
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION 
ORGANISATION INTERNATIONALE DE NORMALISATION 

ISO/IEC JTC 1/SC 29/WG 04 MPEG VIDEO CODING 
 

ISO/IEC JTC 1/SC 29/WG 04 m64164 

July 2023, Geneva, Switzerland 

 

Title [MIV] Versatile multicamera system calibration framework for immersive video 

applications 

Source PUT, ETRI 

Authors Dawid Mieloch, Błażej Szydełko, Adrian Dziembowski, Dominika Klóska,  

Jun Young Jeong, Gwangsoon Lee 

Abstract 

Accurate extrinsic parameters calibration is crucial for various applications, particularly in immersive video, 
where camera calibration plays a significant role, as its quality is essential for accurate reconstruction and 
efficient compression of three-dimensional scene information. While methods for intrinsic parameters 
calibration, color correction, and depth estimation are publicly available, there is a lack of versatile 
techniques for estimating extrinsics in the context of immersive video. The proposed software addresses 
these limitations by proposing a versatile extrinsic parameters estimation method and a framework for 
testing the quality of extrinsics. The software is compatible with MPEG immersive video framework, 
allowing for seamless integration and evaluation. It is recommended to include this framework as a 
reference tool for immersive video activities. 

 

1 Introduction 
Accurate camera calibration is fundamental for various applications, including precise measurements, 
accurate 3D reconstructions, and reliable scene understanding [1]. It also plays a vital role in camera 
networks and setup systems [2]. While intrinsic parameters calibration (i.e., estimating the optical 
characteristics of cameras) for machine vision applications poses no issues in terms of availability of open 
source implementations, comparative accuracy evaluation [3], [4], the extrinsic parameters calibration 
(estimating their relative positioning), particularly in the context of immersive video applications, can be 
still very challenging. 

Estimating extrinsic parameters is essential for achieving accurate 3D reconstruction from multiple views 
[5]. By determining the relative positions and orientations of multiple cameras, it becomes possible to 
triangulate corresponding image points and reconstruct the 3D structure of the scene. Therefore, 
calibration accuracy is crucial for depth estimation, as it relies on precise knowledge of the position and 
orientation of each camera within the system [5] and, as a result, on an efficient compression and 
transmission of scene information [6]. Therefore, without proper calibration, depth estimation and 
rendering of virtual views in immersive video would be compromised. Immersive video requires calibration 
methods that are versatile enough to accommodate a wide range of camera configurations and 
placements. 



While methods for intrinsic parameters calibration, color correction [7], and depth estimation [8], [9] have 
already been developed and made publicly available, as well as well-established frameworks for their 
comparison (e.g., MIV CTC, Middlebury database [10]), the evaluation of extrinsic parameters quality lacks 
a standardized approach. 

To address these challenges, this research proposes two main contributions. Firstly, a versatile method for 
estimating extrinsic parameters was developed, enabling the extrinsic parameters estimation in various 
camera configurations and placements. Secondly, a comprehensive framework is introduced to evaluate 
different methods of extrinsic parameters estimation. This framework involves simulating a virtual walk in 
a Blender-rendered multiview sequence, estimating parameters from the virtual sequence, comparing the 
estimated parameters against ground truth, evaluating the quality of estimated depth maps using both 
parameter sets, and synthesizing virtual views based on the estimated depth maps. The provided software 
is compatible with the MPEG immersive video framework, supporting JSON-based data format, 
omnidirectional media format (OMAF) coordinate system [11], and depth maps with normalized disparity 
[12], therefore, can be easily used to evaluate the extrinsic parameters in this application. 

 

2 Software description 
The repository with the framework: https://github.com/bszydelko/IV_calibrationTools 

 

Overview 

 

 

 

Blender project for generating of multiview calibration sequence 

The calibration sequence used with this tool can contain any objects the user wants. Every object should 
be stationary except for a marker. It is possible to test this kit with any camera configuration. The default 
calibration sequence attached to this toolkit contains a few stationary objects and one moving object - an 
orange ball - which is the marker that will be tracked for the calibration. The marker should sweep the 
scene to cover with its positions most of the visible area possibly. The camera configuration used for this 
sequence is an arch containing twenty cameras. 

https://github.com/bszydelko/IV_calibrationTools


 

 

 

Marker Tracker 

This tool generates calibration points based on the calibration sequence. The calibration sequence looks 
similar to the one you will process with this tool kit. The difference is - the only moving object in the 
calibration sequence is a marker. In the default scene, the marker is an orange ball moving throughout the 
scene. The marker tracker tracks the ball movement for each view and each frame and writes it into the 
.txt file. For a single frame from any view, there are three pieces of information that Marker Tracker writes 
into the file: position X in the view, position Y in the view, and a number indicating if the marker was visible 
in the frame (1) or not visible in the frame (0). 



 

 

Calibrator 

With the calibration points generated by Marker Tracker, Calibrator tool generates .json file with sequence 
parameters, which will be used for the depth estimation process. The calibrator generates an epipolar line 
between two views and calculates how far the points are generated with a marker tracker from this line. 
Next, to minimize the distance between the points and the epipolar line Calibrator tool manipulates camera 
parameters (e.g., rotation). This process is repeated for every view pair in the sequence. Output .json file 
contains camera parameters for which the distance between MarkerTracker points and epipolar lines was 
minimal. 

  

 

 

 

 



3 How to run the software 

This calibration software pack contains a few separate tools that should be used in a specific order: 

Rendering scene with Blender -> Extracting parameters -> Marker Tracking -> Calibration -> Depth 

Estimation -> Comparing estimated depth. 

Before you start, please ensure that you have OpenCV for C++ (https://github.com/opencv/opencv and 

vcpkg) and Blender installed on your computer. Also, please add the Blender installation folder to your 

environment variables as follows: 

• Copy the path to the folder you have installed Blender in, e.g.: C:\Program Files\Blender 
Foundation\Blender 3.4 

• Go to the system properties -> advanced -> environment variables 
• In the Environment Variables window, search for the System Variables section and find the 

Path variable. Select this variable and click the edit button: 
• Click the New button and paste the path to the Blender installation folder. Finish by clicking the Ok 

button. 

The first step is to render textures and depth maps using Blender to use the MarkerTracker tool. You can 

either create your own scene, use the default scene attached with the tool or add some modifications to 

the scene attached with the tool. 

In this scenario, we will use the default scene. 

a) Go to: CalibrationTools -> TestScene and open scene.blend, 

b) Switch to the ViewportShading view: 

 

c) If you see a lack of textures in the scene, you should manually set the path to the folder with textures. In 

the Blender menu: File -> External Data -> Find Missing Files, choose the textures folder and press the Find 

Missing Files button: 



 

The next step is scene rendering which will result in textures and depth of a scene: 

a) First, render only one frame of the calibration sequence - this will be the mask used for marker tracking 
(later step): 

• From the top menu, select Render -> Render Animation, 
• The files will be saved in IV_calibrationTools -> TestScene -> render -> texture, 
• You can delete the rendered depth because there is no need for a depth mask. 

 

b) Now render the whole sequence: 

• Set the number of frames to render (in this example, the number of frames was set to 300), 
• Make sure that the mask files have different names than the files that you will render now, 
• From the top menu, select Render -> Render Animation, 
• Texture files are being saved in IV_calibrationTools -> TestScene -> render -> texture and depth files 

are being saved to: IV_calibrationTools -> TestScene -> render -> depth, 
• Use the .bat scripts located in texture and depth folders (convert2yuv.bat). 

c) Extract camera parameters from Blender: 

• Run the exctractParams.bat located in IV_calibrationTools -> TestScene. 

Using MarkerTracker tool 

a) Go to IV_calibrationTools -> MarkerTracking and run build.bat, 

b) Go to the build folder and run MarkerTracker.sln, 

c) Change Solution Configuration from Debug to Release, and set MarkerTracker as a startup project, 

d) Build project, 

e) Go to CalibrationTools -> MarkerTracker -> samples and run runMarkerTracker.bat from cmd, 



f) The script will start opening the calibration sequence. You will see how the software is tracking the marker 
object, 

g) The output of the MarkerTracker tool is a markerPositions.txt file that will be used as input for the next 
Calibration tool. 

Using Calibrator tool 

a) Go to CalibrationTools -> Calibration and run runCalibrateCameras.bat. Below you can find a description 
of the parameters that should be given in order to run this tool: 

- -ncams (the number of cameras), 

- -camrange *start\_cam:step:end\_cam*, 

- -npoints (number of marker positions which can be found by looking at the number of lines in the 

*CalibrationTools->Calibrator->markerPositions.txt* file), 

- -r (path to the ground truth marker positions file, which is shown in the previous point), 

- -i (initial camera positions file name), 

- -o (output file name). 

b) This tool outputs a few.json files containing camera parameters after calibration. E.g., 
calibParams_it5.json contains calibrated camera parameters after the 5th iteration. One of these files 
should be used as an input file for depth estimation. It is advised to choose the file with the smallest 
reprojection error (it is visible after each iteration in cmd when running runCalibrateCameras.bat). 

Depth estimation 

a) Go to IV_calibrationTools -> DepthEstimation, 

b) The estimator we attached to this toolkit is MPEG reference software called Immersive Video Depth 
Estimation. Instructions on how to use it can be found here: IV_calibrationTools -> DepthEstimation -> ivde 
-> README.md, 

c) Go to groundTruthParams and run runDepthEstimator.bat to estimate depth from ground truth 
parameters that you have extracted after rendering the calibration sequence, 

d) Next go to calibratorParams folder, 

e) Edit the runDepthEstimator.bat by pasting the name of the file with the smallest reprojection error as 
the second input file, 

f) Run the abovementioned .bat script to estimate depth from calibrated parameters. 

Depth comparison 

a) When the depth estimation process is finished, go to IV_calibrationTools -> DepthCompare and 
run calcBadMatchedPixels.py script, 



b) The script will output the results.xlsx file comparing depth estimated from ground truth parameters with 
depth estimated from calibrated parameters. 

The example of the results is shown below in the table. The comparison shows what is the percentage of 
pixels that differ more than set threshold when comparing ground truth depth maps with ones estimated 
using parameters from proposed calibrator. Bit depth of depth maps is 16 bits. 

 
 
View 

Threshold 
512 1024 2048 

v0 23.13908 11.97405 6.228829 

v1 14.96726 7.251013 3.627074 

v2 9.691117 2.939574 1.148582 

v3 7.599875 3.163966 1.883343 

v4 16.22242 4.836034 3.631125 

v5 11.83044 1.749421 1.175878 

v6 10.22304 1.786989 1.016975 

v7 12.41512 3.515095 2.208478 

v8 5.13479 3.422984 2.236015 

v9 2.420525 1.278742 1.013937 

v10 2.550974 1.048852 0.808642 

v11 4.261767 2.080584 1.056086 

v12 10.91739 3.888744 3.162809 

v13 8.312114 1.17988 0.91088 

v14 8.160639 1.155816 0.8519 

v15 11.83449 4.163146 3.438561 

v16 8.615403 4.649981 2.457562 

v17 11.26138 3.370467 1.989149 

v18 16.0719 6.624518 2.658083 

v19 21.53328 10.33893 4.12066 

The results below compare depth maps estimated using parameters from proposed calibrator with depth 
maps depth maps estimated using ground truth parameters. 

 
 
View 

Threshold 
512 1024 2048 

v0 22.54596 10.73838 4.254292 

v1 18.53265 6.774595 2.806761 

v2 11.04282 2.643374 0.891831 

v3 9.80869 2.864487 1.306279 

v4 21.07687 4.339603 2.930218 

v5 10.91001 1.158275 0.607591 

v6 8.626929 0.906298 0.485725 

v7 9.362799 1.768374 1.002508 

v8 7.528115 1.498409 0.62201 

v9 5.385561 0.535204 0.2799 

v10 7.751061 0.496238 0.219618 

v11 7.959925 1.073302 0.292631 

v12 5.477045 2.106578 0.849151 



v13 3.330343 0.627267 0.403983 

v14 4.63614 0.650511 0.44811 

v15 10.32292 3.139371 2.303096 

v16 8.087867 2.749228 0.91821 

v17 10.94184 2.620129 1.097367 

v18 15.25251 5.39294 1.837047 

v19 17.9797 8.217737 3.055122 

4 Recommendations 
It is recommended to include this framework as a reference tool for immersive video activities. 

5 References 
 
[1] A. S. Olagoke, H. Ibrahim and S. S. Teoh, “Literature Survey on Multi-Camera System and Its Application,” in IEEE 
Access, vol. 8, pp. 172892-172922, 2020. 
[2] Xiaogang Wang, “Intelligent multi-camera video surveillance: A review,” Pattern Recognition Letters, Volume 34, 
Issue 1, 2013, Pages 3-19. 
[3] Joaquim Salvi, Xavier Armangué, Joan Batlle, “A comparative review of camera calibrating methods with accuracy 
evaluation,” Pattern Recognition, Volume 35, Issue 7, 2002, Pages 1617-1635. 
[4] T. Tsoy, R. Safin, E. A. Martinez-Garcia, S. Dutta Roy, S. K. Saha, and E. Magid, “Exhaustive Simulation Approach for 
a Virtual Camera Calibration Evaluation in Gazebo,” 2022 8th International Conference on Automation, Robotics and 
Applications (ICARA), Prague, Czech Republic, 2022, pp. 233-238 
[5] Kukolj D., Bolecek L., Polak L., Kratochvil T., Zach O., Kufa J., Slanina M., Grajek T., Samelak J., Domański M., 
Milovanovic D.A., “3D Content Acquisition and Coding,” (2019) Signals and Communication Technology, pp. 41 - 95. 
[6] D. Mieloch, A. Dziembowski and M. Domański, "Depth Map Refinement for Immersive Video," in IEEE Access, vol. 
9, pp. 10778-10788, 2021. 
[7] A. Dziembowski, D. Mieloch, S. Różek and M. Domański, "Color Correction for Immersive Video Applications," in 
IEEE Access, vol. 9, pp. 75626-75640, 2021. 
[8] D. Mieloch et al., “Overview and Efficiency of Decoder-Side Depth Estimation in MPEG Immersive Video,” in IEEE 
Transactions on Circuits and Systems for Video Technology, vol. 32, no. 9, pp. 6360-6374, Sept. 2022. 
[9] S. Rogge et al., “MPEG-I Depth Estimation Reference Software,” 2019 International Conference on 3D Immersion 
(IC3D), Brussels, Belgium, 2019. 
[11] D. Scharstein and R. Szeliski, ‘‘High-accuracy stereo depth maps using structured light,’’ in Proc. IEEE Comput. 
Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2003, pp. 195–202. 
[12] M. M. Hannuksela and Y. -K. Wang, “An Overview of Omnidirectional MediA Format (OMAF),” in Proceedings of 
the IEEE, vol. 109, no. 9, pp. 1590-1606, Sept. 2021. 
[13] “Depth Map Formats Used Within MPEG 3D Technologies,” document ISO/IEC JTC1/SC29/WG11 
MPEG2017/N16730, Geneva, Switzerland, Jan. 2017. 

6 Acknowledgement 
This work was supported by Institute of Information & Communications Technology Planning & Evaluation 
(IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00207, Immersive Media Research 
Laboratory). 


