exposure sensibility. The single camera confronts
problems of different exposure, additive noise and luminance.
Measurements of MI, NCC and CENSUS presented by [42]
could only solve these problems partly and need further
improvements. Since the color similarity of the same image is
used to describe smoothness of neighborhood, the aberration
of different images would not affect the remaining models.
Additionally, initial depth and confidence map based on AD
and CENSUS can depress noise, different luminance and
insensitive exposure.

Results on images with different exposure and luminance
in the Middlebury dataset are shown in Fig. 16. The first row
shows two Aleo images under different exposures, followed
by their corresponding disparity results. Disparity results are
given in the right first row. Although there exist some errors
along the boundary of leaves, accurate estimations for the
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flowerpot, forward leaves and cloth can be achieved. Since the
AD measurement fails and disturbs under different exposure,
initial results are calculated by the CENSUS measurement
which introduces a few errors along boundaries. The second
row shows Cloth images with corresponding disparity results.
Disparities are estimated well in smooth regions while inaccu-
rately along the boundaries. The average accurate rate is 94%,
while the average accurate rate is 97.2% under the same
exposure. In conclusion, our algorithm can solve the problems
of different luminance, exposure, and color.

V. CONCLUSION

Global based algorithms outperform than others in stereo
matching research. Among which, color segment-based and
GCP-based methods play important roles. This paper presents
a novel energy function and the global model is optimized
with adaptive GCPs. Different from previous methods, we fuse
the color segmentation in the updating process and propagate
not only disparity messages, but also confidence messages.
According to the adaptive GCP model, an alternating updating
framework utilizing disparity map and confidence map is
proposed. The method selects adaptive neighborhoods and
minimize the cost energy to help the correct message
propagation. In addition, an automatic AD and CENSUS
selection is presented to strengthen the initialization and a
multi-step refinement is proposed to improve the performance
on discontinuous edges. The top ranks achieved by our
algorithm on the standard images on Middlebury web
demonstrate that our algorithm is one of the most effective
global-based algorithms. The results under different error
thresholds prove that the method is more robust than others.
We also test our algorithm on more than 30 image pairs in
Middlebury datasets. The average error rate in non-occluded
area is less than 8%. Beyond that, our algorithm achieves good
performance under gray-scale and different illuminations. Our
future work is to speed up the processing and improve the
performance on objects with similar color at different depth.
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