
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2011/M22865

November 2011, Geneva, Switzerland

Source 3DV

Status Draft

Title 3D-HEVC Test Model under Consideration and software

Editors Heiko Schwarz, Krzysztof Wegner

This document summarizes the system structure and coding tools that are included in the test

model under consideration and provides information on the HEVC-based 3DV software.

The coding tools that are not available in the first version of the software (but will be integrated

before the next meeting for investigation) are marked using the label "integration tool".

Table of Contents
1 Data Format and System Description.. 3

2 Coding Algorithm ... 4

2.1 Coding of the Independent View .. 7

2.2 Coding of Dependent Views... 7

2.2.1 Disparity-compensated prediction ... 8

2.2.2 View synthesis based inter-view prediction (integration tool) 8

2.2.3 Inter-view motion prediction ... 9

2.2.4 Depth-based motion parameter prediction (integration tool) 14

2.2.5 Inter-view residual prediction ... 15

2.2.6 Adjustment of QP of texture based on depth data (integration tool) 16

2.3 Coding of Depth Maps ... 17

2.3.1 Disabled chrominance coding (integration tool) ... 17

2.3.2 Non-linear depth representation (integration tool) .. 17

2.3.3 Z-near z-far compensated weighted prediction (integration tool) 17

2.3.4 Modified motion compensation and motion vector coding 18

2.3.5 Disabling of in-loop filtering ... 18

2.3.6 Depth modeling modes .. 18

2.3.7 Motion parameter inheritance ... 25

2.4 Encoder Control .. 26

2.4.1 View Synthesis Optimization .. 26

2.4.2 Optional Encoder Control for Renderable Regions in Dependent Views 32

2.4.3 Depth edge-based r-d optimization tuning (integration tool) 33

3 View Synthesis Algorithm .. 34

3.1 Upsampling of input video pictures.. 35

3.2 Warping, interpolation and hole filling .. 35

3.3 Reliability map creation .. 35

3.4 Similarity enhancement .. 36

3.5 Combination ... 36

3.6 Chroma decimation... 37

4 Software .. 37

4.1 Software repository... 37

4.2 Build System... 37

4.3 Software Structure .. 37

1 Data Format and System Description

3D video is represented using the Multiview Video plus Depth (MVD) format, in which a small

number of captured views as well as associated depth maps are coded and the resulting bitstream

packets are multiplexed into a 3D video bitstream. After decoding the video and depth data,

additional intermediate views suitable for displaying the 3D content on an auto-stereoscopic

display can be synthesized using depth-image-based rendering (DIBR) techniques. For the

purpose of view synthesis, camera parameters are additionally included in the bitstream. The

bitstream packets include header information, which signal, in connection with transmitted

parameter sets, a view identifier and an indication whether the packet contains video or depth

data. Sub-bitstreams containing only some of the coded components can be extracted by

discarding bitstream packets that contain non-required data. One of the views, which is also

referred to as the base view or the independent view, is coded independently of the other views

and the depth data using a conventional HEVC video coder. The sub-bitstream containing the

independent view can be decoded by an unmodified HEVC video decoder and displayed on a

conventional 2D display. Optionally, the encoder can be configured in a way that a sub-bitstream

representing two views without depth data can be extracted and independently decoded for

displaying the 3D video on a conventional stereo display. The codec can also be used for coding

multiview video signals without depth data. In that case alternative methods such as Image

Domain Warping (IDW) may be used to generate a multiview signal. And, when using depth

data, it can be configured in a way that the video pictures can be decoded independently of the

depth data.

Figure 1: Overview of the system structure and the data format for the transmission of 3D video.

The basic concept of the system and data format is illustrated in Figure 1. In general the input

signal for the encoder consists of multiple views, associated depth maps, and corresponding

camera parameters. However, as described above, the codec can also be operated without depth

data. The input component signals are coded using a 3D video encoder, which represents an

extension of HEVC. At this, the base view is coded using an unmodified HEVC encoder. The 3D

video encoder generates a bitstream, which represents the input videos and depth data in a coded

format. If the bitstream is decoded using a 3D video decoder, the input videos, the associated

depth data, and camera parameters are reconstructed with the given fidelity. For displaying the

3D video on an autostereoscopic display, additional intermediate views are generated by a DIBR

algorithm using the reconstructed views and depth data. If the 3D video decoder is connected to

a conventional stereo display instead of to an autostereoscopic display, the view synthesizer can

also generate a pair of stereo views, in case such a pair is not actually present in the bitstream. At

this, it is possible to adjust the rendered stereo views to the stereo geometry of the viewing

conditions. One of the decoded views or an intermediate view at an arbitrary virtual camera

position can also be used for displaying a single view on a conventional 2D display.

The 3D video bitstream is constructed in a way that the sub-bitstream representing the coded

representation of the base view can be extracted by simple means. The bitstream packets

representing the base view can be identified by inspecting transmitted parameter sets and the

packet headers. The sub-bitstream for the base view can be extracted by discarding all packets

that contain depth data or data for the dependent views and, then, the extracted sub-bitstream can

be directly decoded with an unmodified HEVC decoder and displayed on a conventional 2D

video display.

The encoder can also be configured in a way that the sub-bitstream containing only two stereo

views can be extracted and directly decoded using a stereo decoder. The encoder can also be

configured in a way that the views can be generally decoded independently of the depth data. It

is also possible to synthesize intermediate view using only the stereo sequences as input of the

view synthesis.

A detailed description of the coding scheme is given in sec. 2. The used depth-image-based

rendering algorithm is described in sec. 3.

2 Coding Algorithm

In the following, the coding algorithm based on the MVD format, in which each video picture is

associated with a depth map, is described. The coding algorithm can also be used for a multiview

format without depth maps. The video pictures and, when present, the depth maps are coded

access unit by access unit, as it is illustrated in Figure 2. An access unit includes all video

pictures and depth maps that correspond to the same time instant. Non-VCL NAL units

containing camera parameters may be additionally associated with an access unit. It should be

noted that the coding order of access units doesn't need to be identical to the capture or display

order. In general, the reconstructed data of already coded access units can be used for an efficient

coding of the current access unit. Random access is enabled by so-called random access units or

instantaneous decoding refresh (IDR) access units, in which the video pictures and depth maps

are coded without referring to previously coded access units. Furthermore, an access unit doesn't

reference any access unit that precedes the previous random access unit in coding order.

Figure 2: Access unit structure and coding order of view components.

The video pictures and depth maps corresponding to a particular camera position are indicated

by a view identifier (viewId). All video pictures and depth maps that belong to the same camera

position are associated with the same value of viewId. The view identifiers are used for

specifying the coding order inside the access units and detecting missing views in error-prone

environments. Inside an access unit, the video picture and, when present, the associated depth

map with viewId equal to 0 are coded first, followed by the video picture and depth map with

viewId equal to 1, etc. A video picture and depth map with a particular value of viewId are

transmitted after all video pictures and depth maps with smaller values of viewId. For the

independent view, the video picture is always coded before the associated depth map. For

dependent views, the video picture may be coded before or after the associated depth map (i.e.,

the depth map with the same value of viewId). It should be noted that the value of viewId doesn't

necessarily represent the arrangement of the cameras in the camera array. For ordering the

reconstructed video pictures and depth map after decoding, each value of viewId is associated

with another identifier called view order index (VOI). The view order index is a signed integer

values, which specifies the ordering of the coded views from left to right. If a view A has a

smaller value of VOI than a view B, the camera for view A is located left to the camera of

view B. In addition, camera parameters required for converting depth values into disparity

vectors are included in the bitstream. For the considered linear setup, the corresponding

conversion parameters consist of a scale factor and an offset. The vertical component of a

disparity vector is always equal to 0. The horizontal component is derived according to

dv = (s * v + o) >> n,

where v is the depth sample value, s is the transmitted scale factor, o is the transmitted offset,

and n is a shift parameter that depends on the required accuracy of the disparity vectors.

Each video sequence and depth sequence is associated with a separate sequence parameter set

and a separate picture parameter set. The picture parameter set syntax, the NAL unit header

syntax, and the slice header syntax for the coded slices haven't been modified for including a

mechanism by which the content of a coded slice NAL units can be associated with a component

signal. Instead, the sequence parameter set syntax for all component sequences except for the

base view has been extended. Theses sequences parameter sets contain the following additional

parameters:

¶ the view identifier (indicates the coding order of a view);

¶ the depth flag (indicates whether video data or depth data are present);

¶ the view order index (indicates the location of the view relative to other coded views);

¶ an indicator specifying whether camera parameters are present in the sequence parameter

set or in the slice headers;

¶ when camera parameters are present in an sequence parameter set, for each viewId value

smaller than the current view identifier, a scale and an offset specifying the conversion of

a depth sample of the current view to a horizontal disparity between the current view and

the view with viewId;

¶ when camera parameters are present in an sequence parameter set, for each viewId value

smaller than the current view identifier, a scale and an offset specifying the conversion of

a depth sample of the view with viewId to a horizontal disparity between the current view

and the view with viewId;

The sequence parameter set for the base view doesn't contain the additional parameters. Here, the

view identifier is inferred to be equal to 0, the depth flag is inferred to be equal to 0, and the view

order index is inferred to be equal to 0.

The sequence parameter sets for dependent views include a flag, which specifies whether the

camera parameters are constant for a coded video sequence or whether they can change on a

picture by picture basis. If this flag indicates that the camera parameters are constant for a coded

video sequence, the camera parameters (i.e., the scale and offset values described above) are

present in the sequence parameter set. Otherwise, the camera parameters are not present in the

sequence parameter set, but instead the camera parameters are coded in the slice headers that

reference the corresponding sequence parameter set.

Figure 3: Basic codec structure with inter-component prediction (red arrows).

The basic structure of the 3D video codec is shown in the block diagram of Figure 3. In

principle, each component signal is coded using an HEVC-based codec. The resulting bitstream

packets, or more accurately, the resulting Network Abstraction Layer (NAL) units, are

multiplexed to form the 3D video bitstream. The base or independent view is coded using an

unmodified HEVC codec. Given the 3D video bitstream, the NAL units containing data for the

base layer can be identified by parsing the parameter sets and NAL unit header of coded slice

NAL units (up to the picture parameter set identifier). Based on these data, the sub-bitstream for

the base view can be extracted and directly coded using a conventional HEVC decoder.

For coding the dependent views and the depth data, modified HEVC codecs are used, which are

extended by including additional coding tools and inter-component prediction techniques that

employ already coded data inside the same access unit as indicated by the red arrows in Figure 3.

For enabling an optional discarding of depth data from the bitstream, e.g., for supporting the

decoding of a stereo video suitable for conventional stereo displays, the inter-component

prediction can be configured in a way that video pictures can be decoded independently of the

depth data. A detailed description of the added coding tools is given in the following subsections.

2.1 Coding of the Independent View

The independent view, which is also referred to as the base view, is coded using an unmodified

HEVC codec.

2.2 Coding of Dependent Views

For the dependent views, the same concepts and coding tools are used as for the independent

view. However, additional tools have been integrated into the HEVC codec, which employ

already coded data in other views for efficiently representing a dependent view. The additionally

integrated tools are described in the following.

2.2.1 Disparity-compensated prediction

As a first coding tool for the dependent views, the well-known concept of disparity-compensated

prediction (DCP), which is also used in MVC, has been added as an alternative to motion-

compensated prediction (MCP). At this, MCP refers to an inter-picture prediction that uses

already coded pictures of the same view, while DCP refers to an inter-picture prediction that uses

already coded pictures of other views in the same access unit, as it is illustrated in Figure 4.

Figure 4: Disparity -compensated prediction as an alternative to motion-compensated prediction.

The macroblock syntax and decoding process haven't been changed for adding DCP, only the

high-level syntax has been modified so that already coded video pictures of the same access unit

can be inserted into the reference pictures lists. As illustrated in Figure 4, the transmitted

reference picture index (R in the figure) signals whether an inter-coded blocks is predicted by

MCP or DCP. The motion vector prediction is modified in a way that the motion vectors of

motion-compensated blocks are predicted by only using the neighboring blocks that also use

temporal reference pictures, while the disparity vectors of disparity-compensated blocks are

predicted by only using the neighboring blocks that also use inter-view reference pictures.

2.2.2 View synthesis based inter-view prediction (integration tool)

The encoder and the decoder use the same inter-prediction view synthesis algorithm. The

included view synthesis algorithm may be similar to the one investigated in the VSRS software.

Basing on all already coded views, a new virtual view is synthesized in the position of the

current view. Some regions of newly synthesized image are not available because they were

occluded in previously coded views. Those disoccluded regions are identified and marked on a

binary map, named availability map, which controls coding and decoding process. Coder and

decoder simultaneously use this map to determine, whether given CU is coded or not. Because in

a typical case most of the scene is the same in all of views, only small parts are disoccluded in

subsequently coded views, and thus only small amount of CUs can be coded.

 a) b) c)
Figure 5: a) The original side view, b) Disocclusion in the side view, and c) CUs selected by the rd-opt for

coding in the side view.

2.2.2.1 Post processing in-loop filtering (integration tool)

A final step of view-synthesis prediction is reduction of artifacts in synthesized view. This post-

processing consists of Depth-Gradient-based Loopback Filterer (DGLF) and Availability

Deblocking Loopback Filter (ADLF).

The first one (DGLF), reduces texture artifacts introduced by DIBR technique in the areas

of a sudden depth changes. In order to cope that the synthesized image is adaptively filtered with

respect to depth gradient strengths. Large depth edges impose strong low-pass filtering of the

synthesized texture, while flat depth regions are not filtered at all.

The latter (ADLF), reduces artifacts that are generated as a result of block CU-based coding.

Shape of coded region not necessarily matches shape of binary availability map. This

discrepancy is a source of artificial edges between those regions (Figure 5b) and c)) . The ADLF

provides smooth transition between coded and synthesized regions by interpolating between

them.

2.2.3 Inter-view motion prediction

The basic concept of the inter-view prediction of motion parameters is illustrated in Figure 6. For

the following overview, it is assumed that an estimate of a pixel-wise depth map for the current

picture is given. Below, it is described how such an estimate can be derived. For deriving

candidate motion parameters for a current block in a dependent view, a sample location x in the

middle of the block is selected and the associated depth value d is converted to a disparity vector.

By adding the disparity vector to the sample location x a reference sample location xR is

obtained. The prediction block in the already coded picture in the reference view that covers the

sample location xR is used as the reference block. If this reference block is coded using MCP, the

associated motion parameters can be used as candidate motion parameters for the current block

in the current view. The derived disparity vector can also be directly used as a candidate

disparity vector for DCP.

Figure 6: Basic principle of deriving motion parameters for a block in a current picture based on motion

parameters in an already coded reference view and an estimate of the depth map for the current picture.

2.2.3.1 Derivation of Depth Map Estimates

The concept of inter-view motion prediction requires a depth map estimate for the current

picture. Even if depth maps are coded, the depth map associated with a picture can be coded after

the picture in order to enable coding techniques that employ the coded pictures for an efficient

representation of the depth maps. In the following, two methods by which a suitable estimate for

the depth map of the current picture can be derived based on already transmitted information are

described. Both methods have been integrated in the codec, and one of the methods can be

chosen by configuring the encoder accordingly. The used method is signaled in the sequence

parameter sets for dependent views. This first method requires the transmission of depth data as

part of the bitstream, and by using this method a decoder must decode the depth maps of

previously coded views for decoding dependent views. The second method is also applicable if

depth maps are not coded inside the bitstream, and if depth maps are coded, the decoding of the

video pictures is independent of the depth maps.

Method 1: Depth map estimate based on already coded depth map

Since the depth map for a reference view is coded before the current picture, the reconstructed

depth map is mapped into the coordinate system of the current picture for obtaining a suitable

depth map estimate for the current picture. In Figure 7, such a mapping is illustrated for a simple

depth map, which consists of a square foreground object and background with constant depth.

For each sample of the given depth map, the depth sample value is converted into a sample-

accurate disparity vector. Then, each sample of the depth map is displaced by the disparity

vector. If two or more samples are displaced to the same sample location, the sample value that

represents the minimal distance from the camera (i.e., the sample with the larger value) is

chosen. In general, the described mapping leads to sample locations in the target view to which

no depth sample value is assigned (black area in the middle picture of Figure 7). These areas

represent parts of the background that are uncovered due to the movement of the camera and can

be filled using surrounding background sample values. Therefore, a hole filling algorithm, which

processes the converted depth map line by line, is used. Each line segment that consists of

successive sample location to which no value has been assigned is filled with the depth value of

the two neighboring samples that represents a larger distance to the camera (i.e., the smaller

depth value).

Figure 7: Mapping of a depth map into another view: (left) original depth map; (middle) converted depth

map after displacing the orginal samples; (right) final converted depth map after filling of holes.

Method 2: Depth map estimate based on coded disparity and motion vectors

The above described method 1 is only applicable if depth maps are included in the bitstream, and

by using this method, the video pictures (except the base view) cannot be decoded independently

of the depth maps. In the following, a method for deriving depth map estimates that only uses

data that are available in the coded representations of the video pictures is described.

In random access units, all blocks of the base view picture, are intra-coded. In the pictures of

dependent views, most blocks are typically coded using DCP and the remaining blocks are intra-

coded. When coding the first dependent view in a random access unit, no depth or disparity

information is available. Hence, candidate disparity vectors are derived using a local

neighborhood, i.e., by conventional motion vector prediction. But after coding the first

dependent view in a random access unit, the transmitted disparity vectors are used for deriving a

depth map estimate, as it is illustrated in Figure 8. Therefore, the disparity vectors used for DCP

are converted into depth values and all depth samples of a disparity-compensated block are set

equal to the derived depth value. The depth samples of intra-coded blocks are derived based on

the depth samples of neighboring blocks; the used algorithm is similar to spatial intra prediction.

If more than two views are coded, the obtained depth map is mapped into other views using the

method described above and used as depth map estimate for deriving candidate disparity vectors.

Figure 8: Generation of an initial depth map estimate after coding the first dependent view of a random

access unit.

The depth map estimate for the picture of the first dependent view in a random access unit is

used for deriving a depth map for the next picture of the first dependent view. The basic

principle of the algorithm is illustrated in Figure 9. After coding the picture of the first dependent

view in a random access unit, the derived depth map is mapped into the base view and stored

together with the reconstructed picture. The next picture of the base view is typically inter-

coded. For each block that is coded using MCP, the associated motion parameters are applied to

the depth map estimate. A corresponding block of depth map samples is obtained by MCP with

the same motion parameters as for the associated texture block; instead of a reconstructed video

picture the associated depth map estimate is used as reference picture. In order to simplify the

motion compensation and avoid the generation of new depth map values, the MCP for depth

block doesn't involve any interpolation. The motion vectors are rounded to sample-precision

before they are used. The depth map samples of intra-coded blocks are again determined on the

basis of neighboring depth map samples. Finally, the depth map estimate for the first dependent

view, which is used for the inter-view prediction of motion parameters, is derived by mapping

the obtained depth map estimate for the base view into the first dependent view.

Figure 9: Derivation of a depth map estimate for the current picture using motion parameters of an already

coded view of the same access unit.

After coding the second picture of the first dependent view, the estimate of the depth map is

updated based on actually coded motion and disparity parameters, as it is illustrated in Figure 10.

For blocks that are coded using DCP, the depth map samples are obtained by converting the

disparity vector into a depth value. The depth map samples for blocks that are coded using MCP

can be obtained by MCP of the previously estimated depth maps, similar as for the base view. In

order to account for potential depth changes, new depth values are determined by adding a depth

correction. The depth correction is derived by converting the difference between the motion

vectors for the current block and the corresponding reference block of the base view into a depth

difference. The depth values for intra-coded blocks are again determined by a spatial prediction.

The updated depth map is mapped into the base view and stored together with the reconstructed

picture. It is also used for deriving a depth map estimate for other views in the same access unit.

Figure 10: Update of depth map estimate for a dependent view based on coded motion and disparity vectors.

For all following pictures, the described process is repeated. After coding the base view picture,

a depth map estimate for the base view picture is determined by MCP using the transmitted

motion parameters. This estimate is mapped into the second view and used for the inter-view

prediction of motion parameters. After coding the picture of the second view, the depth map

estimate is updated using the actually used coding parameters. At the next random access unit,

the inter-view motion parameter prediction is not used, and after decoding the first dependent

view of the random access unit, the depth map is re-initialized as described above.

2.2.3.2 Usage of Inter-View Motion Parameter Prediction

In HEVC, two different modes for signaling the motion parameters for a block are specified. In

the first mode, which is referred to as adaptive motion vector prediction (AMVP) mode, the

number of motion hypotheses, the reference indices, the motion vector differences, and

indications specifying the used motion vector predictors are coded in the bitstream. The second

mode is referred to as merge mode. For this mode, only an indication is coded, which signals the

set of motion parameters that are used for the block. The inter-view motion parameter prediction

has been added to both modes, as will be described in the following.

Inter-view motion vector prediction in the AMVP mode

In the adaptive motion vector prediction (AMVP) mode, the number of motion hypotheses, the

reference indices specifying the used reference pictures, the motion vector differences, and

indexes specifying the used motion vector predictor are transmitted in the bitstream. For each

motion hypothesis, a candidate list of motion vector predictors is derived based on the coded

reference index. This list includes motion vectors of neighboring blocks that are associated with

the same reference index as well as a motion vector predictor which is derived based on the

motion parameters of the co-located block in a temporal reference picture. For including the

inter-view motion parameter prediction, the AMVP mode has been extended in a way that an

inter-view motion vector predictor is added to the candidate list. In our implementation it is

inserted at the third position of the list. Based on the depth estimate for a middle sample of the

current block, a disparity vector and a reference block in a reference view is determined as

described above. If the reference index for the current block refers to an inter-view reference

picture, the inter-view motion vector predictor is set equal to the corresponding disparity vector.

If the current reference index refers to a temporal reference picture and the reference block uses a

motion hypothesis that refers to the same access unit as the current reference index, the motion

vector that is associated with this motion hypothesis is used as inter-view motion vector

predictor. In all other cases, the inter-view motion vector predictor is marked as invalid and is

not included in the list of motion vector predictor candidates.

Inter-view motion vector prediction in the merge mode (and skip mode)

In the merge mode of HEVC (as well as in the skip mode, which represents the merge mode

without coding a residual signal), basically the same motion parameters (number of hypotheses,

reference pictures, and motion vectors) as for a neighboring block are used. If a block is coded in

the merge mode, a candidate list of motion parameters is derived, which includes the motion

parameters of spatially neighboring blocks as well as motion parameters that are calculated based

on the motion parameters of the co-located block in a temporal reference picture. The chosen

motion parameters are signaled by transmitting an index into the candidate list. Similarly as for

the AMVP mode, the candidate list of motion parameters is extended by a motion parameter set

that is obtained using inter-view motion prediction, as described in the following. For each

potential motion hypothesis, the first two reference indices of the reference picture list are

investigated in the given order. A motion vector candidate for the reference index 0 is derived in

the same way as for the AMVP mode. If the derived motion vector is valid, the reference index 0

and the derived motion vector are used for the considered hypothesis. Otherwise, the reference

index 1 is tested in the same way. If it also results in an invalid motion vector, the motion

hypothesis is marked as not available. In order to prefer temporal prediction, the order in which

is reference indices are tested is reversed if the first index refers to an inter-view reference

picture. The number of motion hypotheses for the inter-view motion parameter set is given by

the number of available motion hypotheses. If all potential motion hypotheses are marked as not

available, the inter-view candidate cannot be selected.

2.2.4 Depth-based motion parameter prediction (integration tool)

Depth-Based Motion Prediction (DBMP) is a new coding tool for multiview video coding which

originates from the idea that motion fields of neighboring views in multiview sequence are

highly correlated. DBMP provides an efficient representation of motion data in multiview video

bitstreams that carry also depth/disparity maps. The motion information, such as motion vectors

and reference indices, for each pixel of encoded coding unit (CU)

is directly inferred with use of already coded disparity maps from encoded CUs in the

neighboring views at the same temporal instance (Figure 11). This procedure is repeated

independently for every pixel of encoded CU. Consequently, motion vectors and reference

indices for CU are not transmitted in the bitstream but are obtained from the reference view at

the receiving side.

Figure 11: Independent derivation of motion information for each point of encoded CU from corresponding

point in reference view.

2.2.5 Inter-view residual prediction

The basic principle of the inter-view residual prediction is illustrated in Figure 12. Similarly as

for the inter-view motion prediction, the inter-view residual prediction is based on a depth map

estimate for the current picture. The same depth map estimate as for the inter-view motion

prediction is used. Depending on the encoder configuration, the depth map estimate is derived by

one of the two methods described in sec. 2.2.3.1. Based on the depth map estimate, a disparity

vector is determined for a current block and the residual block in the reference view that is

referenced by the disparity vector is used for predicting the residual of the current block.

Figure 12: Basic concept for the inter-view residual prediction.

A more detailed illustration of the concept for deriving a reference block location inside the

reference view is given in Figure 13. Inside the current block, a sample location x in the middle

of the block is selected and the associated depth value d is converted to a disparity vector. The

disparity vector is added to the location of the top-left sample of the current block yielding the

location of the top-left sample of the reference block. Then, similar as for motion compensation,

the block of residual samples in a reference view that is located at the derived reference location

is subtracted from the current residual and only the resulting difference signal is transform

coded. If the disparity vector points to a sub-sample location, the residual prediction signal is

obtained by interpolating the residual samples of the reference view using a bi-linear filter.

Figure 13: Derivation of the location of reference residual block.

The usage of the inter-view residual prediction can be adaptively selected on a block basis, or

more accurately on a coding unit (CU) basis. For that purpose, if any sample of the potential

reference residual signal is unequal to 0, a flag indicating the usage of inter-view residual

prediction is transmitted as part of the CU syntax. If this flag is equal to 1, the current residual

signal is predicted using the potentially interpolated reference residual signal and only the

difference is transmitted using transform coding. Otherwise, the residual of the current block is

conventionally coded using the HEVC transform coding.

2.2.6 Adjustment of QP of texture based on depth data (integration tool)

In order to improve perceptual quality of coded texture, a tool for bit assignment in the texture

layer was developed. The basic idea is to increase texture quality of objects in the foreground

and to increase compression factor (decrease texture quality) for objects in the background. The

quality is adjusted in coding units (CUs) with use of quantization parameter QP that depends on

the corresponding depth values. The QP adjustment is done simultaneously in coder and decoder

so that no additional information is send. Described tool is disabled in the base view to preserve

HEVC compatibility. The texture QP is modified in the following way:

ὗὖ ὗὖ ςȢφ ψϽ
ςυυÍÁØ

ȟᶰ
Ὠȟ

ςυφ

Where ὗὖ is adjusted ὗὖ value for a CU with corresponding disparity Ὠȟ.

2.3 Coding of Depth Maps

For the coding of depth maps, basically the same concepts of intra-prediction, motion-

compensated prediction, disparity-compensated prediction, and transform coding as for the

coding of the video pictures are used. However, some tools have been modified for depth maps,

other tools have been generally disabled, and additional tools have been added.

As a first difference to the coding of video pictures, the inter-view motion and residual

prediction as described in sec. 2.2.2 and sec. 2.2.4, respectively, are not used for depth coding.

Instead, motion parameters are derived based on coded data in the associated video pictures as

will be described in sec. 2.3.7 below. The other differences are described in the following

subsections.

2.3.1 Disabled chrominance coding (integration tool)

Depth maps may be coded in 4:0:0 chroma sampling format.

2.3.2 Non-linear depth representation (integration tool)

As alternative representation of depth maps, the depth may be non-linearly scaled as described in

the following.

The human perception of depth depends on absolute distance of viewed objects, therefore the

internal depth representation is non-linear. Closer objects are represented more accurately than

distant ones. Thanks to that, subjective quality of synthesized views is improved.

Internal depth sample values are defined by the following power-law expressions, similar as in

the case of well known gamma correction:

Exponent is automatically chosen by the encoder with use of base QP for the depth and sent to

decoder in the encoded bitstream:

ὩὼὴέὲὩὲὸὧὰὭὴὗὖ σπϽπȢπρςυρȢςυ Ƞ ρȢπ Ƞ ρȢφφ

Depth map samples are represented on increased number of bits with use of IBDI (Internal Bit

Depth Increase) tool.

2.3.3 Z-near z-far compensated weighted prediction (integration tool)

Proposed znear-zfar compensation (ZZC) is a new coding tool for multiview video, designed

especially for inter-frame depth map coding.

The concept of ZZC exploits the observation that frames from different views and time instances

of encoded depth sequence may have different znear and zfar parameters. The mentioned znear

and zfar parameters describe range of depths represented in a gray-scale depth map. If znear and

zfar parameters are different for two frames, then given depth value is represented with different

gray-scale values in those depth maps. Consequently, using one of such depth maps

as a reference for the other one will result in a poor prediction.

To overcome this problem, a new ZZC coding tool is proposed. Prior to any inter-frame depth

map prediction, each depth map that resides on the codec reference picture list is scaled, so that

gray-scale depth values in scaled image and currently coded image refer to the same depth.

As a result, depth maps with compensated znear and zfar range are used for prediction.

Values used for prediction (instead of the original ones) are calculated as follows:

ὒ ὒϽ
ᾀ ᾀ

ᾀ ᾀ
ςυυϽ

ᾀ ᾀ

ᾀ ᾀ

Where LT is compensated disparity in range depth znear T to zfar T and LS is original disparity in

depth range znear S and zfar S.

2.3.4 Modified motion compensation and motion vector coding

In contrast to natural video, depth maps are characterized by sharp edges and large regions with

nearly constant values. The eight-tap interpolation filters that are used for motion-compensated

interpolation in HEVC, can produce ringing artifacts at sharp edges in depth maps, which are

visible as disturbing components in synthesized intermediate views. For avoiding this issue and

for decreasing the encoder and decoder complexity, the motion-compensated prediction (MCP)

as well as the disparity-compensated prediction (DCP) has been modified in a way that no

interpolation is used. That means, for depth maps, the inter-picture prediction is always

performed with full-sample accuracy. For the actual MCP or DCP, a block of samples in the

reference picture is directly used as prediction signal without interpolating any intermediate

samples. In order to avoid the transmission of motion and disparity vectors with an unnecessary

accuracy, full-sample accurate motion and disparity vectors are used for coding depth maps. The

transmitted motion vector differences are coded using full-sample instead of quarter-sample

precision.

2.3.5 Disabling of in-loop filtering

The in-loop filters in the HEVC design have been particularly designed for the coding of natural

video. For the coding of depth maps, these filters are less useful. In order to decrease the encoder

and decoder complexity, the in-loop filters have been disabled for depth coding. This includes

the following filters:

¶ the de-blocking filter;

¶ the adaptive loop filter (Wiener filter);

¶ the sample-adaptive loop filter.

2.3.6 Depth modeling modes

Depth maps are mainly characterized by sharp edges (which represent object borders) and large

areas of nearly constant or slowly varying sample values (which represent object areas). While

the HEVC intra prediction and transform coding is well-suited for nearly constant regions, it can

result in significant coding artifacts at sharp edges, which are visible in synthesized intermediate

views. For a better representation of edges in depth maps, four new intra prediction modes for

depth coding are added. In all four modes, a depth block is approximated by a model that

partitions the area of the block into two non-rectangular regions, where each region is

represented by a constant value. The information required for such a model consists of two

elements, namely the partition information, specifying the region each sample belongs to, and

the region value information, specifying a constant value for the samples of the corresponding

region. Such a region value is referred to as constant partition value (CPV) in the following. Two

different partition types are used, namely Wedgelets and Contours, which differ in the way the

segmentation of the depth block is derived. The depth modeling modes are integrated as an

alternative to the conventional intra prediction modes specified in HEVC. Similar as for the intra

prediction modes, a residual representing the difference between the approximation and the

original depth signal can be transmitted via transform coding. In the following, the

approximation of depth blocks using the four new depth modeling modes is described in more

detail.

It is differentiated between Wedgelet and Contour partitioning. For a Wedgelet partition, the two

regions are defined to be separated by a straight line, as illustrated in Figure 14, in which the two

regions are labeled with ὖ and ὖ. The separation line is determined by the start point Ὓ and the

end point ὖ, both located on different borders of the block. For the continuous signal space (see

Figure 14, left), the separation line can be described by the equation of a straight line. The

middle image of Figure 14 illustrates the partitioning for the discrete sample space. Here, the

block consists of an array of samples with size Õ Ö and the start and end points correspond

to border samples. Although the separation line can be described by a line equation as well, the

definition of regions 0 and 0 is different here, as only complete samples can be assigned as part

of either of the two regions. For employing Wedgelet block partitions in the coding process, the

partition information is stored in the form of partition patterns. Such a pattern consists of an

array of size Õ Ö and each element contains the binary information whether the

corresponding sample belongs to region 0 or 0. The regions 0 and 0 are represented by black

and white samples in Figure 14 (right), respectively.

Figure 14: Wedgelet partition of a block: continuous (left) and discrete signal space (middle) with

corresponding partition pattern (right).

Unlike for Wedgelets, the separation line between the two regions of a Contour partition of a

block cannot be easily described by a geometrical function. As illustrated in Figure 15, the two

regions 0 and 0 can be arbitrary shaped and even consist of multiple parts. Apart from that the

properties of Contour and Wedgelet partitions are very similar. For employing Contour partitions

in the coding process, the partition pattern (see example in Figure 15, right) is derived

individually for each block from the signal of a reference block. Due to the lack of a functional

description of the region separation line, no pattern lookup lists and consequently no search of

the best matching partition are used for Contour partitions.

Figure 15: Contour partition of a block: continuous (left) and discrete signal space (middle) with

corresponding partition pattern (right).

Apart from the partition information, either in form of a Wedgelet or a Contour partition, the

second information required for modeling the signal of a depth block is the CPV of each of the

two regions. For a given partition the best approximation is consequently achieved by using the

mean value of the original depth signal of the corresponding region as the CPV.

Four depth-modeling modes, which mainly differ in the way the partitioning is derived and

transmitted, have been added:

¶ Mode 1: Explicit Wedgelet signaling;

¶ Mode 2: Intra-predicted Wedgelet partitioning;

¶ Mode 3: Inter-component-predicted Wedgelet partitioning;

¶ Mode 4: Inter-component-predicted Contour partitioning.

These depth-modeling modes as well as the signaling of the modes and the constant partition

values are described in the following four subsections.

2.3.6.1 Mode 1: Explicit Wedgelet Signalization

The basic principle of this mode is to find the best matching Wedgelet partition at the encoder

and transmit the partition information in the bitstream. At the decoder the signal of the block is

reconstructed using the transmitted partition information.

The Wedgelet partition information for this mode is not predicted. At the encoder, a search over

a set of Wedglet partitions is carried out using the original depth signal of the current block as a

reference. During this search, the Wedgelet partition that yields the minimum distortion between

the original signal and the Wedgelet approximation is selected. The resulting prediction signal is

then evaluated using the conventional mode decision process.

A fast search of the best matching partition is essential for employing Wedgelet models in the

depth coding process. For this purpose, the patterns for all possible combinations of start and end

point positions are generated and stored in a lookup table for each block size prior to the coding

process. The Wedgelet pattern list contains only unique patterns. The resolution for the start and

end positions used for generating the Wedgelet patterns depends on the block size. For 16x16

and 32x32 blocks, the possible start and end positions are restricted to locations with an accuracy

of 2 samples. For 8x8 blocks, full-sample accuracy is used, and for 4x4 blocks, half-sample

accuracy is used.

2.3.6.2 Mode 2: Intra-predicted Wedgelet Partitions

The basic principle of this mode is to predict the Wedgelet partition from data of previously

coded blocks in the same picture, i.e. by intra-picture prediction. For a better approximation, the

predicted partition is refined by varying the line end position. Only the offset to the line end

position is transmitted in the bitstream and at the decoder the signal of the block is reconstructed

using the partition information that results from combining the predicted partition and the

transmitted offset.

Figure 16: Intra prediction of Wedgelet partition (blue) for the scenarios that the above reference block is

either of type Wedgelet partition (left) or regular intra direction (right).

The prediction process of this mode derives the line start position and the gradient from the

information of previously coded blocks, i.e. the neighbor blocks left and above of the current

block. Note that for some blocks one or both of the neighboring blocks are not available. In such

a case the processing for this mode is carried out with setting the missing information to

meaningful default values. As illustrated in Figure 16 two main prediction methods have to be

distinguished: The first method covers the case when one of the two neighboring reference

blocks is of type Wedgelet, shown in the example in Figure 16, left. The second method covers

the case when the two neighboring reference blocks are not of type Wedgelet, but of type intra

direction, which is the default intra coding type, shown in the example in Figure 16, right.

If the reference block is of type Wedgelet, the prediction process works as follows: The principle

of this method is to continue the reference Wedgelet into the current block, which is only

possible if the continuation of the separation line of the reference Wedgelet actually intersects

the current block. Therefore, it is first checked whether it is possible to continue the reference

Wedgelet. In case the check is positive, the start position 3 and the end position % are

predicted by calculating the intersection points of the continued line with block border samples.

If the reference block is of type intra direction, the prediction process works as follows: First, the

gradient is derived from the intra prediction direction. As the intra direction is only provided in

the form of an abstract index, a mapping or conversion function is defined that associates each

intra prediction mode with a gradient. Second, the start position 3 is derived from information

that is also available at the decoder, namely the adjacent samples of the left and above

neighboring block, by selecting the sample position with the maximum slope. Finally, the end

position % is calculated from the start point and the gradient.

The line end position offset for refining the Wedgelet partition is not predicted, but searched

within the estimation process at the encoder. For the search, candidate partitions are generated

from the predicted Wedgelet partition and an offset value for the line end position % , as

illustrated in Figure 16. By iterating over a range of offset values and comparing the distortion of

the different resulting Wedgelet partitions, the offset value of the best matching Wedgelet

partition is determined using a distortion measure.

2.3.6.3 Mode 3: Inter-component prediction of Wedgelet partitions

The basic principle of this mode is to predict the Wedgelet partition from a texture reference

block, namely the co-located block of the associated video picture. This type of prediction is

referred to as inter-component prediction. Unlike temporal or inter-view prediction, no motion or

disparity compensation is used, as the texture reference picture shows the scene at the same time

and from the same perspective. The Wedgelet partition information is not transmitted for this

mode and consequently, the inter-component prediction uses the reconstructed video picture as a

reference. For efficient processing, only the luminance signal of the reference block is taken into

account, as this typically contains the most significant information for predicting the partition of

a depth block, i.e. the edges between objects.

Figure 17: Prediction of Wedgelet (blue) and Contour (green) partition information from texture luma

reference.

The prediction of a Wedgelet partition pattern from the texture reference is illustrated in the top

row of Figure 17. For this purpose, a search over the set of possible Wedgelet partitions is

carried out. The Wedgelet partition that yields the smallest distortion for the co-located texture

block is used for approximating the current depth block.

2.3.6.4 Mode 4: Inter-component prediction of Contour partitions

The basic principle of this mode is to predict a Contour partition from a texture reference block

by inter-component prediction. Like for the inter-component prediction of a Wedgelet partition

pattern, the reconstructed luminance signal of the co-located block of the associated video

picture is used as a reference, as illustrated in the bottom row of Figure 17. In contrast to

Wedgelet partitions, the prediction of a Contour partition is realized by a thresholding method.

Here, the mean value of the texture reference block is set as the threshold and depending on

whether the value of a sample is above or below the sample position is marked as part of region

0 or 0 in the resulting Contour partition pattern.

2.3.6.5 Constant partition value coding

The method for CPV coding is the same for all four modes introduced above, as it does not

distinguish between partition types, but rather assumes that a partition pattern is given for the

current depth block. As illustrated in Figure 18, three types of CPVs are differentiated: original,

predicted, and delta CPVs.

