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1 Introduction 
 

This document presents results characterizing noise existing in 3D video sequences used by 

MPEG (Table 1) for research and standardization purposes in areas of 3DTV and FTV. In such 

systems, advanced processing algorithms are used, like depth estimation, view synthesis or light-

field rendering. Operation of these algorithms is conditioned by presence of noise in the input 

video. Unfortunately, in formulation of such algorithms, typically, the presence of noise is either 

omitted or the assumptions about the characteristics of noise are made only implicitly. Even 

when presence of the noise in the video material is assumed explicitly, the most commonly 

solely Gaussian noise is considered, often without any experimental verification. 

If exact characteristics of the noise (e.g. spatial spectrum, temporal correlations, value 

distributions) are ignored, the performance of such algorithms may be degraded in unpredictable 

manner, which also lowers reproducibility of the research. 

This work presents a simple methodology for noise extraction and verification of the 

assumptions about characteristics of noise in the multi-camera video material, without knowing 

any a priori information about the camera system. Results show proof of independency of noise 

in time and characteristics of noise value distributions, which are similar to Gaussians.  
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Table 1. Multiview video sequences acquired with various camera systems, which have been 

used for experimentation. 
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Poznan Carpark 

Canon XH-G1, 3-CCD camera 

1920 

x 

1088 

25 
250 0…8 3,4,5 

Poznan Street 

Poznan Hall 200 0…8 5,6,7 

Lovebird1 
Point Grey Flea camera (CCD), Moritex  

ML-0813 lenses 
1024 

x 

768 

30 

240 0..8 3,5,7 

Newspaper 
Point Grey Research Flea camera (CCD) 

with 1/3-inch Sony lenses 
300 0…8 2,4,6 

Balloons 
XGA CMOS, 8-bit RGB-Bayer 

Camera 
300 0…6 1,3,5 

2 Noise extraction 
 

The noise existing in a video sequence can be simply attained as a difference between the 

original and a denoised version of the given sequence. Of course, for denoising any advanced 

technique could be used, but for the sake of simplicity and robustness of the results, the simplest 

and the most straight-forward one has been used. 

In the used simple analysis method, only fragments of sequences representing still fragments 

of the scene (without any movement) are considered. Such regions have been marked manually 

(Fig.1). It has been taken care, to include as representable set of regions as possible, for example 

to cover fragments of the scene with different color and brightness. 

It is assumed that all frames of given sequence represents the same image altered only by 

presence of noise. Therefore, the image without noise can be easily retrieved, as an average of 

the frames:  

 

𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑥, 𝑦) =
1

𝑁
∑ 𝐹𝑟𝑎𝑚𝑒𝑖(𝑥, 𝑦)

𝑁−1

𝑖=0

 

 

where 𝐹𝑟𝑎𝑚𝑒𝑖(𝑥, 𝑦) express luminance value at coordinates 𝑥, 𝑦 in 𝑖-th frame of the sequence. 

The sought noise value 𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦), can be thus simply calculated as: 

 

𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦) = 𝐹𝑟𝑎𝑚𝑒𝑖(𝑥, 𝑦) − 𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑥, 𝑦) 
 
 

3 Probability distribution estimation 
For estimation of probability distribution of the extracted noise values 𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦) we have 

used histograms. In our experiments, histograms are being constructed with bin size was equal to 

1
16⁄  of quantization step of the luminance values (e.g. in 𝐹𝑟𝑎𝑚𝑒𝑖(𝑥, 𝑦)). This was possible due 

to fact, that the noise values 𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦) can be fractional numbers due to averaging process 

while denoising. Therefore, given value of the noise 𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦) is counted in histogram in bin 

identified by index 𝑁𝑜𝑖𝑠𝑒𝐵𝑖𝑛𝐼𝑑𝑥𝑖(𝑥, 𝑦) identified as follows: 

 

𝑁𝑜𝑖𝑠𝑒𝐵𝑖𝑛𝐼𝑑𝑥𝑖(𝑥, 𝑦) = ⌊𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦) ∙ 16⌋ 



 

  
”Poznan Street” sequence 

 

”Poznan Carpark” sequence 

  
”Poznan Hall” sequence ”Lovebird1” sequence 

 

  
”Balloons” sequence ”Newspaper” sequence 

 

Fig.1. Regions in the multiview video sequence set that has been manually marked as still for the 

sake of estimation of the noise. Regions have been marked in gray. 

 

 

4 Time independency of the observed noise 
 

First, time dependency of noise values has been assessed. A simple and robust method of 

verifying whether there is any dependence has been used. If between two random variables, e.g. 

α and β there is any dependence, the following equality is not true: 

𝑝(𝛼, 𝛽) = 𝑝(𝛼) ∙ 𝑝(𝛽)     
 

In order to perform such verification, the two-dimensional distribution of the noise in two 

consecutive frames has to be estimated. Two-dimensional distributions have been estimated with 

use of histograms of 𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦) vs. 𝑁𝑜𝑖𝑠𝑒𝑖−1(𝑥, 𝑦). Histograms have been averaged over all 

stable frames in the sequence. An exemplary histogram has been presented in Fig. 2. One axis of 



the histograms relates to the values of noise in the i-th frame, and the other axis relates to the 

values of noise in (𝑖 − 1)-th frame. The analogous histograms for other sequences have been 

gathered in Fig. 3 (in the same presentation form as in Fig. 2). If there would be any dependence 

between distribution of the noise in 𝑖 -th frame and (𝑖 − 1) -th frame there would be an 

asymmetry in the graph. 
 

 
Fig. 2. Exemplary plot of two-dimensional histogram of 𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦) vs. 𝑁𝑜𝑖𝑠𝑒𝑖−1(𝑥, 𝑦)  for 

Poznan Street test sequence, camera 0, frame 0. One axis of each histogram relates to the values 

of noise in the frame 𝑖 , and the other axis relates to the values of noise  

in frame 𝑖 − 1. The same visualization method has been used in Fig. 3. 
 

 

Fig. 3. Plots of two-dimensional histogram of 𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦) vs. 𝑁𝑜𝑖𝑠𝑒𝑖−1(𝑥, 𝑦) for various test 

sequences and cameras, averaged over frames. The plots are presented in the same way as in 

Fig. 2 but for the sake of brevity, visualization of axes has been omitted. 
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Sequence 
Camera Index 

0 1 2 3 4 5 6 7 8 

Poznan Street 

(cameras 0..8) 
         

Poznan Carpark 

(cameras 0..8) 
         

Poznan Hall 

(cameras 0..8) 
         

Lovebird1 

(cameras renumbered 

as 0..8)          

Newspaper 

(cameras 0..8) 
         

Balloons 

(cameras 0..6) 
       

no data 



 

As can be noticed in Fig. 3, the graphs are separable, which indicates that the random 

variables are not dependent (are independent) and thus that the noise in subsequent frames is 

independent. And thus proves time independence of the observed noise. 

Visual verification is not sufficient to draw the above mentioned conclusion so apart from 

such visual verification, the independence has been tested mathematically. Given normalized 

2-dimensional histogram (depicted by 𝐻[∙] operator) of noise values in subsequent pair of frames 

𝑖 and 𝑖 − 1: 

 

𝐻[𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦), 𝑁𝑜𝑖𝑠𝑒𝑖−1(𝑥, 𝑦) ] (𝛼, 𝛽) = ℎ𝑖,𝑖−1(𝛼, 𝛽), 

 

histogram of noise values in frame 𝑖:  
 

𝐻[𝑁𝑜𝑖𝑠𝑒𝑖(𝑥, 𝑦)] (𝛼, 𝛽) = ℎ𝑖(𝛼) 

 

and histogram of noise values in frame 𝑖 − 1: 

 

𝐻[𝑁𝑜𝑖𝑠𝑒𝑖−1(𝑥, 𝑦)] (𝛽) = ℎ𝑖−1(𝛽), 
 

 

we assume that those normalized histograms are estimates of probability distributions of noise in 

the corresponding cases. If the noise distribution are independent between the frames, then the 

expected distribution of ℎ𝑖,𝑖−1′(𝛼, 𝛽) will be: 

 

ℎ𝑖,𝑖−1′(𝛼, 𝛽) = ℎ𝑖(𝛼) ∙ ℎ𝑖−1(𝛽). 
 

 

The energy of difference, between the expected distribution ℎ𝑖,𝑖−1′(𝛼, 𝛽)  and the 

observed one ℎ𝑖,𝑖−1(𝛼, 𝛽) has been used in order to perform 𝒄𝒉𝒊𝟐 independence test. 

 

𝜒𝑖𝑛𝑑.
2 = ∑ ∑

|ℎ𝑖,𝑖−1′(𝛼, 𝛽)  − ℎ𝑖,𝑖−1(𝛼, 𝛽)|
2

ℎ𝑖,𝑖−1′(𝛼, 𝛽)
𝛽∈𝛷𝛼∈𝛷

    . 

 
 

Φ is a set of all possible noise values. Range [-8…8] has been selected in order to cover the 

whole range on significant noise values and at the same time, to avoid small number of samples 

in histogram bins, which is desired in case of 𝑐ℎ𝑖2 test. Bin size have been selected to be equal to 

1 quantization step of the luminance, therefore, range of  −8 ≤ 𝛼, 𝛽 ≤ 8, results in total 𝜑 = 17 

bins.  

 

The working null hypothesis is that the observed distributions are dependent. 

The working alternative hypothesis is that the observed distributions are independent. 

 

Now, number of degrees of freedom will be calculated, which is equal to the number of 

bins in two-dimensional histograms 𝜑 ∙ 𝜑, minus the reduction in degrees of freedom 𝑑𝑓𝑟𝑒𝑑. As 

the expected distribution has been estimated (it is not known from a theoretical model), the 

number of degrees of freedom have to be reduced by 𝑑𝑓𝑟𝑒𝑑 = 𝜑 + 𝜑 − 1 (the number of rows 

and cols is equal to φ). Finally, the number of degrees of freedom is: 

 

𝑑𝑓𝑖𝑛𝑑. = 𝜑 ∙ 𝜑 − (𝜑 + 𝜑 − 1) = 256. 
 

 



The confidence level has been assumed to be 0.05 and thus the corresponding 𝜒𝑖𝑛𝑑.
2

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 

value, calculated from left-tailed 𝜒2 distribution, is: 

 

𝜒𝑖𝑛𝑑.
2

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
= 294.32067. 

 

For each of the sequences and each of views 𝜒𝑖𝑛𝑑.
2 statistic has been calculated and compared to 

𝜒𝑖𝑛𝑑.
2

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 value: 

𝜒𝑖𝑛𝑑.
2

𝑟𝑎𝑡𝑖𝑜
=

𝜒𝑖𝑛𝑑.
2

𝜒𝑖𝑛𝑑.
2

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

. 

 

As left-tailed χ2 distribution is used, value of 𝜒𝑖𝑛𝑑.
2

𝑟𝑎𝑡𝑖𝑜
 which is greater or equal than 1 

(measured 𝜒𝑖𝑛𝑑.
2  statistic is greater/equal than 𝜒𝑖𝑛𝑑.

2
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

) means that the null hypothesis 

cannot be rejected and thus the observed distributions of the noise values may be dependent. 

Value of 𝜒𝑖𝑛𝑑.
2

𝑟𝑎𝑡𝑖𝑜
 which is smaller than 1 (measured 𝜒𝑖𝑛𝑑.

2 statistic is lesser than 𝜒𝑖𝑛𝑑.
2

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
) 

means that the null hypothesis must be rejected and thus the observed distributions of the noise 

values are independent (at the given confidence level). 

From the results presented in Table 2, it can be seen that 𝜒𝑖𝑛𝑑.
2

𝑟𝑎𝑡𝑖𝑜
 is definitely below 1 

(ranges from 0.0145 to 0.0387 which is negligible).  

This leads to a conclusion that the null hypothesis has to be rejected. This provides 

evidence that the noise in subsequent frames is independent. 

 

Table 2. Results of 𝑐ℎ𝑖2  independence test, for pairs of succesive frames of  

the test sequences. The results have been averages over time and over cameras. 

Sequence name 𝝌𝒊𝒏𝒅.
𝟐

𝒓𝒂𝒕𝒊𝒐
 

Poznan Street 0.0145 

Poznan Carpark 0.0249 

Poznan Hall 0.0194 

Lovebird1 0.0387 

Newspaper 0.0269 

Balloons 0.0307 

 

Interesting observation can be noticed in Fig. 3. In the case of Lovebird 1 sequence, 

camera 2 of has slightly different graph than other cameras. It can be supposed that this 

particular view has been acquired with different camera settings. Similar phenomenon can be 

observed in results presented in the next Subsection.  

 

5 Probability distributions of the noise 
 

In the previous point it has been proven that the realizations of noise in subsequent frames of 

the tested sequences are independent. Therefore the sought probability distributions of the noise 

can be estimated with use of histograms calculated over all frames of each sequence. If the noise 

was not independent between the frames, averaging over the frames would be statistically 

incorrect. 

For the reasons stated before, the histogram analysis of the noise is performed with use of 

bins 𝑁𝑜𝑖𝑠𝑒𝐵𝑖𝑛𝐼𝑑𝑥𝑖(𝑥, 𝑦) defined with bin size of 1
16⁄  of the normal quantization step of the 

luminance values (the smallest representable luminance value difference). 



The results have been presented in Figs. 4-10 in form of average (over all cameras) for 

visualization. 

As can be noticed, none of measured distribution of the noise, extracted from the test 

sequence set, represents a Laplace distribution. In many algorithms Laplace distribution of noise 

values is equivalent to matching with use of SAD metric (Sum of Absolute Differences). As 

assumption about Laplace noise is not justified, also usage of SAD matching metric cannot 

be justified in such sequences. 
In general, it can be said, that the measured noise distributions are visually very similar to 

Gaussian (normal) distribution. For the visual comparison, in Figs. 4-10, apart from the 

measured data (marked in continuous blue line), on the same figures, also Gaussian (normal) 

distribution has been depicted (marked in dotted-red line). The visualized Normal distribution 

has the same parameters: 𝜇  and 𝜎  (Table 3). There are some exceptions for this mentioned 

“similarity” to Gaussian distribution though, described below. 

In the case of Poznan Street, Poznan Carpark and Poznan Hall sequences, the 

measured distribution is slightly skewed in such a way, that the maximum of the distribution is at 

position of about 0.4. This may be a results of internal noise reduction algorithm implemented in 

the Canon XH-G1 camera or a results of internal non-linear processing of data from the camera 

sensor. Standard deviations are very similar among the views (Table 3), but there are little 

differences among the sequences. Those are 2.45 (Poznan Street,), 2.28 (Poznan Carpark) and 

2.01 (Poznan Hall). 

In the case of Lovebird1 sequence, standard deviations are the lowest in the whole test 

set and are very similar across all of the cameras – at level of about 0.66. The only exception is 

camera 2 (renumbered index;  in original numbering this camera has index 3), where the 

standard deviation is about 2.5 times higher – it has been measured to be about 1.65. This might 

be evidence that this particular view has been acquainted with different parameters – e.g. 

the exposure time has been shorter, which has been corrected with higher amplification 

gain, which also amplified the noise. Apart from that anomaly, the Gaussians are well-

symmetric and centered at value of 0. This means that the distribution of the noise in such 

example is well-centered. 

The probability distribution of the noise in Newspaper sequence is very similar to 

Gaussian distribution in all of the cameras. The standard deviations are very similar among the 

views at a level of about 1.23. 

The distributions of Balloons sequence strictly follow Gaussian “bell” shape. Also here, 

standard deviations are very similar among the views, at level of about 1.01. 

 
 

 
Fig. 4. Measured probability distribution of noise values in Poznan Street sequence (averaged 

over all views), estimated with histogram bin size of 1
16⁄ . 

 



 

 
Fig. 5. Measured probability distribution of noise values in Poznan Carpark sequence (averaged 

over all views), estimated with histogram bin size of 1
16⁄ . 

 
 

 
Fig. 6. Measured probability distribution of noise values in Poznan Hall  

sequence (averaged over all views), estimated with histogram bin size of 1
16⁄ . 

 

 

 

 
Fig. 7. Measured probability distribution of noise values in Newspaper sequence  

(averaged over all views), estimated with histogram bin size of 1
16⁄ . 

 

 

 

 



 
Fig. 8. Measured probability distribution of noise values in Lovebird 1 sequence  

(averaged over all views), estimated with histogram bin size of 1
16⁄ . 

 

 

 
Fig. 9. Measured probability distribution of noise values in Lovebird 1 sequence (renumbered 

camera index 2), estimated with histogram bin size of 1
16⁄ . In the case of this camera, the standard 

deviation is about 2.5 times higher than in other cameras of Lovebird 1 sequence.. 

 

 

 

 
 

 
Fig. 10. Measured probability distribution of noise values in Balloons sequence  

(averaged over all views), estimated with histogram bin size of 1
16⁄ . 

 
 

 

 



Table 3. Summary of the Gaussian probability model matching  

- parameters of the noise distributions in the test sequences. 

Sequence 

Name 

Standard 

deviation 

Maximum point 

of distribution, 

related to EX 

Notes 

Poznan Street 2.45 0.41 

Measured distribution is skewed Poznan Carpark 2.28 0.42 

Poznan Hall 2.01 0.51 

Lovebird1, w.o. cam.2 0.66 0.02 Camera 2 (renumbered index)  

of Lovebird1 sequence has vastly 

different noise profile 
Lovebird1, camera 2 

1.65 
0.01 

Newspaper 1.11 -0.02 - 

Kendo 
1.01 0.01 

Kendo is a moving sequence – values 

taken basing on Balloons sequence only Balloons 

 

6 Chi-square test for Gaussian probability distribution of the noise 
 

In previous point it has been shown that the distributions presented in Figs. 4-10 

undoubtedly are not Laplace distributions, but in general follow the shape of Gaussian function. 

Yet it has not been proven whether those distributions are indeed Gaussians or not. First of all, 

the shape of noise distribution slightly varies among the views. Also, in some of the sequences 

(Poznan Street, Poznan Carpark, Poznan Hall) the distribution is skewed, such that its most 

probability (maximum) point is displaced in relation to the expected value (mean) (Table 2). 

Therefore, to provide a proof, a statistical test has to be performed. As measured histograms 

of the considered distributions are available, statistical 𝒄𝒉𝒊𝟐  goodness-of-fit statistical test 

𝝌𝟐
𝒈𝒐𝒇

 has been used.  

In fact, the following reasoning will show that, in spite of the visual similarity, the measured 

distributions are not Gaussians: 

 

The working null hypothesis is that the observed distribution is normal (Gaussian). 

The working alternative hypothesis is that the observed distribution is not normal 

(Gaussian). 

 

As stated in earlier the histogram analysis of the noise is performed with use bin size of 
1

16⁄  of the normal quantization step of the luminance value (which correspond to 1
16⁄  of the 

smallest representable luminance value difference). For the practical reasons, each of the 

distributions (for all sequences and all views) has been observed with use of 256 bins which 

covers noise value range of [-8; 8]. Experiments have revealed that most of the noise samples are 

in the selected value range. 

In the analyzed case of 𝑐ℎ𝑖2  goodness-of-fit, the observed distribution thus will be 

histogram of noise in given view/sequence and the expected distribution is Gaussian. The 

standard deviation and the mean of expected distribution has been estimated (are not known 

from a theoretical model) the number of degrees of freedom is: 

 

𝑑𝑓𝑔𝑜𝑓 = 256 − 1 − 2 = 253. 
 
 



The confidence level has been assumed to be 0.05 and thus the corresponding 𝜒𝑔𝑜𝑓
2

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 

value, calculated from right-tailed 𝜒2 distribution, is: 

 

𝜒𝑔𝑜𝑓
2

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
= 291.10174. 

 

For each of the sequences and each of views 𝜒𝑔𝑜𝑓
2  statistic has been calculated and compared to 

𝜒𝑔𝑜𝑓
2

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 value.  

 

𝜒𝑔𝑜𝑓
2

𝑟𝑎𝑡𝑖𝑜
=

𝜒
𝑔𝑜𝑓

2

𝜒𝑔𝑜𝑓
2

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

 

 

 

As right-tailed 𝜒2  distribution is used, value of 𝜒𝑔𝑜𝑓
2

𝑟𝑎𝑡𝑖𝑜
 which is smaller than 1 (measured 

𝜒𝑔𝑜𝑓
2 statistic is lesser than 𝜒𝑔𝑜𝑓

2
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

) means that the null hypothesis cannot be rejected and 

thus the observed distribution may be Gaussian. Value of 𝜒𝑔𝑜𝑓
2

𝑟𝑎𝑡𝑖𝑜
  which is greater or equal 

than 1  (measured 𝜒𝑔𝑜𝑓
2   statistic is greater/equal than 𝜒𝑔𝑜𝑓

2
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

) means that the null 

hypothesis must be rejected and thus the observed distribution is not Gaussian. 

The results of χgof
2

ratio
, calculated for the test sequences are gathered in Table 4. It can be 

noticed that for the most of the cases, the ratio between 𝜒𝑔𝑜𝑓
2 and 𝜒𝑔𝑜𝑓

2
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

 is of magnitude 

of about 101 – 102 proving that the distributions are not Gaussians. The only exception is the 

Balloons sequence, where 𝜒𝑔𝑜𝑓
2

𝑟𝑎𝑡𝑖𝑜
 fluctuates around 1 (the presented multiplied showing the 

level of magnitude of 100 ). Thus, depending on a particular camera of the Balloons, the 

hypothesis that the distributions are Gaussians must be rejected (marked in white in Table 4) in 

or may not be rejected (marked in gray in Table 4). 

Therefore, in spite of the visual impression that the observed probability distributions are 

Gaussian-like, generally it can be concluded that for most of the sequences, the null-

hypothesis must be rejected and almost none of them is Gaussian (at given confidence level).  

 

 

Table 4. 𝜒2𝑟𝑎𝑡𝑖𝑜 results for all views of the tested sequences. Values that are less than 1.0 

(marked in gray) indicate that given cases pass the χ2 test. 

 

Both the graphs presented in Figs. 4-10 and Table 4, refer to the question, whether the 

probability distributions of the noise in tested multiview video sequences are Gaussians.  

A comparison of the visual impressions that can done, basing on the mentioned figures (that the 

distributions are similar to Gaussians), and the results of statistical analysis (that almost none of 

the distributions are Gaussian) show that there is discrepancy between those two methods. This 

Camera index  

Sequence 
0 1 2 3 4 5 6 7 8 

Name Multiplier 𝝌𝟐𝒓𝒂𝒕𝒊𝒐, scaled by the multiplier 

Poznan Street (cameras 0..8) 101 × 7.93 7.65 6.71 6.82 7.00 4.90 5.54 5.51 5.11 

Poznan Carpark (cameras 0..8) 102 × 3.89 3.56 3.03 3.18 3.03 3.33 3.31 2.02 1.89 

Poznan Hall (cameras 0..8) 103 × 2.12 1.66 1.84 1.75 1.64 2.08 1.76 1.55 1.28 

Lovebird1 (cameras 0..8) 102 × 0.50 1.49 0.46 1.84 1.95 1.56 1.08 0.86 1.33 

Newspaper (cameras 0..8) 101 × 1.30 1.38 1.03 2.07 1.92 1.24 2.03 1.84 2.65 

Balloons (cameras 0..6) 100 × 1.03 1.42 1.16 0.88 0.94 1.90 0.69 - 



discrepancy (between the visual impressions and results of 𝜒2
𝑔𝑜𝑓

𝑡𝑒𝑠𝑡) can be explained on the 

basis of number of observed samples. As number of samples increase, the  𝜒2 test becomes more 

discriminating. With a large number of observed samples (millions in the performed 

experiment), the measured distribution should be almost exactly Gaussian in order to pass 

through the 𝑐ℎ𝑖2 test, while the measured distributions still have slight variations.  

As almost none of the test sequences have passed the performed 𝑐ℎ𝑖2 test and that their 

noise distributions are not Gaussians (the null-hypothesis has been rejected). In many 3D 

algorithms assumption about Gaussian distribution of noise values allows to use SSD metric for 

image matching (Sum of Squared Differences). An example of such algorithm is Depth 

Estimation Reference Software (DERS). As assumption about Gaussian noise is not justified, 

also usage of SSD matching metric cannot be strictly justified in such sequences. On the 

other hand, the presented distributions are very similar to Gaussians, and thus usage of 

SSD formula might be heuristically reasonable.  
 

7 Conclusions 
 

In this document a simple methodology for measurement of noise characteristics has been 

presented. On the considered set of test sequences (Poznan Street, Poznan Carpark, Poznan Hall, 

Lovebird1, Newspaper, Balloons) three important conclusions has been drawn. 

Firstly, the noise is independent in time domain, which justifies usage of many algorithms, 

like the denoising technique used in this work. 

Secondly, the measured noise value distributions undoubtedly are not Laplace distributions. 

In many algorithms Laplace distribution of noise values is equivalent to usage of SAD metric 

(Sum of Absolute Differences) and in such cases, usage of SAD is not justified., 

Lastly, the measured noise value distributions visually resemble Gaussians but statistical 

chi-square goodness-of-fit test has shown that in fact they are not Gaussians. In algorithms, 

where Gaussian distribution of noise values leads to usage of SSD matching metric (Sum of 

Squared Differences), usage of SSD is not strictly justified and at least heuristically reasonable. 

An example of algorithm which uses SSD for image matching is Depth Estimation Reference 

Software (DERS). Therefore, matching metric in DERS should be reconsidered. 

More detailed results can be found in [1]. 
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