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Abstract: In this paper, we present a method for obtaining a manifold color correction trans-
form for multiview images. The method can be applied in various scenarios, for correcting
the colors of stitched images, adjusting the colors of images obtained in different lighting
conditions, and performing virtual view synthesis based on images taken by different
cameras or in different conditions. The provided derivation allows us to use the method
to correct regular RGB images. The provided solution is specified as a transform matrix
that provides the pixel-specific color transformation for each pixel and therefore is more
general than the methods described in the literature, which only provide the transformed
images without explicitly providing the transform. By providing the transform for each
pixel separately, we can introduce a smoothness constraint based on the transformation
similarity for neighboring pixels, a feature that is not present in the available literature.

Keywords: color correction; multiview; multi-camera; virtual views

1. Introduction
In many applications, we use multiple acquisition devices to record images of the

same object. This results in multiple images of the same object with different gamut/color
characteristics. Even a single camera can capture images with different colorings due
to changing weather conditions. This variation affects image or object recognition algo-
rithms, panorama creation, image stitching, virtual view creation, or Neural Radiance Field
(NeRF) [1,2] estimation. To address these differences, color calibration is necessary. It allows
us to find a mapping of colors from one image to another. Various methods exist to achieve
this mapping or transformation. Nearly all of them assume constant color transformation
across the whole image. In this paper, we are presenting a novel manifold color calibration
method that allows per-pixel color transformation estimation between pairs of images,
even when in partially occluded image pairs.

For example, in low-light conditions, we can take a dark color image and a near-
infrared image of the same object [3], or take a shot with and without a flash [4] and then
try to combine both of the images together.

Another example would be applications in view synthesis [5,6], where we can create
a non-existing view of the scene from the viewpoint of so-called virtual cameras based
on two (or more) images captured by real cameras recording the given scene. Even if
both cameras are identical (which is not always possible), they can produce images with
different color characteristics. This could happen even due to the different viewpoints from
which the images were taken.
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Although the problem is the most obvious for multi-camera scenarios, using a single
camera can also lead to the different colorings of the captured images, for example, due to
the changing weather conditions. In applications such as image/object recognition, this
could significantly influence the performance of the algorithms used.

Yet another example is panorama creation or/and image stitching [7]. Where we can
stitch or combine multiple images captured either by the same image sensor or by multiple
sensors into one big continuous image.

In all the abovementioned situations, we can color calibrate the images in order to
minimize the artifacts occurring due to the color mismatch. This can be performed by
finding the mapping of colors from one image to the other.

There already exist many methods of finding such mappings or transformations,
which map the color of all pixels from one image to the other.

The significance of color correction manifests itself in many applications, where dif-
ferent methods were demonstrated to effectively improve the performance of the whole
system. One such example is multiview video compression, as evidenced in [8–11]. In
those papers, the authors demonstrate an improvement in the coding of the multiview
video after applying a preprocessing step of color matching of the sequences due to the
improved accuracy of motion compensation and inter-view prediction.

The methods used to perform the color correction that is described in the literature can
be based on histogram equalization [11–13]. A popular method is also using a single scaling
factor, correction coefficient, or a polynomial to correct for the color differences [14–17]. A
low-dimensional matrix correction can also be used [18]. Another way to color correct the
images is to use the color transfer technique [19]. In recent years, neural networks have
been used to perform similar tasks and can be used to perform color transfer as well; an
example of this color transfer method can be found in [20].

In practice, it is important to not only correct the colors of the images but also maintain
sufficient quality of the corrected images without degrading the contrast of the processed
images [21]. Thus, the correction algorithm should also consider the texture/contrast
information in the processed images.

Another way of performing the color correction is to solve a manifold optimization
problem defined globally for the entire image. Such an approach can be found in [8,22,23].
The authors of [8,23] define color correction as an optimization problem with priors both
from the source image and from the target image. From the source image, the priors are
color characteristics and color distribution, while from the target image, the priors tend to
preserve the spatial and temporal structure of the image, after color correction. Similarly,
the paper [22] introduces a method for global optimization of pixel values for large baseline
multiview sequences, preserving the structure and spatio-temporal consistency.

The paper [24] introduces a parametric linear method and a nonparametric nonlinear
method to deal with different color changes between pairs of images. The method proposed
is a modified Laplacian Eigenmaps, which is a nonlinear manifold learning approach. The
used goal function for color transfer is a quadratic cost function with a quadratic regularizer.
The described method only searches for image sample values of a target image, matching
the color characteristics of a source image.

In many applications, only a fraction of the pixels from one image directly correspond
to any other image. For example, in image stitching, images only partially overlap. Similarly,
in view synthesis, synthesized images from a virtual camera contain holes caused by
disocclusions, where some parts of the scene are not visible due to perspective changes
between the source view and the virtual view created with the source view data. Thus,
only part of the real image has corresponding pixels in the virtual image. Yet we can obtain
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color transformation for all of the pixels in the images in order to seamlessly combine
them together.

Color characteristics can vary across images due to effects like ambient occlusion,
nonuniform lighting, shadows, and non-Lambertian reflections. Most color calibration
techniques do not work reliably for these cases, only averaging color distribution and
color characteristics across entire images. But in many applications, we can retain that
non-uniformity during the color transformation from one image to the other, since they
are inherent for some objects and materials. We can preserve these features for a color-
corrected view.

To obtain a proper transformation that preserves the aforementioned effects, one needs
to estimate per-pixel color transformation from one image to the other. An important factor
of novelty of the work presented in this paper is the fact that the optimization algorithm
does not work on the pixel values themselves, but rather on the transformations applied
to those pixels. In this way, our method can use optimization constraints that do not refer
to pixel values, but rather to the transformations that are applied to the pixel values. In
this way, it is possible to obtain a smooth transformation field that can better capture
the specific properties of a given scene. Additionally, the presented method includes
parameters that can be used to adjust the smoothness of the transformation manifold. We
also provide values of the parameters that were found to provide good results for all the
tested sequences.

In this paper, we describe such a method and provide experimental results obtained
with the use of the method.

In this paper, we first present the formal description of the optimization problem in a
simple abstract space and then provide an analytical solution for this space.

From there, we move on to a more complex case, where the problem is defined in a 2D
grid, normally used in image and video processing. We present the problem formulation in
this 2D grid space and provide a solution for such a space.

The final part of derivation considers the occlusions and non-overlapping parts of the
scene, the phenomena usually encountered in practical applications. The solution provided
for the 2D grid is therefore modified to deal with occlusions and provide accurate transfor-
mation for those parts of the image, even in case of the absence of correspondence data.

The rest of the paper is organized as follows: Section 2 defines formally the actual
problem, Section 3 provides an analytical solution, Section 4 describes the same problem in
a 2D grid that is commonly used in digital images, Section 5 provides the solution for a 2D
grid, Section 6 provides information about the application for occluded parts of the virtual
image, Section 7 provides experimental results performed with the use of the described
method, and Section 8 summarizes the entire paper with conclusions.

2. Problem Definition
Let us assume we have two images, left and right, that represent the same view-

point of a scene. Let us assume that Lp =
[
lp
1 lp

2 · · · lp
i · · · lp

n

]T
and Rp =[

rp
1 rp

2 · · · rp
i · · · rp

n

]T
are n-component vectors of colors of pixel p in the left and

right images. The n denotes the number of components in an image increased by 1 since
the operations are performed in homogenous coordinates, which offer more flexibility over
regular cartesian coordinates. Therefore, commonly n will be 4 for homogenous coordinates
of RGB color space.

We would like to estimate a manifold of per-pixel transformation Ap such that for all
pixels p

Rp = Ap·Lp (1)
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where

Ap =



ap
11 ap

12 · · · ap
1j · · · ap

1n

ap
21 ap

22 · · · ap
2j · · · ap

2n
...

...
...

...
...

...
ap

i1 ap
i2 · · · ap

ij · · · ap
in

...
...

...
...

...
...

ap
n1 ap

n2 · · · ap
nj · · · ap

nn


(2)

For an RGB image, the matrix Ap will be a 4 × 4 (since we are operating in homogenous
coordinates, as explained before), and there is a p such matrix, one for every pixel in the
image (p is the number of pixels in the image). Please note that at this stage, the matrix is
agnostic to the way the pixels are organized in the image since p is merely an index.

In the further part of the derivation, we will continue to use n as the size of the
matrix Ap since the method can be applied not only to RGB images but potentially also to
multispectral and hyperspectral images.

The problem considered in this paper is to find the transformation Ap for a given pair
of images, e.g., coming from a pair of cameras in stereoscopic applications.

3. Derivation of the Solution
Because the system of Equation (1) for every pixel p is under-determined, we can

define the minimization problem with a goal function S. We can transform color Lp of left
image pixel p through Ap as close as possible to the color Rp of the right image pixel with
the same pixel index p

S1 = ∑
p
∥Ap·Lp − Rp∥2 (3)

where ∥·∥ is the Euclidean norm.
Moreover, we can have a smooth manifold Ap, which means that the two transforma-

tions Ap and Aq for two neighboring pixels p or q should be similar. It means that both
transformations applied to one (any) of those pixels should give the same result (or at least
as close as possible). We denote o as any of the two pixels p or q

S2 = ∑
p,q
∥Ap·Lo − Aq·Lo∥2 (4)

So, finally, we can minimize the difference (3). We compute the derivative of (3) with
respect to every element ap

ij of manifold Ap

∂S1

∂ap
ij
=

∂
(

∑p′∥Ap′·Lp′ − Rp′∥2
)

∂ap
ij

(5)

All derivatives with respect to ap
ij from the sum in (5) except p′ = p are equal to 0 from

which follows that

∂S1

∂ap
ij
=

∂
(
∥Ap·Lp − Rp∥2

)
∂ap

ij
(6)

Lemma 1. Assume some vector B =
[
b1 b2 · · · bi · · · bn

]T
then the square of Euclidean

norm is:

∥B∥2 =

(√
n

∑
i=1

b2
i

)2

=
n

∑
i=1

b2
i = BT ·B (7)
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So, any derivative of a square of Euclidean norm of this vector can be expressed as:

∂∥B∥2

∂· =
∂
(

BT ·B
)

∂· =
∂
(
∑n

i=1 b2
i
)

∂· =
∑n

i=1 2·bi·∂bi

∂· = 2·BT ·∂B
∂· (8)

Using Lemma 1 in (6), we have

∂S1
∂ap

ij
=

∂(∥Ap ·Lp−Rp∥2)
∂ap

ij
= 2·(Ap·Lp − Rp)T · ∂(Ap ·Lp−Rp)

∂ap
ij

= 2·(Ap·Lp − Rp)T · ∂Ap

∂ap
ij
·Lp

(9)

Lemma 2. Let us define a vector Mi =
[
0 0 · · · 1 · · · 0

]T
in which all components are

0 except for i-th, which is 1. Now, we can calculate the derivative of matrix A with respect to its
element aij

∂A
∂aij

=

∂



a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n
...

...
...

...
...

...
ai1 ai2 · · · aij · · · ain
...

...
...

...
...

...
an1 an2 · · · anj · · · ann


∂aij

=



∂a11
∂aij

∂a12
∂aij

· · · ∂a1j
∂aij

· · · ∂a1n
∂aij

∂a21
∂aij

∂a22
∂aij

· · · ∂a2j
∂aij

· · · ∂a2n
∂aij

...
...

...
...

...
...

∂ai1
∂aij

∂ai2
∂aij

· · · ∂aij
∂aij

· · · ∂ain
∂aij

...
...

...
...

...
...

∂an1
∂aij

∂an2
∂aij

· · · ∂anj
∂aij

· · · ∂ann
∂aij



(10a)

Because all matrix components are independent of aij except aij element, so

∂A
∂aij

=



∂a11
∂aij

∂a12
∂aij

· · · ∂a1j
∂aij

· · · ∂a1n
∂aij

∂a21
∂aij

∂a22
∂aij

· · · ∂a2j
∂aij

· · · ∂a2n
∂aij

...
...

...
...

...
...

∂ai1
∂aij

∂ai2
∂aij

· · · ∂aij
∂aij

· · · ∂ain
∂aij

...
...

...
...

...
...

∂an1
∂aij

∂an2
∂aij

· · · ∂anj
∂aij

· · · ∂ann
∂aij


=



0 0 · · · 0 · · · 0
0 0 · · · 0 · · · 0
...

...
...

...
...

...
0 0 · · · 1 · · · 0
...

...
...

...
...

...
0 0 · · · 0 · · · 0



=



0
0
...
1
...
0


·



0
0
...
1
...
0



T

= Mi·MT
j

(10b)
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So, using Lemma 2 in (9), we have

∂S1
∂ap

ij
= 2·(Ap·Lp − Rp)T · ∂Ap

∂ap
ij
·Lp

= 2·(Ap·Lp − Rp)T ·Mi·MT
j ·Lp

= 2·MT
i ·(Ap·Lp − Rp)·MT

j ·Lp

= 2·
(

MT
i ·Ap·Lp − MT

i ·Rp)·MT
j ·Lp

(11)

Lemma 3. Let us define a vector Mi =
[
0 0 · · · 1 · · · 0

]T
in which all components are 0

except for i-th, which is 1. Now, we can define the selection of i-th component as:

MT
i ·L =

[
0 0 · · · 1 · · · 0

]
·
[
l1 l2 · · · li · · · ln

]T
= li (12)

where L is an n component vector.

MT
i ·A =

[
0 0 · · · 1 · · · 0

]
·



a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n
...

...
...

...
...

...
ai1 ai2 · · · aij · · · ain
...

...
...

...
...

...
an1 an2 · · · anj · · · ann


= ai: (13)

where A is n by n matrix and ai: mean i-th row of a matrix A.

Using Lemma 3 on (11), we have

∂S1
∂ap

ij
= 2·

(
MT

i ·Ap·Lp − MT
i ·Rp)·MT

j ·Lp = 2·
(

ap
i:·L

p − rp
i

)
·lp

j

= 2·
(

∑
k

ap
ik·l

p
k − rp

i

)
·lp

j = 2·∑
k

ap
ik·l

p
k ·l

p
j − 2·rp

i ·l
p
j

(14)

Similarly, we would like to minimize (4). So, we compute the derivative of (4) with
respect to every element ap

ij of manifold Ap

∂S2

∂ap
ij
=

∂
(

∑p′ ,q′∥Ap′·Lo − Aq′·Lo∥2
)

∂ap
ij

(15)

All derivatives with respect to ap
ij from the sum in (15) except for the pair p′ = p and

q′ = q are equal to 0, so

∂S2

∂ap
ij
=

∂
(
∥Ap·Lo − Aq·Lo∥2

)
∂ap

ij
(16)

Using Lemma 1 in (16), we have

∂S2
∂ap

ij
=

∂(∥Ap ·Lo−Aq ·Lo∥2)
∂ap

ij
= 2·(Ap·Lo − Aq·Lo)T · ∂(Ap ·Lo−Aq ·Lo)

∂ap
ij

= 2·(Ap·Lo − Aq·Lo)T · ∂Ap

∂ap
ij
·Lo

(17)
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Using Lemma 2 in (17), we have

∂S2
∂ap

ij
= 2·(Ap·Lo − Aq·Lo)T · ∂Ap

∂ap
ij
·Lo = 2·(Ap·Lo − Aq·Lo)T ·Mi·MT

j ·Lo

= 2·MT
i ·(Ap·Lo − Aq·Lo)·MT

j ·Lo = 2·
(

MT
i ·Ap·Lo − MT

i ·Aq·Lo)·MT
j ·Lo

(18)

Using Lemma 3 on (18), we have

∂S2
∂ap

ij
= 2·

(
MT

i ·Ap·Lo − MT
i ·Aq·Lo)·MT

j ·Lo

= 2·
(

ap
i:·L

o − aq
i:·L

o
)
·lo

j

= 2·
(

∑
k

ap
ik·l

o
k − ∑

k
aq

ik·l
o
k

)
·lo

j

= 2·∑
k

ap
ik·l

o
k ·l

o
j − 2·∑

k
aq

ik·l
o
k ·l

o
j

(19)

Similarly, we compute the derivative of (4) with respect to every element aq
ij of mani-

fold Ap

∂S2

∂aq
ij
=

∂
(

∑p′ ,q′∥Ap′·Lo − Aq′·Lo∥2
)

∂aq
ij

(20)

All derivatives with respect to aq
ij from the sum in (20) except for the pair p′ = p and

q′ = q are equal to 0, so

∂S2

∂aq
ij
=

∂
(
∥Ap·Lo − Aq·Lo∥2

)
∂aq

ij
(21)

Using Lemma 1 in (21), we have

∂S2
∂aq

ij
=

∂(∥Ap ·Lo−Aq ·Lo∥2)
∂aq

ij
= 2·(Ap·Lo − Aq·Lo)T · ∂(Ap ·Lo−Aq ·Lo)

∂aq
ij

= −2·(Ap·Lo − Aq·Lo)T · ∂Aq

∂aq
ij
·Lo

(22)

Using Lemma 2 in (22), we have

∂S2
∂aq

ij
= −2·(Ap·Lo − Aq·Lo)T · ∂Aq

∂aq
ij
·Lo = −2·(Ap·Lo − Aq·Lo)T ·Mi·MT

j ·Lo

= −2·MT
i ·(Ap·Lo − Aq·Lo)·MT

j ·Lo = −2·
(

MT
i ·Ap·Lo − MT

i ·Aq·Lo)·MT
j ·Lo

(23)

Using Lemma 3 on (23), we have

∂S2
∂aq

ij
= −2·

(
MT

i ·Ap·Lo − MT
i ·Aq·Lo)·MT

j ·Lo = −2·
(

ap
i:·L

o − aq
i:·L

o
)
·lo

j

= −2·
(

∑
k

ap
ik·l

o
k − ∑

k
aq

ik·l
o
k

)
·lo

j

= −2·∑
k

ap
ik·l

o
k ·l

o
j + 2·∑

k
aq

ik·l
o
k ·l

o
j

(24)
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In order to estimate manifold Ap, we create a system of equations for pixel p

∂S1

∂ap
11

= 2·∑
k

ap
1k·l

p
k ·l

p
1 − 2·rp

1 ·l
p
1 = 0

∂S1

∂ap
12

= 2·∑
k

ap
1k·l

p
k ·l

p
2 − 2·rp

1 ·l
p
2 = 0

...
∂S1

∂ap
1j

= 2·∑
k

ap
1k·l

p
k ·l

p
j − 2·rp

1 ·l
p
j = 0

...
∂S1

∂ap
1n

= 2·∑
k

ap
1k·l

p
k ·l

p
n − 2·rp

1 ·l
p
n = 0

∂S1

∂ap
21

= 2·∑
k

ap
2k·l

p
k ·l

p
1 − 2·rp

2 ·l
p
1 = 0

∂S1

∂ap
22

= 2·∑
k

ap
2k·l

p
k ·l

p
2 − 2·rp

2 ·l
p
2 = 0

...
∂S1

∂ap
2j

= 2·∑
k

ap
2k·l

p
k ·l

p
j − 2·rp

2 ·l
p
j = 0

...
∂S1

∂ap
2n

= 2·∑
k

ap
2k·l

p
k ·l

p
n − 2·rp

2 ·l
p
n = 0

...
∂S1

∂ap
i1

= 2·∑
k

ap
ik·l

p
k ·l

p
1 − 2·rp

i ·l
p
1 = 0

∂S1

∂ap
i2

= 2·∑
k

ap
ik·l

p
k ·l

p
2 − 2·rp

i ·l
p
2 = 0

...
∂S1

∂ap
ij
= 2·∑

k
ap

ik·l
p
k ·l

p
j − 2·rp

i ·l
p
j = 0

...
∂S1

∂ap
in

= 2·∑
k

ap
ik·l

p
k ·l

p
n − 2·rp

i ·l
p
n = 0

...
∂S1

∂ap
n1

= 2·∑
k

ap
nk·l

p
k ·l

p
1 − 2·rp

n·l
p
1 = 0

∂S1

∂ap
n2

= 2·∑
k

ap
nk·l

p
k ·l

p
2 − 2·rp

n·l
p
2 = 0

...
∂S1

∂ap
nj

= 2·∑
k

ap
nk·l

p
k ·l

p
j − 2·rp

n·l
p
j = 0

...
∂S1

∂ap
nn

= 2·∑
k

ap
nk·l

p
k ·l

p
n − 2·rp

n·l
p
n = 0

(25)

We can express (25) as
LLp·AAp = RLp (26)
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where AAp is a vector composed of all coefficients of the matrix Ap, and vector RLp is
defined as follows

AAp =



ap
11

ap
12
...

ap
1j
...

ap
1n

ap
21

ap
22
...

ap
2j
...

ap
2n
...

ap
i1

ap
i2
...

ap
ij
...

ap
in
...

ap
n1

ap
n2
...

ap
nj
...

ap
nn



RLp =



2·rp
1 ·l

p
1

2·rp
1 ·l

p
2

...
2·rp

1 ·l
p
j

...
2·rp

1 ·l
p
n

2·rp
2 ·l

p
1

2·rp
2 ·l

p
2

...
2·rp

2 ·l
p
j

...
2·rp

2 ·l
p
n

...
2·rp

i ·l
p
1

2·rp
i ·l

p
2

...
2·rp

i ·l
p
j

...
2·rp

i ·l
p
n

...
2·rp

n·l
p
1

2·rp
n·l

p
2

...
2·rp

n·l
p
j

...
2·rp

n·l
p
n



(27)

And the matrix LLp is a block-based matrix composed of llp defined as follows

llp =



2·lp
1 ·l

p
1 2·lp

2 ·l
p
1 · · · 2·lp

k ·l
p
1 · · · 2·lp

n ·l
p
1

2·lp
1 ·l

p
2 2·lp

2 ·l
p
2 · · · 2·lp

k ·l
p
2 · · · 2·lp

n ·l
p
2

...
...

...
...

...
...

2·lp
1 ·l

p
j 2·lp

2 ·l
p
j · · · 2·lp

k ·l
p
j · · · 2·lp

n ·l
p
j

...
...

...
...

...
...

2·lp
1 ·l

p
n 2·lp

2 ·l
p
n · · · 2·lp

k ·l
p
n · · · 2·lp

n ·l
p
n


(28)

LLp =



llp 0 · · · 0 · · · 0
0 llp · · · 0 · · · 0
...

...
...

...
...

...
0 0 · · · llp · · · 0
...

...
...

...
...

...
0 0 · · · 0 · · · llp


(29)
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For a manifold composed of P pixels, we can define the system of Equation (25) using
the Formula (26) as

LL·ÅÅ = RL (30)

where ÅÅ and RL are a concatenation of AAp and RLp for all pixels in the image

ÅÅ =



AA1

AA2

...
AAp

...
AAP


RL =



RL1

RL2

...
RLp

...
RLP


(31)

And LL can be defined as a block matrix composed of LLp

LL =



LL1 0 · · · 0 · · · 0
0 LL2 · · · 0 · · · 0
...

...
...

...
...

...
0 0 · · · LLp · · · 0
...

...
...

...
...

...
0 0 · · · 0 · · · LLP


(32)

Similarly, in order to estimate manifold Ap based on S2, we create a system of
Equations (19) and (24) for pixel p and q

∂S2

∂ap
ij
= 2·∑

k
ap

ik·l
o
k ·l

o
j − 2·∑

k
aq

ik·l
o
k ·l

o
j = 0

∂S2

∂aq
ij
= 2·∑

k
aq

ik·l
o
k ·l

o
j − 2·∑

k
ap

ik·l
o
k ·l

o
j = 0

(33)

Using a definition of LLp given in (29), we can rewrite Equation (33) as[
LLo −LLo

−LLo LLo

]
·
[

AAp

AAq

]
=

[
0
0

]
(34)

The exact formulation of LL matrix for all of the P pixels depends strongly on the
relationship between the position of pixels p and q.

4. Formulation in 2D Pixel Grid
Suppose we have an image of size W by H, and we can indicate the pixel p position

by its u, v coordinates in the image. Moreover, suppose that we introduce 2 smoothness
constraints: one vertical and one horizontal. It means that pixel pv and qv have two
neighboring pixels in which the v coordinate differs only by 1.

pv = u, v qv = u, v + 1 (35)

Similarly, pixel ph and qh have two neighboring pixels whose u coordinate differs only
by 1.

ph = u, v qh = u + 1, v (36)
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Moreover, we will assume that condition (34) is reflective and must hold for both
pixels p and q, so:

o = p o = q (37)

will lead to [
LLp −LLp

−LLp LLp

]
·
[

AAp

AAq

]
=

[
0
0

]
(38)

[
LLq −LLq

−LLq LLq

]
·
[

AAp

AAq

]
=

[
0
0

]
(39)

Combining both (38) and (39) together results in[
LLp + LLq −(LLp + LLq)

−(LLp + LLq) LLp + LLq

]
·
[

AAp

AAq

]
=

[
0
0

]
(40)

After making such assumptions, we can provide an explicit form of ÅÅ, RL vectors,
and LL matrix for any given pixel p = u, v based on (31), (32), and (40). As the conditions S1

and S2 need to be satisfied simultaneously, we introduce two coefficients α and β to control
the strength of the smoothness prior to S2 in both directions on the 2D grid. The values of
coefficients α and β were experimentally adjusted for universally good results among the
tested sequences. The value of 0.1 was found to work well in our experiments, independent
of the sequence contents and scene complexity. It needs to be stressed, however, that
different resolutions of the sequences may require a slight modification of the values, but
we found during the experiments that the method is not sensitive to the actual value of the
coefficients α and β.

ÅÅ
p=u,v

=



0
0
...
0

AAp=u,v

0
0
...
0
0
0
...
0



RLp=u,v =



0
0
...
0

RLp=u,v

0
0
...
0
0
0
...
0



(41)
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LLp=u,v

=



0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 LLp=u,v + α·
(

LLp=u,v + LLqh=u+1,v
)
+ β·

(
LLp=u,v + LLqv=u,v+1

)
−α·

(
LLp=u,v + LLqh=u+1,v

)
0 · · · 0 −β·

(
LLp=u,v + LLqv=u,v+1

)
0 · · · 0

0 0 · · · 0 −α·
(

LLp=u,v + LLqh=u+1,v
)

α·
(

LLp=u,v + LLqh=u+1,v
)

0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 −β·
(

LLp=u,v + LLqv=u,v+1
)

0 0 · · · 0 β·
(

LLp=u,v + LLqv=u,v+1
)

0 · · · 0

0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0



(42)

The final form of Equation (43) for all of the pixels is just a sum of (41) and (42)

LL·ÅÅ = RL (43)

LL =
P
∑
p
LLp

RL =
P
∑
p
RLp

ÅÅ =
P
∑
p

ÅÅ
p

(44)

5. Solution on a 2D Grid
The solution of obtained Equation (43) is simply given by

ÅÅ = LL−1·RL (45)

However, solving for ÅÅ on an average image is not an easy task. For a typical RGB
image of resolution 1920 × 1080 vectors RL have the size of 4·4·1920·1080 = 33, 177, 600
and the square matrix LL is of that same size. The main problem is to inverse the LL
matrix, mainly because it is so enormous.

Fortunately, matrix LL is also vastly sparse with most of its coefficients located along
the first, second, and W-diagonal (where W stands for the width of the image under
consideration). There are many algorithms for efficient inversing (or pseudo-inversing)
such huge sparse matrices.

In the experiments further on we have used Transpose-Free Quasi-Minimal Residual
Algorithm [25–27].

After solving Equation (43) for ÅÅ, we obtained an estimation of the manifold of
per-pixel transformation Ap allowing per-pixel color transformation between both of
the images.

This allows the transformation of one image into a color space of the other, retaining its
local color characteristics. After transformation, depending on the use case, one can directly
output the transformed image as the final result, as can be performed in the “flash–no flash”
application, merge them via some kind of blending or averaging, or inpaint one of the
images by the content of the other or stitch them together to create a larger panorama.
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6. Notes on Partially Overlapping Images
In the case of partially overlapping images like in the case of image stitching or view

synthesis, a form of the LLp=u,v matrix and the RLp=u,v vector needs to be adjusted.
Without loss of generality, let us assume that the left image is more complete, i.e., it has
pixels in places where the right image does not. So, there are two possibilities: either left
and right images do not have a given pixel or just the right pixel is not available. In both
cases, for these pixels’ positions, condition S1 cannot be used due to a lack of explicit pixel
correspondence. In the second case, depending on the surroundings, we have pixel color
values in the left image that can be used in condition S2 for smooth manifold estimation.

For the first case, LLp=u,v is as shown in (46)

LLp=u,v = [0] (46)

In the second case, the LLp=u,v is given as (47)

LLp=u,v

=



0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 α·
(

LLp=u,v + LLqh=u+1,v
)
+ β·

(
LLp=u,v + LLqv=u,v+1

)
−α·

(
LLp=u,v + LLqh=u+1,v

)
0 · · · 0 −β·

(
LLp=u,v + LLqv=u,v+1

)
0 · · · 0

0 0 · · · 0 −α·
(

LLp=u,v + LLqh=u+1,v
)

α·
(

LLp=u,v + LLqh=u+1,v
)

0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 −β·
(

LLp=u,v + LLqv=u,v+1
)

0 0 · · · 0 β·
(

LLp=u,v + LLqv=u,v+1
)

0 · · · 0

0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0



(47)

7. Experiments
The foundation of our experiments was the reference virtual view synthesis software

VSRS [28]. It should be noted that VSRS does not include any color correction algorithm.
Our algorithm was implemented within this software package.

We modified the post-processing only after the forward depth map projection step and
the backward texture warping step had been carried out, and before the inpainting step.

For our testing, we employed several well-known and recognizable multiview test
sequences equipped with high-quality depth maps. This set includes linear and arc multi-
view content. Used multiview test sequences exhibit a whole range of effects like ambient
occlusions, nonuniform lighting, shadows, and non-Lambertian reflections. Table 1 lists
the sequences used in the experiment.

We rendered virtual views using the original VSRS and VSRS implementing our
method. The virtual views were generated from data from the two views specified as the
right and left views in Table 1. The set of data consists of the images, depth maps, and
camera parameters. The virtual view matched the position of the third camera used during
sequence acquisition.

The quality of the resulting virtual view has been measured as a luminance PSNR
value of the virtual view generated with respect to the view recorded by the real camera at
the same spatial position. The numerical results are presented in Table 2. A demonstration
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of the improvement provided by our method over the original method is shown in Figure 1,
where details of the virtual views are compared.

Table 1. Test sequences used in the experiment.

Sequence Resolution Left Reference
View

Right Reference
View

Virtual
View

Poznań Street [29] 1920 × 1080 3 5 4

Poznan Fencing 2 [30] 1920 × 1080 4 6 5

Poznan Blocks [30] 1920 × 1080 4 6 5

Poznan Carpark [29] 1920 × 1080 3 5 4

Ballet [31] 1024 × 768 3 5 4

Breakdancer [31] 1024 × 768 3 5 4

Soccer [32] 1392 × 1136 3 5 4

Table 2. Quality (PSNR) of the virtual views.

Quality (PSNR)
Without Color
Correction [dB]

Quality (PSNR) with
Proposed Color
Correction [dB]

Quality (PSNR)
Improvement [dB]

Poznan Street 35.48 36.23 0.75

Poznan Fencing 29.62 31.23 1.61

Poznan Blocks 29.60 32.43 2.83

Poznan Carpark 36.87 37.02 0.15

Ballet 31.05 31.94 0.89

Breakdancer 31.47 31.83 0.46

Soccer 35.00 36.03 1.03
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Figure 1. Details of the virtual views: Top row: Poznan Blocks, Bottom row: Poznan Fencing 2. 
Original VSRS on the left, modified VSRS with proposed color correction on the right. As can be 
seen on the right-hand side images, most of the artifacts due to color mismatch are eliminated. 

Figure 1. Details of the virtual views: Top row: Poznan Blocks, Bottom row: Poznan Fencing 2.
Original VSRS on the left, modified VSRS with proposed color correction on the right. As can be
seen on the right-hand side images, most of the artifacts due to color mismatch are eliminated.

It can clearly be seen that the presented method significantly improves the quality of a
virtual view by providing consistent colors of the pixels from different views. The artifacts
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stemming from slight differences between the color characteristics of the cameras and/or
lighting conditions are reduced significantly.

The PSNR value measured against a real view is a commonly used measure of quality
for virtual view synthesis research. For color correction algorithms, however, a more
significant figure of merit would be the comparison between the virtual view synthesized
only from the left and only from the right view. Table 3 shows the values of the error
(measured as a mean value of SSD for pixel values) for the virtual view generated from
the left view calculated against the virtual view generated from the right view for three
cases: no color correction applied, the global color correction applied according to the
method described in [33], and the proposed method. A visual comparison of the differences
between the virtual view generated from the left view and the virtual view generated
from the right view is presented in Figures 2 and 3. The proposed method outperforms
significantly the global color correction method.

Table 3. Mean values of SSD for the virtual view generated from the left view compared to the virtual
view generated from the right view.

Sequence Without Color
Correction

Global Color
Transformation From [33]

Proposed Per-Pixel
Color Transformation

Poznań Street 1.6496 1.4576 0.0304
Poznan Fencing 2 4.4137 4.0283 0.0504

Poznan Blocks 2.0739 1.9387 0.0977

Poznan Carpark 1.7684 1.5984 0.0779

Ballet 1.3975 1.1293 0.0600

Breakdancer 1.4839 1.3938 0.2880
Soccer 1.1830 1.0283 0.2735

In order to test our method in a flash/no-flash scenario, we use the images from [4],
as supplied in [34]. The proposed method of estimating per-pixel color transfer manifold
can be used to correct images captured with flash to its low-light ambient counterpart, to
match the no-flash colors (Figure 4).
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image with flash, no-flash image, result of our color-correction of the image with flash.

As can be seen, the proposed method is able to perform the color correction of the
flash image so that it matches the colors of the image taken without flash. It can be seen
that the artifacts common to images taken with flash, as non-Lambertian reflections are
correctly processed.

8. Summary
In the paper, we have presented a new formulation of the per-pixel color calibration

between images. The presented method can be applied to images with an arbitrary number
of channels due to the flexibility and generalization provided by our derivation. The
proposed algorithm is based on per-pixel manifold color transformation estimation. The
proposed algorithm estimated a smooth manifold of color transformations across the whole
image, even in the case when not all pixels have correspondence. The method allows for
color profile mapping in difficult areas, like occluded regions of images, in shadows, and
in the presence of reflections and a non-uniform lighting. The proposed method provides
a gain in objective quality measure PSNR of 1.10 dB on average over seven different test
sequences. The proposed method provided improvement for all tested sequences; the
quality increase was in the range from 2.83 dB to 0.15 dB. The explanation of the differences
may be attributed qualitatively to the different lighting conditions. Smaller improvements
were observed for outdoor sequences recorded during a cloudy day, with no bright sun,
and for sequences with uniform ambient lighting. For sequences with artificial light, the
improvement was significantly larger. The subjective quality increase is also significant, as
presented by the images in Figures 1 and 4.

Much more improvement due to the use of the proposed method is observed when
SSD between the virtual view synthesized from the left view is compared to the view
synthesized from the right view. Here, when compared to the no color correction scenario,
the reduction was more than 20-fold, with a maximum of 87-fold SSD reduction. When
compared to a scenario where a competing method [33] is used, the SSD reduction is from
19.8-fold to 79.9-fold.
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The presented method is envisaged to be applied as a preprocessing step in a
post-production phase, since the computational complexity is significant, the most time-
consuming part being the large sparse matrix inversion. While real-time image processing
was beyond the scope of this work, it is worth noting that faster matrix inversion methods
exist, which would reduce the computational complexity of our method.

The method significantly improves the quality of the virtual view synthesized from
the multi-camera setups by applying color correction to all original views. It can be used
in immersive video applications, where it can greatly reduce the color mismatch between
camera views. It is also useful for single images in the scenario, flash–no flash images, as
evidenced in the experiments.
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