
e ISO/IEC JTC 1/SC 29/WG 04 N 0580

Document type: Output Document

Title: Software manual of QMIV 2

Status: Approved

Date of document: 2024-12-06

Source: ISO/IEC JTC 1/SC 29/WG 04

Expected action: None

Action due date: None

No. of pages: 15 (without cover page)

Email of Convenor: yul@zju.edu.cn

Committee URL: https://sd.iso.org/documents/ui/#!/browse/iso/iso-iec-jtc-1/iso-iec-jtc-1-sc-

29/iso-iec-jtc-1-sc-29-wg-4

ISO/IEC JTC 1/SC 29/WG 04

MPEG Video Coding

Convenorship: CN

https://sd.iso.org/documents/ui/#!/browse/iso/iso-iec-jtc-1/iso-iec-jtc-1-sc-29/iso-iec-jtc-1-sc-29-wg-4
https://sd.iso.org/documents/ui/#!/browse/iso/iso-iec-jtc-1/iso-iec-jtc-1-sc-29/iso-iec-jtc-1-sc-29-wg-4

1

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC 1/SC 29/WG 04 MPEG VIDEO CODING

ISO/IEC JTC 1/SC 29/WG 04 N 0580

November 2024, Kemer, TR

Title Software manual of QMIV 2

Source WG 04 MPEG Video Coding

Status Approved

Serial Number 24578

Authors Jakub Stankowski, Adrian Dziembowski

1. Introduction
This document describes a successor of the IVPSNR software: QMIV. The QMIV framework

includes additional metrics based on structural similarity: SSIM and IV-SSIM. QMIV v2.0

calculates: PSNR, WS-PSNR [Sun17], IV-PSNR [Dziembo22], SSIM [Wang04], MS-SSIM

[Wang03], and IV-SSIM [Dziembo24].

All the metrics are calculated separately for each frame of the sequence. In the end, the QMIV

framework returns the mean value of each metric, averaged over a desired number of frames.

1.1. PSNR

PSNR for each color component 𝑐 is calculated as:

PSNR(𝑐) = 10 ⋅ log (
MAX2

MSE(𝑐)
) ,

where MAX is the maximum value of the color component (e.g., 1023 for 10-bit video) and:

MSE(𝑐) =
1

𝑊 ⋅ 𝐻
∑ ∑ (𝑐𝑅(𝑥, 𝑦, 𝑐) − 𝑐𝑇(𝑥, 𝑦, 𝑐))

2

𝑊−1

𝑥=0

𝐻−1

𝑦=0

 ,

where 𝑊 and 𝐻 are width and height of the image, 𝑐𝑇(𝑥, 𝑦, 𝑐) and 𝑐𝑅(𝑥𝑅 , 𝑦𝑅 , 𝑐) are values of

color component 𝑐 in the position (𝑥, 𝑦) in the test image and the reference image,

respectively.

The QMIV framework returns the PSNR value for each color component 𝑐 (by default: Y, Cb,

and Cr), as well as the weighted average of those values, calculated with weights determined

by the CmpWeightsAverage parameter.

The QMIV tries to avoid inconsistency caused by divide-by-zero issue in case of perfect

frames. If there is completely no distortion the MSE(𝑐) = 0 leads to PSNR(𝑐) = ∞. Direct

averaging of such PSNR values leads to average PSNR also equal to infinity. This makes

2

comparison of very high-quality sequences almost impossible since even one perfect frame out

of thousands will set the final PSNR to +inf. To avoid this issue, we introduced “fake PSNR”

mode for perfect frames. In this case the PSNR metric for undistorted component is set to:

PSNR𝐹𝐴𝐾𝐸(𝑐) = 10 ⋅ log (
MAX2

1
)

This behavior mimics a situation where one pixel differs by one. In order to avoid a silent

altering of metric value, this mode is signaled in output log and result file. For every undistorted

component of each frame, the software emits ”Exact{CmpName}” message.

1.2. WS-PSNR [Sun17]

WS-PSNR is a PSNR-based metric adapted for omnidirectional video. In [Sun17] handling of

different projections is described. In the QMIV framework, only the ERP projection handling

is implemented.

The WS-PSNR value for each color component 𝑐 is calculated as:

WSPSNR(𝑐) = 10 ⋅ log (
MAX2

WSMSE(𝑐)
) ,

where MAX is the maximum value of the color component (e.g., 1023 for 10-bit video) and:

WSMSE(𝑐) =
∑ ∑ (𝑐𝑅(𝑥, 𝑦, 𝑐) − 𝑐𝑇(𝑥, 𝑦, 𝑐))

2
⋅ 𝑤𝑥,𝑦 𝑊−1

𝑥=0
𝐻−1
𝑦=0

∑ ∑ 𝑤𝑥,𝑦 𝑊−1
𝑥=0

𝐻−1
𝑦=0

 ,

where 𝑊 and 𝐻 are width and height of the image, 𝑐𝑇(𝑥, 𝑦, 𝑐) and 𝑐𝑅(𝑥𝑅 , 𝑦𝑅 , 𝑐) are values of

color component 𝑐 in the position (𝑥, 𝑦) in the test image and the reference image,

respectively, and weight 𝑤𝑥,𝑦 is calculated as:

𝑤𝑥,𝑦 = cos
(𝑦 + 0.5 −

𝐻
2) ⋅ 𝜋

𝐻
.

The QMIV framework returns the WS-PSNR value for each color component 𝑐 (by default: Y,

Cb, and Cr), as well as the weighted average of those values, calculated with weights

determined by the CmpWeightsAverage parameter.

The 𝑊𝑆-PSNR(𝑐) = ∞ problem is handled in the same way as for PSNR metric.

1.3. IV-PSNR [Dziembo22]

IV-PSNR is a PSNR-based objective quality metric adapted for Immersive Video applications.

Compared to PSNR, two major modifications were added: Corresponding Pixel Shift and

Global Color Difference. Corresponding Pixel Shift eliminates the influence of a slight shift of

objects’ edges caused by reprojection errors. Global Color Difference reduces the influence of

different color characteristics of different input views.

Detailed description of the IV-PSNR metric can be found in [Dziembo22]. Below, the general

and simplified idea of the IV-PSNR is presented.

IV-PSNR for color component 𝑐 is calculated as:

IVPSNR(𝑐) = 10 ⋅ log (
MAX2

IVMSE(𝑐)
) ,

where MAX is the maximum value of the color component (e.g., 1023 for 10-bit video) and:

3

IVMSE(𝑐) =
1

𝑊 ⋅ 𝐻
∑ ∑ min

𝑥′∈[𝑥−CPS,𝑥+CPS]

𝑦′∈[𝑦−CPS,𝑦+CPS]

 (𝑐𝑇(𝑥, 𝑦, 𝑐) − 𝑐𝑅(𝑥′, 𝑦′, 𝑐) + GCD(c))2

𝑊−1

𝑥=0

𝐻−1

𝑦=0

 ,

where 𝑊 and 𝐻 are width and height of the image, 𝑐𝑇(𝑥, 𝑦, 𝑐) and 𝑐𝑅(𝑥′, 𝑦′, 𝑐) are values of

color component 𝑐 in the position (𝑥, 𝑦) in the test image and (𝑥′, 𝑦′) in the reference image,

respectively. CPS is the maximum Corresponding Pixel Shift between reference and test image,

and GCD is the Global Color Difference for component 𝑐:

GCD(𝑐) = max (
1

𝑊 ⋅ 𝐻
∑ ∑ (𝑐𝑅(𝑥, 𝑦, 𝑐) − 𝑐𝑇(𝑥, 𝑦, 𝑐))

𝑊−1

𝑥=0

𝐻−1

𝑦=0

, MUD(𝑐)) ,

where MUD(𝑐) is the Maximum Unnoticeable Difference for color component 𝑐 . Position

(𝑥′, 𝑦′) within test image is determined by searching for the most similar pixel to the pixel in

position (𝑥, 𝑦) within the reference image.

In order to provide better quality assessment for omnidirectional video provided in the ERP

format, weighting technique from WS-PSNR [Sun17] was applied.

The IV-PSNR quality metric is based on PSNR, therefore, the higher the number, the better is

the quality.

The QMIV framework returns a single IV-PSNR value, calculated by weighting IVPSNR(𝑐)

for three color components 𝑐 using weights determined by the CmpWeightsAverage

parameter.

1.4. SSIM [Wang04]

The SSIM metric is based on comparing the structural similarity between two images. SSIM

for color component 𝑐 is calculated as:

SSIM(𝑐) =
1

𝑊 ⋅ 𝐻
∑ ∑ 𝐿(𝑥, 𝑦, 𝑐) ⋅ 𝐶(𝑥, 𝑦, 𝑐) ⋅ 𝑆(𝑥, 𝑦, 𝑐)

𝑊−1

𝑥=0

 ,

𝐻−1

𝑦=0

where 𝑊 and 𝐻 are width and height of the image, and:

𝐿(𝑥, 𝑦, 𝑐) =
2 ⋅ 𝜇𝑅(𝑥, 𝑦, 𝑐) ⋅ [𝜇𝑇(𝑥, 𝑦, 𝑐)] + 𝐶1

𝜇𝑅(𝑥, 𝑦, 𝑐)2 + [𝜇𝑇(𝑥, 𝑦, 𝑐)]2 + 𝐶1
 ,

𝐶(𝑥, 𝑦, 𝑐) =
2 ⋅ 𝜎𝑅(𝑥, 𝑦, 𝑐) ⋅ 𝜎𝑇(𝑥, 𝑦, 𝑐) + 𝐶2

𝜎𝑅(𝑥, 𝑦, 𝑐)2 + 𝜎𝑇(𝑥, 𝑦, 𝑐)2 + 𝐶2
 ,

𝑆(𝑥, 𝑦, 𝑐) =
𝜎𝑅𝑇(𝑥, 𝑦, 𝑐) + 𝐶3

𝜎𝑅(𝑥, 𝑦, 𝑐) ⋅ 𝜎𝑐
𝐽(𝑥, 𝑦, 𝑐) + 𝐶3

 ,

where 𝐶1, 𝐶2, and 𝐶3 are constants providing numerical stability, and local statistics of both

compared images are calculated as:

𝜇𝑅(𝑥, 𝑦, 𝑐) = ∑ ∑ [𝝎(𝑖 − 𝑥, 𝑗 − 𝑦) ⋅ 𝑐𝑅(𝑖, 𝑗, 𝑐)]

𝑦+𝑘

𝑗=𝑦−𝑘

 ,

𝑥+𝑘

𝑖=𝑥−𝑘

𝜇𝑇(𝑥, 𝑦, 𝑐) = ∑ ∑ [𝝎(𝑖 − 𝑥, 𝑗 − 𝑦) ⋅ 𝑐𝑇(𝑖, 𝑗, 𝑐)]

𝑦+𝑘

𝑗=𝑦−𝑘

 ,

𝑥+𝑘

𝑖=𝑥−𝑘

4

𝜎𝑅(𝑥, 𝑦, 𝑐) = √ ∑ ∑ [𝝎(𝑖 − 𝑥, 𝑗 − 𝑦) ⋅ (𝑐𝑅(𝑖, 𝑗, 𝑐))
2

]

𝑦+𝑘

𝑗=𝑦−𝑘

𝑥+𝑘

𝑖=𝑥−𝑘

− (𝜇𝑅(𝑥, 𝑦, 𝑐))
2

 ,

𝜎𝑇(𝑥, 𝑦, 𝑐) = √ ∑ ∑ [𝝎(𝑖 − 𝑥, 𝑗 − 𝑦) ⋅ (𝑐𝑇(𝑖, 𝑗, 𝑐))
2

]

𝑦+𝑘

𝑗=𝑦−𝑘

𝑥+𝑘

𝑖=𝑥−𝑘

− (𝜇𝑇(𝑥, 𝑦, 𝑐))
2

 ,

𝜎𝑅𝑇(𝑥, 𝑦, 𝑐) = ∑ ∑ [𝝎(𝑖 − 𝑥, 𝑗 − 𝑦) ⋅ 𝑐𝑅(𝑖, 𝑗, 𝑐) ⋅ 𝑐𝑇(𝑖, 𝑗, 𝑐)]

𝑦+𝑘

𝑗=𝑦−𝑘

𝑥+𝑘

𝑖=𝑥−𝑘

− 𝜇𝑅(𝑥, 𝑦, 𝑐) ⋅ 𝜇𝑇(𝑥, 𝑦, 𝑐) ,

where 𝝎 is the weighting mask of size 2𝑘 + 1 × 2𝑘 + 1, while 𝑐𝑇(𝑥, 𝑦, 𝑐) and 𝑐𝑅(𝑥𝑅, 𝑦𝑅 , 𝑐)

are values of color component 𝑐 in the position (𝑥, 𝑦) in the test image and the reference image.

The QMIV framework returns the SSIM value for each color component 𝑐 (by default: Y, Cb,

and Cr), as well as the weighted average of those values, calculated with weights determined

by the CmpWeightsAverage parameter.

1.5. MS-SSIM [Wang03]

The SSIM metric is based on SSIM and calculated over multiple sub-sampled images. The

modified SSIM metric values obtained for each sub-sampled stage are combined

multiplicatively (with different weights) into single final metric.

𝑀𝑆-𝑆𝑆𝐼𝑀(𝑐) = ∏ [𝑆𝑆𝐼𝑀𝑗(𝑐)]
𝜔𝑗𝑀

𝑗=0 ,

where 𝜔𝑗 is weight for scale 𝑗.

The QMIV framework returns the MS-SSIM value for each color component 𝑐 (by default: Y,

Cb, and Cr), as well as the weighted average of those values, calculated with weights

determined by the CmpWeightsAverage parameter.

1.6. IV-SSIM [Dziembo24]

IV-SSIM is a SSIM-based objective quality metric adapted for Immersive Video applications.

Compared to SSIM, two major modifications (the same as for IV-PSNR) were added:

Corresponding Pixel Shift and Global Color Difference.

Detailed description of the IV-SSIM metric can be found in [Dziembo24]. Below, the general

and simplified idea of the IV-SSIM is presented.

IV-SSIM for color component 𝑐 is calculated as:

IVSSIM(𝑐) =
1

𝑊 ⋅ 𝐻
∑ ∑ 𝐿(𝑥, 𝑦, 𝑐) ⋅ 𝐶(𝑥, 𝑦, 𝑐) ⋅ 𝑆(𝑥, 𝑦, 𝑐)

𝑊−1

𝑥=0

 ,

𝐻−1

𝑦=0

where 𝑊 and 𝐻 are width and height of the image, and:

𝐿(𝑥, 𝑦, 𝑐) =
2 ⋅ 𝜇𝑅(𝑥, 𝑦, 𝑐) ⋅ [𝜇𝑇(𝑥, 𝑦, 𝑐) + GCD(𝑐)] + 𝐶1

𝜇𝑅(𝑥, 𝑦, 𝑐)2 + [𝜇𝑇(𝑥, 𝑦, 𝑐) + GCD(𝑐)]2 + 𝐶1
 ,

where GCD(𝑐) is calculated in the same way as for IV-PSNR. 𝐶(𝑥, 𝑦, 𝑐) and 𝑆(𝑥, 𝑦, 𝑐), as well

as local statistics for reference image (𝜎𝑅 and 𝜇𝑅) are calculated using the same equations, as

for SSIM. Other three local statistics are calculated as:

5

𝜇𝑇(𝑥, 𝑦, 𝑐) = ∑ ∑ [𝝎(𝑖 − 𝑥, 𝑗 − 𝑦) ⋅ 𝑐𝑇(𝑖′, 𝑗′, 𝑐)]

𝑦+𝑘

𝑗=𝑦−𝑘

 ,

𝑥+𝑘

𝑖=𝑥−𝑘

𝜎𝑇(𝑥, 𝑦, 𝑐) = √ ∑ ∑ [𝝎(𝑖 − 𝑥, 𝑗 − 𝑦) ⋅ (𝑐𝑇(𝑖′, 𝑗′, 𝑐))
2

]

𝑦+𝑘

𝑗=𝑦−𝑘

𝑥+𝑘

𝑖=𝑥−𝑘

− (𝜇𝑇(𝑥, 𝑦, 𝑐))
2

 ,

𝜎𝑅𝑇(𝑥, 𝑦, 𝑐) = ∑ ∑ [𝝎(𝑖 − 𝑥, 𝑗 − 𝑦) ⋅ 𝑐𝑅(𝑖, 𝑗, 𝑐) ⋅ 𝑐𝑇(𝑖′, 𝑗′, 𝑐)]

𝑦+𝑘

𝑗=𝑦−𝑘

𝑥+𝑘

𝑖=𝑥−𝑘

− 𝜇𝑅(𝑥, 𝑦, 𝑐) ⋅ 𝜇𝑇(𝑥, 𝑦, 𝑐) ,

where the position (𝑖′, 𝑗′) is calculated by analyzing the 𝐵 × 𝐵 neighborhood of the pixel (𝑖, 𝑗)

within image 𝑐𝑇 in search of the pixel, which is most similar to the pixel (𝑖, 𝑗) in image 𝑐𝑅.

In order to provide better quality assessment for omnidirectional video provided in the ERP

format, weighting technique from WS-PSNR [Sun17] was applied.

The IV-SSIM quality metric is based on SSIM, therefore, the higher the number, the better is

the quality.

The QMIV framework returns a single IV-SSIM value, calculated by weighting IVSSIM(𝑐) for

three color components 𝑐 using weights determined by the CmpWeightsAverage parameter.

2. Software manual
QMIV v2.0 accepts commandline parameters listed in section 2.1:

2.1. Commandline parameters

General parameters

Cmd ParamName Description

-i0 InputFile0 File path - input sequence 0

-i1 InputFile1 File path - input sequence 1

-ff FileFormat Format of input sequence (optional, default: RAW) [RAW, PNG]

-ps PictureSize Size of input sequences (WxH e.g., 1920x1080) 1

-pw PictureWidth Width of input sequence 1

-ph PictureHeight Height of input sequence 1

-pf PictureFormat Picture format, as defined by FFMPEG pix_fmt (e.g., yuv420p10le) 2

-bd BitDepth Bit depth (optional, default: 8, up to 14) 2

-cf ChromaFormat Chroma format (optional, default: 420) [420, 444] 2

-s0 StartFrame0 Start frame (optional, default: 0)

-s1 StartFrame1 Start frame (optional, default: 0)

-nf NumberOfFrames Number of frames to be processed (optional, default: -1 = all)

-r ResultFile Output file path for printing results (optional)

-ml MetricList List of quality metrics to be calculated, must be coma separated, quotes are required.

"All" enables all available metrics. (optional, default="PSNR, WSPSNR, IVPSNR,

IVSSIM") [IVPSNR, IVSSIM, PSNR, SSIM, MSSSIM, IVMSSSIM, WSPSNR]
1 PictureSize parameter can be used interchangeably with PictureWidth, PictureHeight pair; if PictureSize

parameter is present the PictureWidth and PictureHeight arguments are ignored.
2 PictureFormat parameter can be used interchangeably with BitDepth, ChromaFormat pair; if PictureFormat

parameter is present the BitDepth and, ChromaFormat arguments are ignored.

Masked mode parameters

Cmd ParamName Description

-im InputFileM File path – mask (optional, same resolution as InputFile0 and InputFile1)

6

-bdm BitDepthM Bit depth for mask (optional, default: BitDepth, up to 16)

-cfm ChromaFormatM Chroma format for mask (optional, default: ChromaFormat) [400, 420, 444]

Equirectangular parameters

Cmd ParamName Description

-erp Equirectangular Equirectangular sequence (flag, default disabled)

-lor LonRangeDeg Longitudinal range of ERP sequence [°] (optional, default: 360)

-lar LatRangeDeg Lateral range of ERP sequence [°] (optional, default: 180)

Colorspace mode parameters

Cmd ParamName Description

-csi ColorSpaceInput Color space of input files (optional, default: YCbCr)

-csm ColorSpaceMetric Color space used to calculate metrics (optional, default: ColorSpaceInput)

 If ColorSpaceInput != ColorSpaceMetric the software performs on-demand

conversion (RGB-->YCbCr or YCbCr-->RGB). Conversion requires specific

YCbCr color space parameters.

[RGB, BGR, YCbCr, YCbCr_BT601, YCbCr_SMPTE170M, YCbCr_BT709,

YCbCr_SMPTE240M, YCbCr_BT2020]

IV-metric specific parameters
Cmd ParamName Description

-sr SearchRange IV-metric search range around center point (optional, default: 2 → 5×5)

-cws CmpWeightsSearch IV-metric component weights used during search ("Lm:Cb:Cr:0" or "R:G:B:0" - per

component integer weights, default="4:1:1:0", quotes are mandatory, requires

USE_RUNTIME_CMPWEIGHTS=1)

-cwa CmpWeightsAverage IV-metric component weights used during averaging ("Lm:Cb:Cr:0" or "R:G:B:0" -

per component integer weights, default="4:1:1:0", quotes are mandatory)

-unc UnnoticeableCoef IV-metric unnoticable color difference threshold coeff ("Lm:Cb:Cr:0" or "R:G:B:0"

- per component coeff, default="0.01:0.01:0.01:0", quotes are mandatory)

Structural similarity specific parameters
Cmd ParamName Description

-ssm StructSimMode Calculation mode and structure variant (optional, default: BlockAveraged)

[RegularGaussianFlt, RegularGaussianInt, RegularAveraged, BlockGaussianInt,

BlockAveraged]

-sss StructSimStride Stride between pixels/windows (optional, default: 4)

-ssw StructSimWindow Size of structure window (optional, applies to Block modes only, default=8)

[8,16,32]

Validation parameters

Cmd ParamName Description

-ipa InvalidPelActn Select action taken if invalid pixel value (larger than [(1<<BitDepth)-1]) is detected

(optional, default STOP) [SKIP – disable pixel value checking, WARN – print

warning and ignore, STOP – stop execution, CNCL – try to conceal by clipping to

bit depth range]

-nma NameMismatchActn Select action taken if parameters derived from filename are different than provided

as input parameters. Checks resolution, bit depth and chroma format. (optional,

default WARN) [SKIP – disable checking, WARN – print warning and ignore,

STOP – stop execution]

Application parameters

Cmd ParamName Description

7

-nth NumberOfThreads Number of worker threads (optional, default: -2, suggested: ~8 for IV-PSNR, all

physical cores for SSIM) [0 = thread pool disabled, -1 = all available threads, -2 =

reasonable auto]

-ilp InterleavedPic Use additional image buffer with interleaved layout

(improves performance at a cost of increased memory usage, optional, default: 1)

-v VerboseLevel Verbose level (optional, default: 1), cf. section 2.4

External config file
Cmd ParamName Description

-c Valid path to external config file - in INI format (optional). Multiple config files can

be provided by using multiple "-c" arguments. Config files are processed in

arguments order. Content of config files are merged while repeating values are

overwritten. cf. section 2.6

Dynamic dispatcher parameters

Cmd Description

--DispatchForceMFL Force dispatcher to selected microarchitecture (optional, default=UNDEFINED) [x86-

64, x86-64-v2, x86-64-v3, x86-64-v4]. Forcing a selection of microarchitecture level

not supported by CPU will lead to "illegal instruction" exception.

--DispatchVerbose Verbose level for runtime dispatch module (optional, default=0).

• The commandline parameters are processed in arguments order.

• Multiple config files can be provided.

• When no parameters are used, syntax help is printed.

2.2. Masked mode

Optional mode of the QMIV allows to calculate the metrics only for specified areas. In order

to use masked mode, InputFileM (-im) parameter has to be set, indicating a path of mask YUV

file.

InputFile0 (-i0):

InputFile1 (-i1):

InputFileM (-im):

In an example above, the quality is calculated only for occupied pixels (as indicated by mask),

so different color of the unoccupied background does not impact outputted quality.

Requirements and notes

• Resolution of mask file has to be identical as input file.

• Allowed mask values are 0 (interpreted as inactive pixel) and (1<<BitDepthM)-1)

(interpreted as active pixel). Behavior for other values is undefined at this moment.

• The data processing functions for masked mode are not implemented with the use of

SIMD instructions.

• Masked SSIM and IV-SSIM are not supported in v2.0.

8

2.3. Colorspace modes

Optional mode of the QMIV allows to define or convert the colorspace of input sequences

and/or colorspace used to calculate metrics.

The default behavior is to assume generic YCbCr colorspace for both input and metric and

perform no conversion. The metric values are decorated with YCbCr or Y:Cb:Cr suffix.

The second option is to use RGB input files and calculate metric in RGB. In this case the QMIV

performs no conversion and output metrics labeled as RGB, i.e., PSNR R:G:B PSNR-RGB. To

enable this mode use “-csi RGB” input argument.

When calculating metrics in RGB mode, component weights should be set equal for all three

components:

• CmpWeightsAverage = “1:1:1:0”,

• CmpWeightsSearch = “1:1:1:0”.

This can be archived using config file or commandline (-cwa “1:1:1:0” -cws “1:1:1:0”).

The other path assumes on-demand colorspace conversion. The software is able to perform

RGB-to-YCbCr or YCbCr-to-RGB conversion. In this case, a specific variant of YCbCr

colorspace (BT601, SMPTE170M, BT709, SMPTE240M, BT2020) have to be defined for

input or metric. The valid arguments for YCbCr colorspace variants are [YCbCr_BT601,

YCbCr_SMPTE170M, YCbCr_BT709, YCbCr_SMPTE240M, YCbCr_BT2020].

For example, if one wants to use input sequence in BT709 colorspace and calculate metrics in

RGB, the following parameters should be used: -csi YCbCr_BT709 -csm RGB -cwa “1:1:1:0”

-cws “1:1:1:0”.

2.4. PNG/BMP mode

Optional mode of the QMIV allows to calculate the metrics not only for video files, but for

lists of indexed images in the PNG or BMP format. Only uncompressed BMP is supported.

The name of input file should contain format string as defined in C++20 std::format [ISO/IEC

14882:2020] in the form of “{:d}” with optional modifiers. The file name is determined by

formatting input string using image index.

The software expects lists of consequently numbered files. The first file index can be equal to

0 or 1. The last file is detected by checking the existence of consecutive files. The first missing

index is treated as the end of the file list.

Examples:

• The list of files {img001.png, img002.png, img003.png} should be specified as

“img{:03d}.png”.

• The list of files {img000.png, img001.png, img002.png, img004.png}, specified as

“img{:03d}.png”, will be processed for 0,1, and 2 indexes only. The “img002.png” will

be detected as the last image in list.

• The list of files {img001.bmp, img002.bmp, img003.bmp} should be specified as

“img{:03d}.bmp”.

9

2.5. Verbose levels

Value Printed data

0 Final metrics values only

1 0 + configuration + detected number of frames

2 1 + argc/argv + frame level metric values

3 2 + computing time (could slightly slow down computations)

4 3 + QMIV specific debug data (GlobalColorShift, R2T+T2R, NumNonMasked)

9 stdout flood

2.6. Compile-time parameters

Parameter name Default value Description

USE_SIMD 1 use SIMD (to be precise... use SSE 4.1, AVX2, or AVX512)

USE_RUNTIME_CMPWEIGHTS 1 use component weights provided at runtime

2.7. Config file example

InputFile0 = "SA_ref.yuv"

InputFile1 = "SA_test.yuv"

PictureWidth = 4096

PictureHeight = 2048

BitDepth = 10

ChromaFormat = 420

VerboseLevel = 3

MetricList = "PSNR, IVPSNR, IVSSIM"

OutputFile = "QMIV.txt"

2.8. Compilation requirements

The QMIV v2.0 software uses following external components:

• libfmt – Formatting library for C++ – distributed under BSD license and automatically

fetched by QMIV CMake-based buid system,

• libspng – Simple PNG – C library for reading and writing Portable Network Graphics

– distributed under MIT License

• miniz – Single C source file zlib-replacement library – distributed under BSD 2-Clause

"Simplified" License

In order to build the software, the ISO C++17 conformant compiler is required.

3. Building
Building the QMIV software requires using CMake (https://cmake.org/) and C++17

conformant compiler (e.g., GCC >= 8.0, clang >= 5.0, MSVC >= 19.15).

The QMIV application and its build system is designed to create the fastest possible binary.

On x86-64 microarchitectures the build system can create four version of compiled application,

each optimized for one predefined x86-64 Microarchitecture Feature Levels [x86-64, x86-64-

v2, x86-64-v3, x86-64-v4] (defined in https://gitlab.com/x86-psABIs/x86-64-ABI). The final

binary consists of these four optimized variants and a runtime dynamic dispatcher. The

dispatcher uses the CPUID instruction to detect available instruction set extensions and selects

the fastest possible code path.

10

The QMIV CMake project defines the following parameters:
Variable Type Description

PMBB_GENERATE_MULTI

_MICROARCH_LEVEL_BINARIES
BOOL

Enables generation of multiple code paths, optimized for

each variant of x86-64 Microarchitecture Feature Levels.

PMBB_GENERATE_SINGLE_APP

_WITH_WITH_RUNTIME_DISPATCH
BOOL

Enables building single application with runtime

dynamic dispatch. Requires PMBB_GENERATE

_MULTI_MICROARCH_LEVEL_BINARIES=True.

PMBB_GENERATE_DEDICATED

_APPS_FOR_EVERY_MFL
BOOL

Enables building multiple applications, each optimized

for selected x86-64 Microarchitecture Feature Level.

Requires PMBB_GENERATE_MULTI_MICROARCH

_LEVEL_BINARIES=True.

PMBB_BUILD_WITH_MARCH

_NATIVE
BOOL

Enables option to force compiler to tune generated code

for the micro-architecture and ISA extensions of the host

CPU. Conflicts with

PMBB_GENERATE_MULTI_MICROARCH_LEVEL

_BINARIES. Generated binary is not portable across

different microarchitecures.

PMBB_GENERATE_TESTING BOOL
Enables generation of unit tests for critical data

processing routines.

For user convenience, we prepared a set of scripts for easy "one click" configure and build:

• configure_and_build.bat - for Windows users

• configure_and_build.sh - for Unix/Linux users

For developer convenience, we prepared a set of scripts for easy "one click" configure in

development mode - without multi-architecture build and dynamic dispatch:

• configure_for_developement.bat - for Windows users

• configure_for_developement.sh - for Unix/Linux users

4. Examples
1. Metrics (PSNR, WS-PSNR, IV-PSNR, and IV-SSIM) of SA_ref.yuv and SA_test.yuv.

Sequence resolution is 4096×2048, YUV420, 10 bits per sample. Sequence format is ERP.

Mean metrics calculated for the first 20 frames will be written into QMIV.txt:

QMIV -i0 SA_ref.yuv -i1 SA_test.yuv -pw 4096 -ph 2048 -bd 10 -erp -nf 20 -r QMIV.txt

or:

QMIV -i0 SA_ref.yuv -i1 SA_test.yuv -ps 4096x2048 -pf yuv420p10le -erp -l 20 -r QMIV.txt

2. Metrics (all available) of SD_ref.yuv and SD_test.yuv. Sequence resolution is 2048×1088,

YUV420, 8 bits per sample. Sequence format is perspective. Mean metrics calculated for all

frames will be written into results.txt:

QMIV -i0 SD_ref.yuv -i1 SD_test.yuv -r results.txt -pw 2048 -ph 1088 -ml “All”

3. Metrics (PSNR, WS-PSNR, and IV-PSNR) of SC_ref.yuv and SC_test.yuv. Sequence

resolution is 4096×2048, YUV420, 10 bits per sample. Sequence format is ERP, with lateral

11

range equal to 90°. Mean metrics calculated for 5 frames (frames 0-4 of reference video and

10-14 of test video) will be written into o.txt:

QMIV -i0 SC_ref.yuv -i1 SC_test.yuv -ps 4096x2048 -ml “PSNR, WSPSNR, IVPSNR” -r o.txt
 -erp -lar 90 -nf 5 -s1 10

4. Using config file:

QMIV -c "config.cfg"

5. Using external config file with some parameters added/overridden:

QMIV -c "config.cfg" -v 1 -nth 4

5. Software
MPEG Git Repository: https://git.mpeg.expert/MPEG/Explorations/6DoF/qmiv

Public read-only access: https://gitlab.com/mpeg-i-visual/qmiv

Software coordinator: Jakub Stankowski, jakub.stankowski@put.poznan.pl

6. Usage and citation
Please cite reference [Dziembo22] when using IV-PSNR and [Dziembo24] when using IV-

SSIM.

7. References
[Dziembo22] A. Dziembowski, D. Mieloch, J. Stankowski, A. Grzelka,

“IV-PSNR – the objective quality metric for immersive video applications,”

IEEE Transactions on Circuits and Systems for Video Technology 32 (11), 2022,

DOI: 10.1109/TCSVT.2022.3179575.

[Dziembo24] A. Dziembowski, W. Nowak, J. Stankowski, “IV-SSIM - The Structural Similarity

Metric for Immersive Video”, Applied Sciences, Vol. 14, No. 16, Aug 2024, DOI:

10.3390/app14167090.

[M48093] A. Dziembowski, M. Domański,

“[MPEG-I Visual] Objective quality metric for immersive video,”

ISO/IEC JTC1/SC29/WG11 MPEG/M48093, July 2019, Göteborg, Sweden.

[M54279] J. Stankowski, A. Dziembowski,

“[MPEG-I Visual] Fast implementation of IV-PSNR software,”

ISO/IEC JTC1/SC29/WG11 MPEG/M54279, July 2020, Online.

[M54896] J. Stankowski, A. Dziembowski,

 “Even faster implementation of IV-PSNR software,”

 ISO/IEC JTC1/SC29/WG04 MPEG VC/M54896, October 2020, Online.

[M55752] A. Dziembowski, J. Stankowski,

“Slightly faster IVPSNR,”

ISO/IEC JTC1/SC29/WG04 MPEG VC/M55752, January 2021, Online.

[M59974] J. Stankowski, A. Dziembowski,

“Improved IV-PSNR software,”

ISO/IEC JTC1/SC29/WG04 MPEG VC/M59974, July 2022, Online.

https://git.mpeg.expert/MPEG/Explorations/6DoF/qmiv
https://gitlab.com/mpeg-i-visual/qmiv
mailto:jakub.stankowski@put.poznan.pl
https://doi.org/10.1109/TCSVT.2022.3179575

12

[M64727] J. Stankowski, A. Dziembowski,

“Optimized IV-PSNR software with invalid pixel detection,”

ISO/IEC JTC1/SC29/WG04 MPEG VC/M64727, Oct. 2023, Hannover, DE.

[M68222] J. Stankowski, A. Dziembowski,

“The final version of the IV-PSNR software,”

ISO/IEC JTC1/SC29/WG04 MPEG VC/M68222, Jul. 2024, Sapporo, JP.

[M68223] J. Stankowski, W. Nowak, A. Dziembowski,

“IV-SSIM: adapting structural similarity to immersive video,”

ISO/IEC JTC1/SC29/AG05 MPEG VQA/M68223, Jul. 2024, Sapporo, JP.

[M70071] J. Stankowski, A. Dziembowski, M. Łasecki, K. Lipiński,

“Faster SSIM-derived metrics calculation in QMIV,”

ISO/IEC JTC1/SC29/AG05 MPEG VC/M70071, Oct. 2024, Antalya, TR.

[Wang03] Z. Wang, E.P. Simoncelli, A.C. Bovik,

“Multiscale structural similarity for image quality assessment,”

 37th Asilomar Conference on Signals, Systems & Computers (2003), pp. 1398-1402

[Sun17] Y. Sun, A. Lu, L. Yu,

“Weighted-to-Spherically-Uniform Quality Evaluation for Omnidirectional Video,”

IEEE Signal Processing Letters 24 (9), pp. 1408-1412, 2017.

[Wang04] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli,

“Image quality assessment: From error measurement to structural similarity,” IEEE

Transactions on Image Processing 13 (4), pp. 600-612, 2004.

13

8. Changelog
QMIV v2.0 [M70071]:

• added calculation of MS-SSIM (Multi Scale SSIM) metric and experimental IV-MS-SSIM

(Immersive Video - Multi Scale SSIM),

• added several variants of SSIM-related metrics calculation:

o Structural similarity mode - allows to change mode and windowing approach:

▪ RegularGaussianFlt, RegularGaussianInt, RegularAveraged - regular 11x11 mode

▪ BlockGaussianInt, BlockAveraged - block-based mode

▪ two implenetations of Gaussian window (floating point based and integer based with

quantized Gaussian filter coefficients) or simplified averaging window,

o Structural similarity stride - allows to calculate SSIM-related metrics every N pixels

o Structural similarity window size - allows to provide window size for block mode SSIM

• added new parameters: StructSimMode, StructSimStride, StructSimWindow,

• switching default approach for SSIM-related metrics form

(Mode=RegularGaussianFlt,Stride=1 - as defined by authors of SSIM metric) to

(Mode=BlockAveraged,Stride=1,Window=8 - similar to approach used by FFMPEG) - this

change reduces computational complexity while inceasing corellation with MOS,

• fast SIMD (SSE4.1, AVX2, and AVX512) implementation for BlockAveraged SSIM mode,

• added possibility to read BMP file or list of BMP files,

• reduced thread pool overhead,

• several small performance improvements & minor bugfixes.

QMIV v1.0.1 & v1.0.2:

• bugfix releases,

QMIV v1.0 [M68224]:

• introduction of Structural Similarity related metrics – SSIM and IV-SSIM,

• improved arguments parsing and validation,

• PictureSize argument introduced as (optional) alternative to PictureWidth, PictureHeight pair,

• PictureFormat argument introduced as (optional) alternative to BitDepth, ChromaFormat pair,

• improved consistency of selected "cmd" arguments:

o PictureWidth ‘-w’ --> ’-pw’,

o PictureHeight ‘-h’ --> ’-ph’,

o NumberOfFrames ‘-l’ --> ‘-nf’,

o ResultFile ‘-o’ --> ‘-r’,

o NumberOfThreads ‘-t’ --> ‘-nth’,

• reduced overhead of computing time measurement (switched from ‘std::chrono::

high_resolution_clock’ to ‘RDTSCP’),

• increased precision of printed metric values,

• overhaul of IVPSNR v6.0 RGB mode into generic colorspace mode, including:

o consistent metric suffixes,

o RGB → YCbCr and YCbCr →RGB conversion,

o RGB passthrough mode,

o CalcMetricInRGB and ColorSpace arguments replaced by more general set of arguments

(ColorSpaceInput, ColorSpaceMetric),

• input defined as PNG file or list of PNG files.

IVPSNR v6.0 [M64727]:

• yet another general overhaul of entire software structure,

• ComponentWeights parameter split into two new parameters CmpWeightsSearch and

CmpWeightsAverage,

• added option to calculate metric in RGB color space:

o the YCbCr input sequence is converted to RGB and metric is calculated on RGB pictures,

o CalcMetricInRGB option added to enable this mode,

14

o ColorSpace option added to select color space for YCbCr --> RGB conversion [BT601,

SMPTE170M, BT709, SMPTE240M, BT2020],

• added fast SIMD implementation of Kahan-Babuška-Neumaier accumulation,

• added "reasonable auto" mode for number of threads selection and set as default behavior,

• added possibility to overwrite dynamic dispatcher decision and manually select code path,

• added weighted PSNR-YCbCr, WSPSNR-YCbCr, PSNR-RGB, and WSPSNR-RGB output.

IVPSNR v5.0 [M64727]:
• general overhaul of entire software structure,

• new cMake-based build system with simultaneous build of four variants of x86-64

Microarchitecture Feature Level and runtime dynamic dispatch,

• added unit tests for basic data processing routines,

• added detection invalid pel values (higher than (1<<BitDepth) - 1) and possibility to choose

taken action (see InvalidPelAction parameter),

• added warning for settings influencing performance or breaking conformance with IV-PSNR

metric defined in [M54279],

• added detection of mismatch between file name and provided parameters (resolution, bit depth

and chroma format),

• added usage of hugepages on Linux-based systems (using madvise),

• added support for chroma format 4:2:2,

• more data processing functions implemented using AVX2,

• wider SIMD (AVX512) implementation for some data processing functions.

IVPSNR v4.0 [M59974]:

• SIMD (SSE 4.1) implementation of IV-PSNR calculation (for interleaved picture buffers),

• wider SIMD (AVX2) implementation for most data processing functions,

• runtime adjustable component weights for IV-PSNR metric,

• adjustable search range for IV-PSNR metric,

• adjustable unnoticeable color difference threshold coeff for IV-PSNR metric,

• reading parameters from config file,

• protection against StartFrame >= DetectedFrames,

• writing error messages to stdout and stderr,

• non-performance critical parameters moved from compile-time to run-time selection,

• added mask file option.

IVPSNR v3.0 [M55752]:

• enabled INTERPROCEDURAL_OPTIMIZATION and assumed x86-64 Microarchitecture

Feature Level >= x86-64-v2,

• new implementation picture I/O,

• reduced filesystem burden (avoid repetitive open-seek-read-close cycles),

• use of interleaved picture layout for IVPSNR calculation,

• SIMD (SSE 4.1) implementation for most data processing functions,

• dedicated thread pool instead of OpenMP directives (due to high OpenMP overhead).

IVPSNR v2.1.1 (no reference):

• bug fixes.

IVPSNR v2.1 [M54896]:

• support for parallel processing (using OpenMP),

• addition of PSNR and WS-PSNR [Sun17] values outputting,

• fixed WS-weight calculation for ERP sequences with non-180 lateral range,

• changed commandline arguments formatting,

• addition of detection of corrupted YUV files,

• change in compile-time parameters:

o VERBOSE_LEVEL is now a commandline parameter,

15

o WSPSNR_PEAK_VALUE_8BIT flag added (default: enabled), when enabled, the signal

peak value is set to 255 << (BitDepth – 8). Otherwise, it is equal to 2^BitDepth – 1.

IVPSNR v2.0 [M54279]:

• addition of (rOff) and (tOff) commandline parameters,

• removal of redundant GCD calculations,

• usage of uint16_t data type and 4:4:4 chroma format for internal picture storage,

• new implementation of pixel-level processing steps,

• reduction of filesystem burden by coalescing read,

• detection of read errors – causes application to exit returning EXIT_FAILURE,

• implementation of Kahanand-Babuska-Neumaier accumulation,

• improved conversion of 8bps input sequences,

• improved interpolation for input sequences with 4:2:0 chroma format,

• addition of 3 compile-time parameters:

o VERBOSE_LEVEL – controls number of per-frame printing; default = 0,

o USE_KBNS – enables the Kahan-Babuska-Neumaier accumulation; default: enabled,

o USE_FIXED_WEIGHTS – enables faster 5×5 block search with fixed component weight

(equal to 4:1:1); default = enabled,

• fixed possibility of reading from unallocated memory region during 5×5 block search,

• fixed GCD values rounding and clipping.

IVPSNR v1.0 [M48093].

