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Abstract

The dissertation deals with the probkeof stereoscopic depth estimation and coding in
multiview video systems which are vital for development othe next generation

threedimensionatelevision

The depth estimation algorithrkeown from literaturealong with theoretical foundations
are discussedThe problem ofestimation ofdepth maps with high quality, expressed by
means of accuracy, precision atemporal consistary, has been statedNext, original

solutionshave beemproposed

Author has propose@ novel, theoretically founded approach to depth estimatidrich
employsMaximum A posteriori Probabilitf{MAP) rule for modeling of the cost function
used in optimization algorithmdhe proposahas been presented along wéthmethod for
estimation of parameters of such model order to attain that, aanalysis ofthe noise
existing in multiview videanda study ofinter-view correlation of corrggonding samples of

pictureshave been done

Also, a novel technique for precisi@and accuracgnhancemenf estimated depth maps
is proposed. The technique employs ariginal Mid-Level Hypothesis algorithm which

refines depth map ipostprocessing.

Yet another independentachievement of the disseitai is a novel technique for
estimation of temporally consistent depth meyith use of noise remov#éiom video prior to

the depth estimation itself

In the dissertation, Iso, depth coding techniques are discussed.a background of
techniques known fia theliterature, he problem of depth representatgntable forcoding
using legacycompressiontechnology is stated. Authaosf the dissertation has proposed
a novelmethod ofrepresentatiorof the depth, whichemploys nodinear transformation,

which can be useth order toincrease of compression performance in depth map coding.

The proposed notinear depth representatidras beeracceptedy internationalgroup of
experts (MPEG)and adopted to new 3D extensions of ISO/IEC 1449610 and
ITU Rec.H.264 international video coding standards describing new generation of 3D

video coding technolags, knownundernames ofiMvVC+D0 andfiAVC-3Do.
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All of the proposed algorithm$iave beenmplemented and their performance has been
verified experimentally The obtained resulthave beempresented in the dissertation.

The following theses have beerformulated and proven:

T1) Depth estimation can be improved by usage of modeling of the cost function based on

maximization of a posteriori probability.

T2) Precigon and accuracy of estimated depth maps can be improved #pnpasssing with

iterative insertion of intermediate values, controllisthgview synthesis

T3) Temporal consistency of estimated depths can be impnasieg noise removal from

input multiview video.

T4) Nonlinear representation of depth can émployedin orderto improve compression

efficiency of depth maps in 3D video systems.

Additional achievementot related directly to the theses pe¢sented in the dissertation is
aut hor 6 s topraduction bfumultiview video sequences that are currently broadly
used for test purposéy international research teanadso inresearch done in the context of

standardization iIMPEG and JCA3V expertgroups.

In the dissertation, alsshownisaut hor 6 s p thedevelopmenadd BDowdeoi n
codec,prepared aChair of Multimedia Telecommunication and Microelectroro€$?oznan
University of TechnologyThe codec has been submited a proposal for ACall
for 3D Video Coding TechnodroumWheéexcellend tesults by | SO,
achievedby the proposed codeare shown on the background of exemplary proposals

resulting from works of competitive research cemtarthe world.
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List of terms, symbols and abbreviations

2D
3D
3D-ATM

3DTV
AVC

AVC-3D

BIM

CfP

DERS

DIBR
DSIS
00
EHP

FTV
GC
00
HMM
HP

JCT-3V

HEVC

Two-Dimensional
ThreeDimensional

AVC based 3DrestModeli a reference software developed by MPEG implemer
3D extenstions to AVC (MVC+D and AV:3D)

ThreeDimensional Television

Advanced Video Codingechnology described itf8O/IEC 1449610:2013[11] and
ITU Rec.H.264 international coding standards

Common name of A AVplusdceopnipha te xbtl een svii odnec
technology[117][11§[119 thatis expected tde described in Annex J of ISO/IE
1449610:2012 and ITWRec H.264 video coding standard

Bj Bnt e g ap27df congoressionc performance

Belief propagation algorithm

"Call for Proposals on[3 Video Coding Technology" issued by MPEG gr¢ug9
Disparity, distance (in pixels) between positions of given pointsitindt views
Minimal disparity

Maximal disparity

Quantization step of given disparity representation (minimal step between e
consecutive disparity values), expressed as a multiple of the spatial sampling pt
matched imags

Normalized dsparity, i.e. disparityQscaledo ranger8

Maximal normalized disparity value for given representation.g. 255 for &it
representation.

Depth Estimation Reference Softwdi2q, the stateof-the-art reference softwar
developed by MPEG

DepthimageBased Rendering
Double Stimulus Impairment Scale, subjective evaluation mdttf
Expectedvalue operator

Extended High Profile, a configuration profile of 3'M software[12( reflecting
AVC-3D video coding technology

Freeview Television
Graphcuts algorithm
Histogram operator
Hidden Markov Model

High Profile, a configuration profile d3D-ATM software[12Q reflecting MVC+D
video coding technology

ITU-T/ISO/IEC Joint Collaborative Team on 3D Video Coding Extens
Developmen

High Efficiency Video Codingtechnology described inSO/IEC 230082:2013
(MPEGH Part 2[12]] and ITURec.H.265international codingtandards
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MAP
MCNRR
MOS
MPEG

MRF
MVC

MVC+D

MVD
MV -HEVC

NDR
Pixel

Pixel
precision

PCC
PSNR
QP
SAD
SBNR
SEl

Smoothing
Coefficient

SSD
T

T
VCEG
VSRS

WTA

Maximum A posteriori Probability
Motion-Compensated Noise Reduction with Refinement technique
Mean Opinion Score

Moving Pictures Experts Group of International Standardization OrganizZa8a)
andInternationaElectrotechnical CommissigitEC)

Markov Random Field

Common name of AMul tiview Video Cod
[112[113 described in Annex H of ISO/IEC 1449®:2012 and TU Rec.H.264
video coding standard

Common name of AMVC Extension for |
technology [114][115[116 described i n Annex I
codingdo of -102012 and TWRacHLM &Fideo coding standard

Multiview Video plus Depth

Common name of AMul tiview HEVX23curreatly
being under standardization

Non-linear Depth Representation

A fragment of an image, characterized by its coordinates@@J)y.value (e.g. scala
luminance, or vector: red, green and blue) and size, which (in both dimensic
equal to thesampling period of the image in which given pixel is located

Level of the detail in which position in image can be expressed, related-toxki|
precision, which corresponds to a $engampling period in the image

PearsorCorrelation Coefficient, also linear correlation coefficient
Peak Signato-Noise Ratio

Quantization parameter for video

Sum of Absolute Differences

Still Background Noise Reduction technique

Supplemental Enhancement Information
A control parameter of Depth Estition Reference Software (DERS)

Sum of Squared Differences
Transformed, coded disparity
Maximum transformed, coded disparity
Video Coding Experts Group

View Synthesis Reference Software, a stdtthe-art reference software develop
by MPEG[124[125

WinnerTakesAll, a bruteforce depth estimation technique
Distance(a -value)from the view plane of the camera system to given point
The nearest considered distangev@lue) in the camera system

The furthest considered distan¢e-yalue) in the camera system
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Chapter 1. Introduction

1.1. The scope of thdissertation

Theredimensional (3D)video gains a lot of attention nowadays. Constantly there
progressn a wide variety of fields related to 3D: from the interest of the custoriemigh
the production ofcontent, theavailability of 3D-compatible hardwardo the technology that
lays underneatlfcoding and transmissionsolutions and standandsEven thoughthere are
some skeptic voices about the future of 301495, there are strong expectations
[144[14Q[147 that the market of 3D video will extend even further in the upcoming.years

Anyhow, currently merchandise®Do employs onlya purestereovisiori only two views
(left and right) are delivered in order to provide deptipression typically with use of
special glasses worn by the viewer

This work is related to a new generation of 3D video systems which would go beyond
the currently applied stereoscopicsolutions and their limitations.

The consideredeatures of thenext generation of3D video systems includgroviding
better impressions ofdepth, better reproduction of the 3D scenestructure andhigher level
of interaction with the user.

The exemplary applicationsof the next generation of3D video technologyare free
viewpointnavigationandglassesree 3D

In afree viewpoint navigation system(Fig. 1) the viewer canvirtually movethroughthe
scene andhteractively choose a point of observatigview). The selected view, as seen by a
virtual camera, is synthetically generated and provided to the user with a classical monoscopi
or stereoscopidlisplay. Television systems with such feature are often referred terees

viewpoint TeleVisionFTV).

Interactive selection of virtual camera position

Moving 5"4 ¥
3D scene ! .
Real cameras = A
! ! ! e Viewer
+

Multiview plus Depth (MVD)

Free viewpoint
navigation display

Fig. 1. Freeviewpoint navigation Depictedfvirtual camerais acamera that desnot
actually exisin the scendutits content is synthesizeéidom the contentof existing ones.

9of 241
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In a glassesfree 3D video system (Fig. 2) the depth sensation are providedthout
requiring the user to wear a special pair of glass@te dfect of threedimensional
impressionsis attained by usage afutostereoscop where multiple views are displayed
simultaneously. The user can slightly change the point of view, resulting in seeingndiffe
pair of views shown on the autostereoscopic displdith the currertly usedtechnology

changeof thepositionis limitedto horizontal parallawnly.

e DI
camera ’é
>
S
; £ |
(2}
o S
o Q .
Q © | Multiple views S Viewer
Real o : ~
_—> n—» o (real and virtual ones)
camera 5 o ; )
= a are displayed -
o o ' -
@ | simultaneously
= 9] 7
@) @ 7
> = e
=R
Moving 3D scene > Different pair\
Real __> =_, of views observed
camera depending on position
Fig.2.Glasses r ee 3D. Depicted Avirtual cameraso

in the scengbut their content is synthesized basing on the content from existing ones.

The recent works of research laboratories all around the world show that one of the most

importantaspectof the upcoming 3D video technologyasmethod for representation of

the 3D scengsuitable forefficient coding and transmissionf the 3D video The current
generation ofvideo codingtechnology broadly available[112[113[130[137], that is
applicable for 3D, empl®/scene represenitah by means ofmultiview video. In such, the
content of the3D scene is represented by a number of views, obsethimgscenerom
different angles and positions. Typically, those viewes coded antransmittedn simulcast

or with use of simple interview predictive schemes thainfortunately do not provide
satisfyng efficiency of compressionRecent works[2][7][76][148[149 on compression
efficiency for delivery of multiview video (e.gcomposed of22 views for an exemplary
modernautosteeoscopic displgyreport about asymptotical 30% bitrate reduction related to
simulcast videasThe resultant bitrate for all such vieuss far toohigh to be accepted by
neitherthe broadcastersor the market This stimulategjuestionto arise orhow to achieve a

better compression performance
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An alternative3D scene representation typghich recently has gained a lot of interest
among the researchef$][2][11][12][130[131][132[133[134], is Multiview Video plus
Depth (MVD). In the case of MVD, video streams from rntiple camera positionsre
transported alongwith corresponding information about the depth of the scene in a form of
depth maps which carry information about thre#imensional structuref the scene

Considered inthe dissertation depth maps are matricesof values reflecting distances
between the camera and points in the scéygically, depth mapsare presentedsgray-scale
video (Fig. 3), where he closewobjects are marked in high intensity (light) and the far objects
are marked in low intensity (darkjhe depth estimation and coding are thefundamental
problems in this work.

a) o b)
Fig. 3. The original view (a) and cosponding depth map (b) of a single frame of
fiPoznan Carp&n[85] 3D video test sequende. the depth maphe closer objects are
marked in high intensity (light) and the far objects are marked in low intensity (dark).

Usage of video and depth maipsMVD representatiols an ideaconsidered around the
world, because iprovides an ability to generate a synthetic view as seen by a virtual camera.
Such virtual camera can be placed in an arbitrary poggignimpossible in real worldor in
position ofanotherreal camera. The latter case can be used to predict contegivehaiew,
basing oncontent inotherviews[124[125[138[139. This feature is a ketechnique140
for new generation of 3D video framewonkhere MVD allows significant reduction of
number of views that are directly transported e.g. instead oR2 videos (required byan
exemplary modermautostereoscopic displapnly 3 videos with corresponding depth maps
are transported The content of theremaining (not transporte§l views can be then
reconstructed, at the decoder or in the display, basing on compact MVD representation.

This dissertation is related to transmission (or transport) of video bitstreams. Although, in
a common sense, these words refer to delivery done thuglecommunication channel

(e.g. cabldink, WiFi, terrestrial radio link etc,)the results of this work also apply to storage
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as well(a file on CD, DVD,Blu-ray, harddrive etc.) and thereforen sucha context these

words will be used.

The scientific problems related toMultiview Video plus Depth (MVD) instantiate

a general scope of thdissertation. Thoseare as follows:

1.

In MVD, additionally to the videp depth maps have to betransmitted in an

efficient way. Coding of depth maps differs from coding of natural scenes and for

now it has been found that usage of classical video coding is inefficient in that case.

This comesmainly from the two factsFirst, cepth maps arenatrices composed of
scalar values. Although depth mapften arerepresente@s videossuch videosare
gray-scale and lesstextured than naturabnes Secondly depth maps are more
vulnerable to degradation of the edges than natural imagesideos whee
importance of very sharp edges tprality of subjective sensations is only moderate.
Therefore, much work on development of degplecific coding tools is still required

which isone of the subjects of the dissertatiofseeChaptes 4 and 5)

High quality* depth maps are neededor production of the content aridr creation
of test sequenceslhere are many ways to attain depth maps all have some
problems. E. for natural sceneslepth mapsan be acquired withise ofa special
depthsensing camas Unfortunately usability of such deptlBensing cameras is
handicappedo indoor scenemostly, due to limited rangéoften only about5m) and
due tothe physical phenomena used (dlgmination ofinfra-red light)

A more general solution is dgorithmically estimate depth maps basing on images
from multiple views, e.g. from stereoscopic paitthoughmanysolutions are known,
still, algorithmic estimation of the depth is a demanding taskpbothwith respect to
the quality of the estimated ddptandcomputational complexityf the algorithms

which constitutes another subject of the dissertatiofsee Chapter§ and 7)

Temporal consistency of the depthis a subject which relates mainly to depth
estimation but also negatively impacts performaate¢he depth coding. Temporal
inconsistency of the deptimanifess typically as annoying flickering in the video
which is synthesized from the input video and the corresponding depth. maps
Improvement of temporal consistency of the estimated depghtignother goal of

the dissertation(more details on this iBubdapter2.6).

'Themeaning of o6qualityé of a depth map is considered further
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Thesolutions for theabovementioned issues will be studied in the dissertation in a context
of multiview 3D video systemdn this dissertationby a 3D video system is understdoyl
astructurepresented iffrig. 4.

Multiple cameras

Preprocessing ‘

Multiview video

Sfc?hpe Multiview +
8. et i video ‘ Depth estimation ‘
issertation plus Depth |
(MVD) * Depth
‘ Encoder ‘
l Bitstream
Decoder
Reconstucted multiview video Reconstructed depth
h 4 v

View synthesis

++ * A set of views

3D Display

Fig. 4. The scope of the workn@arkedin red dottedframe)
as apart of the whole 3D video system.

The firststage of processin@rig. 4) is acquisition of videsfrom multiple cameradn the
dissertation,no assumptions aboutthe number of cameras made, but it seems that in
practical casesnumber of cameramay vary arownd 3 to 10 [146. The content ofthe
acquiredvidecs is preprocessed which incomates image distortion removall5([15]]
rectification[152)[154] and color correctiofl54]. Then, basing on thpreprocessetidecs,
depth maps are estimated with use of depdpestimation algorithmThe next stepsi lossy
compression of the videos (together with the depth data) and codm@ binary stream
(bitstream),which is transported to the decoder. The decodeonstructs the videmlong
with the deptk andthenfeeds them tdhe view synthesis algorithnwhich generates a set of
views that are displayeaha 3D display.

The scope oflissertationwithin sucha 3D video systemcoversdepth estimation and

coding, which is markedhn Fig. 4, inside reddottedframe
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1.2. The goak and the theses of thedissertation

The goal of this work is to cope with the problems related to development of upcoming
generation of 3D videosystens. In particular Multi View plus Depth (MVD) scene
representation is considered. New proposalsiépth map estimation with stress on depth
quality, disparity precisionand accuracyand also temporal consistency will be presented.
For depth map coding a new proposafor depth representation and compression will be
presented

The thesesf thedissertatiorareas follows:

T1) Depth estimation can be improved by usagémodeing of the cost functionbasedon

maximizaion of a posteriori probability.

T2) Precision and accuracy of estimated depth maps can be improved inpgvosessing

with iterative insertion of intermediate values, controlleding view synthesis quality

T3) Temporal consistency of estimated depths can be improved using noise removal from

input multiview video

T4) Non-linear representation of depth can bemployedin order to improve compression

efficiency of depth maps in 3D video systems

The results fotheses T4T3 are shown in Chapter 3. The results for thesis T4 are shown

in Chapter 5.
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1.3. The overview of the dissertation

The dissertation is organized as follows.Chapter 1, an introduction to the subjecif
multiview and 3D video systems is providddie methodology that has been used during the
works on the dissertation is shown. A focus is given to the need of performing experimental
verification of the proposals. For that purpoggesented isa set of mliiview video
sequences, broadly used around the world as test material. A special highlight is ¢gneen to
authoro6s partici pat i aabroadly usedideodestsequencaes. of S

Chapter 2 presentscurrentachievements in area of depttimation with focus on the
subjects that are important for thissertatiorand further consideratisnin particular,global
methods are introduced with particular attention given to optimization funct@asd( 6 € i ©
and"Yi ©¢ i "Qoynhd thedr iprobabilistic inclinations, which are further subject of the
dissertation.

Chapter 3 describes researgberformedby the author irareaof depth estimation. First,
atheoretical modebased on Maximum A posteriori ProbabilisyconsideredThis modelis
then verified empiricallyith use of the test sequences andcbreclusionsare dravn. Basing
on the conclusions a novel approasidepth estimation is proposed.

Finally, two morenovel algorithmsfor depth estimation aneroposed The frst one Mid-
level Hypothesis algorithmis aimed atimprovement of precisiorand accuracyof the
estimated disparity maps The second one is aimedhprovement of depth temporal
consistencyvith use of noise reduction techniques

Each of tlese three achiementsis concludedwith evaluation of their performance and
theexperimentatesults.

In Chapter 4, depth coding techniques are discussed with focus on theddtéte art
directly related to the subjects considered in the dissertation.

Chapter 5 presents research that has been conducted by the author in area of deptt
representation and coding novelidea ofnonlinear depth rpresentation is presentedrdt
a proofof-conceptidea with use of a simple nelinear functionis presented Then an
original theoretical derivation for nordinear representation of depth is provided.
The proposed naolinear depth representation is highlighted as a tool for improvement of
compression performancExperimental verification andtudy ofcompatibility with existing
coding technology is presented. Finalgoptionof proposed noilineardepth representation
to internationalvideo coding technology standards developed by ISO/IEC MPEG damalp
recommendations of ITU$ highlighted
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Chapter 6 presents acbvements of the authdhat are related tadhe development of
technology for3D video coding with use dhedepth.A 3D videocodecis presented thdtas
been developed bghair of Multimedia Telecommunication and Microelectroniesznan
University of Technology,as a proposal fofiCall for Proposals for 3D Video Coding
Technology [129 issued by 'SO/IECMPEG. The evaluation of the proposalsisown along
withast hor 6s share in the worKk.

In Chapter 7, summary anaonclusions of the dissertation are presented. The chapter lists

theoriginal results of the dissertation.

1.4. The methodologyof work

The goal of the dissertation is to study whether it is possiblenpoove efficiency in
coding of depth data and whether is it possibleitoprove the quality® of algorithmically
estimated depth mas.

In both of thkese problems theoretical evaluation of thgroposalsis nearly impossible,
because, in order to provide a fair evaluation, the proposed tools (for depth estimation of
depth coding) should bevaluatedalong with several other advanced tools, kndtem state
of-the-art solutionsand proposaléor depth estnhation of depth coding respectively).

Therefore, the only reliable way toevaluate advantages and disadvantages of the
proposalsis by performing series of experiments withmultiview video test sequences
Only suchallows empirical measurement obding eficiency andevaluation of theuality of
the estimated depthln order to do that, thauthor has implemented andtegratedthe
proposed techniquédsr depth estimation and codimgfo the followingsoftware packages

For the reasons clearly presentedChapter2 the algorithns implemented in ISO/IEC
MPEG Depth Estimation Reference Software (DERBand in View Synthesis Reference
Software (VSRS) have been used as reference for experimentation in area of depth estimation.
Therefore, aut hordés proposals haveefetercen 1| mpl e
software (DERS version 5.1126 and VSRS version 3.0124[125 respectively) and the
results have been compared against the original performance of unmodified versions of DERS
and VSRS.

In the secongbart of the dissertatiomelated todepth coding, the results are presented on
the bass of MVC+D [114[115[116§ and AVG3D [117[11§[119 video coding

technologies (not yet described in any standards when the works haveobeeisted and

2The meaning of o6qualityé of a depth map is considered further in Sub
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also onthe basis of HEVCGbased coding technologgo-developed by the authasubmitted

by Poznan University of Technologyt o t he A Cal | for Proposal
Technologyo [129 issued by MPEGTherefore, the tools proposed by the author have been
implemented in ISO/IEC MPEG test model softwar@D-ATM [12(Q (for MVC+D and
AVC-3D) andHTM [123 (for HEVC-based).

In both depth estimation and depth coditige mentioned software packages (e
original versions and wi t h integrated a L
thoughtful experimentation. The results allowth@ author to perfornexamination of the
performance of the proposals both by objective manners (like with us&f&N\R values or
Bj B nt emeasares) and subjective manners (subjective tesMaath Opinion Score
ratings).

Basing on that, the conclusion have been drawn whrovided directions for further

works.

1.5. Multiview videotest sequences

As mentioned irthe prevwous Section a reliableway to assess performance of algorithms
in the two fields related to the dissertation, whigk depth estimation and depth coding, is
performing seriesf experimentsvith multiview video sequences.

It is a general problemasreliable evaluation of performanas neededn researchworks
which relate toalgorithms and toolsurrently known, developed, or e.g. submitted as
proposals for adoption iimternationakcoding standard.here are two sides of this problem:

- What test datain form of test sequences or imagsikould be used to allow common

ground and reference foomparison3

- How to express and assess the quality of algorithmically generated depth maps?

In the area okvaluation ofdepth estimation algorithsnan interestng scientific undertaking

is related with webpage of Middlebury UniverdiydZ]. The site is a repository for computer
vision datasets and evaluations of related algoritiis®, the sitgoresent results of multiple
stateof-the-art depth estimation algorithms evaludteunder the same conditions.
Unfortunately, the methodology proposed by the authors can be found inadequate for
experimentation with multiview ang8D television:

First of all, the siteevaluats quality of the depth, basing on siithages,which disallows
observation of temporal effects and artifacts, which are very importacdsia of moving

pictures, considered in multiview aB® video system.
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Secondly, the methodology of evaluation of depth estimation algorithms used in the
webpage is based on comgan with grouneruth depth maps. Conformance with the real
depth, although important in case of many research fields (like computer vision, robotics etc.)
in not the primary goal inhe case of 3Dvideo systemswhere the depth maps are used
mainly for the sake of virtual view synthesis.

Moreover the datasets in Middlebury webpade not containobjects with specular
reflections, glossy surfacés.g. mirrors), partially transparent surfaces (windows) etc. Such
effects occur in real world natural scenes and lack of such examplégdiebury data set
belittles its usefulness.

Therefore, currently the most adequate known methodology of evaluatiomepth
estimation algorithms has been developeduring the works of ISO/IEC MPEG group.

The author of the dissertatioils an active contributor to this works. In particular, he
participated in creation of multiview video test sequences adopted to multiwce=o
sequences sgt29, currently,broadly used for test purposes kperimenton development

of 3D-related technologieg137][23€[237[238. This mentioned evaluation method
developed in works of MPEGusedas main objective assessment methtbarough the
dissertation will be described further in Subg®n 1.5.3 Before that, ifst, in Subsection
1.5.1, the production of multiview video sequences at Poznan University of Technology,
Chair of Multimedia Telecommunications and Microelectromidk be provided, in which

the author had strong participatidrater, selected multiview video test sequences set will be

shown in Subsection 1.5.2.

1.5.1. Production of the test materialat Poznan University of Technology

For research purposes and for production of multiviedeo test material,Char of
Multimedia Electronics and Telecommunicatiohas been builan experimental framework

for works on future 3D television.

Fig. 5. A set of 9 Canon XH51 cameras used in multiviesystemdeveloped at Poznan
University of TechnologyChair of Multimedia Telecommunicatioasd Microelectronics
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The system consists of 9 cinematic Canon-&H cameragFig. 5) placed on a mobile
(wheeled) metal rigFig. 6). The rig has been manufactured exclusively to provide special
mounting pads that allow precise alignment of the cameras. The output video signal is HDTV
(1920x1080) and is provided via SDI interface. All streams are temporally synchronized with

use of a&enLock and captured by PC cluster. The wholgostprocessing is done offline.

d

Fig. 6. Multi-camera rig (left) andecordingsystem(right), bothdeveloped
at Poznan University of Technology, Chair of Multimedia Telecommunications
and Microelectronics, Poland.

‘ s ] ] N =

— i

Fig. 7. Electronic board for muktamera synchronization testi(igft) and synchronization
circuitry connected to the cameras (right), both develep&bznan University
of Technology, Chair of Multimedia Telecommunications and Microelectronics, Poland.
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In order to estimate accuracy of synchronization a specidgdratbn board [ig. 7) has
been usedThe calibrationboard,designed at the Chair of Multimedia Telecommitation
and Microelectronicsgontains a control systemhiweh is synchronized with the same signal
that is propagated to cameras by GenLock and TimeCode inputs. The board presents the
current time marker, number of frame lines and frame frequency on-segarent displays.
Simultaneously, the diodes correspomdio a single image line are lightened. Each diode
emits light only in a single interval.

The board is placed in front of the cameras. The view from every camera should show the
same diodes switched on (number of lighting diodes depends on expositipnifticagneras
are not synchronized the view is different. The board also allows for observing the camera

synchronization process. Usualtpmera adjustiés inner clock to external synchronization

signal in about 1 second.
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Fig8. Preparation foHalpraddcf&d#panad APoznan
and nPo z rsequencgB5 at Roznan University of Technology,
Char of Multimedia Telecommunications and Microelectronics, Poland.
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After development of the system hardware it was possible to start production of multiview
view sequencesThe goal of such works was to develset ofprofessional test sequences
suitable for research works in the area of future 3D television. However a set of such
sequences has already been maintained by ISO/IEC MPEG group, but is has turned out to &
too simple (both in terms of the content and the depth of the scene) to mdetnitueds of
research concerning, inter alia, algorithms for determining the depth maps.

For example, the sequendgl( are characterized by uncomplicated textured kitle
motion. In addition, tbhse sequencg24(Q present indoor scenes with low dynamic range of
the depth and uncomplicated 3Bucture (such a% A Moabito) or external scenes withigh
dynamic range of depth, but laminar (planar) structure of the ddpthe A Newspa
sequencg239 in turn,althoughit contains more motimand has a more complicatddpth
structure, its usefulness is limited due to overexposure. Sequi@icasipagne Towerand
fiPantomime [242 preseninterestingmotion and aralso challenging in terms of transparent
objects, however, tise are indoor sequencesimied against a black backgroumehich
occupies most of the stagéhefi L o v e { iand @)p241] are outdoor sequencdsut they
lack complex movement therein add not presentomplicated structuref the depthin the
scene. Furthermore, all of the sequengeee filmed using a fixechotmoving, setof CCTV
cameras.

Lack of availability of satisfactory test sequences composed of good quality, caused
MPEG FTV group to announcea Call [135 to provide new, more adwced three
dimensionalvideo content In particular, desirablewere multiview video sequences that

would meet the following demands:

- diversification ofthe filmedcontent,

- high dynamic rangef the depth and complexity of its structure,
- goodlighting (overexposure/underexposure),

- movement of the camera,

- complex motion in the scene,

- reflectiveand transparersturfaces,

- presentation of botmdoor and outdoanatural scenes.

Therefore, the goal of production of multiview video sequsmteChair of Multimedia
Telecommunication and Microelectronieas to meet the aboveentionedequirements
Three test sequences have been prodicédP oz nan A%4omr &ret €Gar par |

fiPoznan Hal l 0:
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The firstone i P oz n apresefts an ewdbacene moving people and driving cars
(Fig. 9), produced near the office of Poznan University of Technolbggulty of Electronics
and Telecommunicationtocatedda Pol anka Street, PoznaCC, Pol and
The scene of the second one, APoznan Carpar
mentioned office. The sequence also presents moving cars and walking persons.
Thethird sequence iPoznan Hall o, h dl sf thb reemtionegbffice d uced 1 n
building. It presents an indoor scene with moving camera and complicated miotiokling
walking persons, rotating umbrella etc.
All of the produced test sequencesv@deen acquired along with all data required for
calibration of the system. Basing on that, rectification and color calibratidhe sequences
have been performe{B1].
The sequences have been submit&gito MPEG as a response to the GaB5. During
the forthcoming considerations and worldepth mapsfor those sequencelave been
algorithmically estimate@82]. This was crucial because the generated depth maps inclined to
serve as ground truth data in the futufdis task has consumed hundreds of hours of
experiments with finding the optimal setig;mvand creating manual data for seatomatic
depth estimationThe author of the dissertation had one of the biggest shares in this work,
which has beemlonealso in cooperation with other reseacemnterd136|.
Two of the sequencesproduced by Chair of Multimedia Telecommunication and
Microelectronic have been adopted to thetest sequence setised by MPEG, and also
broadly around the world, for research on technologies related to 3D. @&cifically
fiPoznan Stapaet 0ofndPozn dnantal |AOP osz@tauneheebael | 20
adopted.
The author of the dissertatidvad strong influence on production oésk sequenseboth
on the content and on the technical and scientific sides relateeino t
The adoptionof these sequences as MPEG test matasiah strong indicatiorthat the
requirements of the CdlL35 have been met.

1.5.2. Test sequences used in the dissertation

Along with the sequences produced 6¥yair of Multimedia Telecommunication and
Microelectronics other sequences maintained IBO/IEC MPEG group as 3D test material
have been selected for test purposes in this dissertalioof the sequences can be used for
research purpos¢85][81][82][129[137][236][239[24([241][247[243[244.
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fPoznan Hab

seq[8BEnce

AUndo Dsaquen@244
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fi L ov e bsequahc¢24d ANewspaper[®d9sequ

Fig. 9. Exemplary frames from multiview video tesequences.
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Tablel. Multiview videosequenceased for test purposes in ttissertation
and their characteristics.

3 - 2w © 3 o ool 2
52 |57 3 S| 23 S5 33BER
S £ Sol|2 @ = = =9 |cB2|g =4
=8 |2I|5E 3 s | S5 |8828¢4¢g
% x L% &= O 5 c 8 T O 20O
Poznan Carpar| 1920 Canon XKG1,3CCD | 250 | n Xy | 345 -
Poznan Street X 25 camera 3,45
Poznan Hall 1088 200 nXy| 56,7 | 56,7
Point Grey Flea came
Lovebirdl (CCD), Moritex 240 0.8 3,5,7 3,5,7
ML-0813 lenses
1024 Point Grey Research
Newspaper X 30 | Fleacamera (CCD) wil 300 nXxXy| 246 | 24,6
768 1/3-inch Sony lenses
RGBBayer 300 nxc| 1,35 1,35
Kendo camera
GTFly 1920
x | 25 |Computergenerated | oo 14 535912359 1,59
UndoDancer | 10gg sequences

There are in total 8 sequences in thstset (Table 1), presenting various scenes, both
natural and computageneratedKig. 9). The test set is provided thiground truth depth data.
For natural test sequences, the depth has b&gnithmically estimated from the video.
In some cases, additional manual help was needed, and therefore it is saidshdefith
maps hae been estimated serautomatically. For synthetic sequences (GT Fly, Undo
Dancer sequenceshe ground truth depth mapsveabeen computegenerated along with
the video

In this dissertation, the views of the cameras are consequently numbered from 0 (see:
Table 1). Therefore, inthe case of Lovebirdl sequence, the original camera indices (which

were starting from 1) have been renumbered to r@nge
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1.5.3. Assessmenbf the quality of depth maps

As mentionedabove currentlythe most adequate known methodology of evaluation depth
estimation algorithms has been developed by ISO/IEC MPEG gtouhe dissertation,
author has decided to employ it as a main objective assessment method.

MPEG methodlmgy for evaluation of quality of depth maps has been constituted
as a part of B framework[137]. It employs view synthesis for evaluation of quality of depth
maps, which can be used to evaluate depth estimation algorithm itself.

During the evaluation, three views are explicitly consdé A, B andV (Fig. 10). First
for view A andview B depth maps are estimated. Typically, this is performed withlicit
use of some side views.epth estimation @y employ many viewse(g. views A-1, A and
A+1 for depth estimation of view). The estimated depths of viedvandview B, along with
their original images, are used to synthesize a virtual view in position of middlewigéhe
original image of viewV is used for reference and comparison, which provides indirect
evaluation the depth map estimation algorithm u3éeérefore, the quality of the depth is

assessed indirectly by evaluation of quality of synthesized view.

View A depth
video v
View Synthesis synthesized
with VSRS | view V
(View Synthesis | > Quality
Reference Software) assessment
View V—» reference
A view V (PS_NR of
» luminance)
video
View B depth

Fig. 10. Depth map assessment procedure developed by ISO/IEC MPEG
and used in the dissertation.

The synthesis of a virtual view, employed in the mentioned methodology, can be
performed by means of Depth Image Based Rendering (DIBR]. In DIBR, pixels from
given input views are shifted, with respect to their depth, to different spatial positions in the
target view. Depending on the structure of the 3D scene, sx@s may become occluded
by others. On the other hand, some pixels in the target view cannot be rendered because thi

are occluded in the input views. Such pixels are inpairii24.
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In methodology developed by ISO/IEC MPEG grotq, the sake of synthesis of virtual
views, usage ofView Synthesis Reference SoftwaféSRS) [124[125 is recommended.

For the purposeof view synthesisalso in this dissertation VSRS is used.

Table2. Specification of views selectdor evaluation of depth estimatioRig. 10)
for multiview test sequences used in the dissertation.

Ground truth Views used for | Synthesized view
Sequence Resolution disparity maps | depth estimation (view V)
name available (View A and B) | used for quality
for views evaluation

Poznan Carpar

Poznan Street | 1920x1088 34,5 3,5 4
Poznan Hall 5,6,7 5,7 6
Lovebirdl 3,5,7 35 4
Newspaper 1024x768 2,4,6 4,6 5
Balloons 135 35 4

Kendo

As can be notiak in Table 1, presented on pag24, views of computergenerated
sequencegUndo Dancer, GT Flyare placed in irregular spatial positioi$iereforeno fair
depth estimation can be performed for reasonable comparison widr s#guences.
Moreover, computegenerated ground depth data is available which makes depth estimation
impractical for such case$hus thosecomputergeneratecdsequencebave not been used in
experiments with depth estimation and ased mainly for refeence purposes.

The described aboveirtual view synthesisbased depth map quality evaluation
methodology is used thoughthe dissertationhoth in parts related to depth estimation and

depth coding
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Chapter 2. State of the artin depth map estimation

This chapter provides antroduction and overview of techniques of stereoscopic depth
map estimationSections 2.22.2 provide an introduction to the basics of depth estimation and
Sections 2.2.6 focusonthe methods that adérectlyrelated taheau h oproposals irthis

dissertation

2.1.Depth estimation fundamentals

Algorithmic estimation of thelepth is a londasting scientific probleniThe first works on
depth estimatiogo backto 195 G &nd although many years of workihie current statef the
art is still far away from satisfying level in many applicatiprespeciallyin case of new
generation of 3D video systemEhis regards botko the quality of resultant depth maps and

complexityof the algorithms

object Q
seen in the
Image of right view
object Q in position Qg
seen in the
left view

in position Q.

Left

Right
camera

camera

Fig. 11. Object0 projected onto image pland3ifferent positioning of the camerésads to
different projected positions in left and right vie@nly objects within viewig frustum
of given camerare visible.

The basic principle in algorithmic depth esttioa is usage ofwo views of the same 3D
scene. In each dheviews,agiven object is seefiom different angle and positiofig. 11)
and therefore its observed position is differéhbst of depth estimation algorithms determine
depth by finding correspondence between pixels across the views. For examalgiveam
projected positiortd (Fig. 11) in the left view,the algorithm searches fprojected position

0 in the right view so that botlpixels at positionsi and0 , correspond to the sanpeint
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of object0 . Suchpotential correspondences ayeometricallyinclined to lay along so called
epipolar lineswhich can be derived from a pinole model of the camefa55[15q.

Positions and orientations of epipolar lines and indicatethéyocations of the cameras,
thar orientations and other parameters, like focal length, angle of view etc. Typically, all of
those parameters are gathered in a fornmtoinsic and extrinsic camera parametestrices
[157[158. In a general case, epipolar lines may lay along arbitrary angles

An importantcasein depth estimatiofFig. 12b) is a setup wherthe cameras of multiview
video system are arranged lingarso that the axes of the vipwints are all parallel
Such setup, considered in the dissertation, is calldohear arrangement of the cameras
Linear arrangementan be attained both by precise physical positioningpasfies ofthe
cameras or by pogtrocessingf images captured by other arbitrary setup of the cameras, e.g.
angular Fig. 12a), with use ofrectification techniques[152[154 along with distortion
removal[150[151].

« AR
J A b)

TN

Fig. 12. Variousarrangements of cameras: a) angular camera arrangement,
b) linear arrangement of the cameras widinallel axes
of the cameras (considered in the dissertation)

a)

Bi basdinedistance
between optical
NS centers of the cameras

<
W

497 Right view Zo1 distance of object Q

’ image plane to image plane of the

camera system

NEERNC)
Left view
image plane

Left Right
camera camera lo.roi  projected positions of
; object Q in the left
B and theright view
‘ respectively

Fig. 13. Exemplary dject: 0 projected onto image planes of two caméhas are aligned
horizontally with parallel axes of thmmeras
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In considered case dinear arrangement of the camerdle image planes of all views
coincide Fig. 13) and the epipolar lines are all aligned with the horizontal axes of the images.
Therefore, thelifferences in observed positions of objects become disparities along horizontal
rows. Due to tle projective nature o$uchvideo systenwith linear camera arrangemettig
further the object is from the camera, the closer is its projection to the center of the image
plane Fig. 13).

Basing on projected positions of objects observed in different views, their 3D pasition
be mathematically determinedhe question of the depth can thus be determined by finding
disparityvaluefor eachpoint For a stereoscopjair of camergshorizontally aligned, distant

by the length of baselird, the depttd of point0 of can be calculated as follows:
o CH - (@)

where ¢ - distanceof object 0 from the image plane of thecamera system (depth),
0 - baseline distance betweeptical centers of lenses tfe pair of camera’Q - disparityof
point 0, which simply is the difference between observed projected positions for given stereo

pair. For the casepresentedn Fig. 13;
Qi ¢, 2

It is important to note that a search range is typically required to be defined as an input
to the disparity search process. Once the disparity for a pixel is determitesd[159,

depthd (or disparityQ) is stored in form of a normalized dispatity

Q . 3
T O—,Q o h
which is often presented the form of
. 4
19 5 E 'p T _ p P i 4)
a aq o} o}

where & and @ are distances tdhe closest andthe farthest object in a scene
(corresponding t©Q  andQ®  dispariy value$ andj is the maximal value for given

representationf normalized disparity e.g. 255 for &it representation.

290f 241



Olgierd StankiewicdStereoscopic depth map estimation and coding technigues for multivideo systems

As depth isunambiguouly related to disparity by mathematical equasi¢t), (3) and(4),
colloquially, the termsdepth (&), disparity () and normalized disparitf are often used
interchangeablyl.e. the term depth estimation is used where in fact, disparity estimation is
considered124[134[139[142[147[159[218[220[223[224.

Also,al t hough this dissertation relates to fAdept
worth to notice that, in fact, most of thepresentedconsiderationsrelate to disparity ®

and normalized disparity #.

With use of equationgl), (3) and (4), the problem of depth map estimatiean be
expressed as problem of dispaetstimation of disparitiesret, even is such stripped form, it
is still is a complex and challenging task.

In general,two classeof depth estimatioomethods can be distinguishédsparse depth
estimation (which are alseferredto as indirect methods) and dense depth estimation (which
are also referred to as direct methods).

The scope of this dissertation lays within the latter case of dense depth estimation.

Out of scope of thigissertationaresparsemethods which seark for visualfeatures, such
as cornes or edgesand then match correspondindeaturesbetween framesgiews (e.g.
[160[161[162[163[164]). It can be noted though that some of indirect methods, although
yield only with sparse information about the depth, are targeted at providing ultimately

a complete 3D reconstruction of the scEl@H][166.

In dense depth estimationconsidered in the dissertatiadhe depth iften expressed in
form of adepthmapwhich is a matrix composed afl depth values in given viewret even
more often, the depth is expressed in a form of normalized disparity map, presented as gray
scale imagé€Fig. 3b, Fig. 14c).

The dissertation focuses on the most efficemd most commonly used methddsown
from literature[142[143, based on blocknatching with local oglobal optimization of the
generatedlisparitymaps.The goal of the dissertationis improvement of thosemethods.
Some of thenmare discussed below, up to the level which is required for the comprehension

of the idea presented in the dissertationthe following Subchapter 2.2.

300f 241


http://dict.pl/dict?word=unambiguous&lang=EN
http://en.wikipedia.org/wiki/Corner_detection

Olgierd StankiewicdStereoscopic depth map estimation and coding techniques for multivideo systems

2.2.Local estimation methods

Dense depth estimation methods, known from literature, find depth by means of disparity

estimation which can further be converted to defth In order to find disparities between
corresponding points, those methaetaploy calculation okimilarities betweerfragments
of the processed image3ypically used similarity metrics ar8um of Alsolute Differences
(SAD) or Sum of Squared DifferencesS$D, between pixels or blocks of pixels
or normalized crossorrelation[167]. Some works propose maaevancedsolutions like use
of binary matching cost168, non-parametric local transforms likKeankd or ficensué [173]

or evenapproachethat incorporate mixtures of transforfis].

b)

et

Fig. 14. A single frame of Poznan Carpark multiview test sequence (ahacdrresponding
disparitymaps (b) and (c). Ithecase of (b) ground truth depth map is presented
and inthecase of (c) depth map estimated with use of Whtaleesall technique

(withi1T 1 pi xel Dblock size, SAD si
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In the most basic approach, disparity is estimated for all pixefsee imagendependently.
As a result, ér each pixel, the most similar pixel in the second image is found, yielding
a resultant dispdy. Such approach is callevinnertakesallo (WTA) as other possible
correspondenceapart from the best onegre never selected

Unfortunately winnertakesall approach does not provide satisfactory rega4g][143 -
as it can be seen iRig. 14c, the depth map produced with WTA methedvery noiy and
often does not reflect the real depth of objects in the sddne.results from the fact that
often thesoughtdisparity cannot be determined locally on-péxtel basisas there are many
similar pixels in second images resulting iequally good disgrity candidates
(Fig. 15). Typically, thisoccurs incase ofcorrespondence searplerformedin homogenous
regions (single coloretiomogenous regi@t Fig. 15 black arrowy or glossy regionge.g.
reflections on the glass, windows or windscreéig. 15 white arrow of the imagesin such
case, the disparity has to be determined basing on not only local featiuties images (like
only pixel to pixel similarity)but also using neighborhood of given pixehis is bas& on an
assumption that soenof neighboring pixels contain texture that can be used for reliable
correspondence seardfid. 15 gray arrow).In the simplessolution blocks ofpixels are used
in order to aggregate information from surrounding piXelsuch case, SACESDsimilarity
metrics (or more advanced onesyer all pixels thatreside inside the given block, are
calculated.

Left view Right view
H Correspondence of homogenous, single color regions

Correspondence of homogenous, textured regions

<:> Correspondence of glossy regions

Fig. 15. Correspondence of features which is the main idea behind algorithmic depth
estimation. Examples of regions which are problematic are shown.
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Another interesting extension of simple stereo matching with S similarity metrics,
is usage of certainfseliability maps. Those are matrices composed of values which indicate
whether corresponding disparity value is certain (has been estimated with high likeness) ol
uncertain (e.g. in cases of untextured regioR$y. 15). A similar approach is proposed i
paper[17]]. A stereo matching algorithifior disparity estimation is presented as a method for
retrieving a3D reconstruction of the observed sceil®ng with the implemented estimation
algorithm itself, a method of its verification is proposed, by means of generating for each
disparity map, a reggtive certainty map which holds information about likeliness that the
respective disparity value was chosen wallturn, inwork [177 a reliability map is used to
allow fast depth estimation performed on GPU (Graphics Processing Unit) on graphics card in
PC computer. In the mentioned wdidanko transform is usefiL73.

In more sophisticated approachds local depth estimatign so called fuzzy
segmentatiosoft segment$15][86][84][174[17H are usd. In such authors extend block
matching scheme with Zdimensionaleighting function which is calculated basing on the
content of the image&his function defined the weights with which similarity of particular
pixels is aggregated into the resulting similarity metAcsimilar approach is to employ
guidedfilters [176 thatarevariation overcontentadaptive filtersin work [177], authors not
only show very good quality of depth estimation but also claim that their algorithrpadea
of performing in reatime. Work [178 also presents algorithm which is by the authors,
described as neaeatltime, based on guided filters, showing good performance on
Middlebury websitd 142, among other statef-the-art depph estimation techniques. [479,
even more adnced solution is proposed which combines usage of guided filters with
information about gradients amalyzedmages.

Independently from the usage of exact method, aggregation of information from many
pixels yieldsmuch more coherentesults than in casef single pixelto-pixel matching
(Fig. 14b). The man disadvantage of such methods, which aggregate the information from the
neighborhoodis limitation of range of the neighboring pixdlsat can beonsidereddue to
at least two reasonkirst, usageof wider neighborhoodgignificantly increases computational
complexity of such methodand thus they areneffective respective toother soluions
[142[143. Secondly the size of the neighborhood must not exceeddize of the objects
that are matchedlherefore thereis a kind of uncertainty principle because usage of small
blocks allows for localization of small objects but with limited accuracy, and usage of greater
size of blocks provides good accuracy in cas&arge objects but yields with bad results in

case of small object3.ypically, size of matched regiomanges from 16 t6&4 pixels. Also,

330f 241



Olgierd StankiewicdStereoscopic depth map estimation and coding technigues for multivideo systems

methods with variable, adaptively selected block size are krj@@9g[17([180[18]]. In

work [206 authors propose depth estimation method which aggregates information from
neighboring filters, developed basing on probabilistic model with diffusion.o Als
enhancement of the optimization algorithm, with application of GSes$el method, is
proposed, so that the convergence of optimization algorithm can be attained faster.

Usage of motion information for enhancement of depth estimation is also commonly
considered subjectAuthors of [182 have proposé usage of depth refinement technique
which estimated egmotion of the cameran order to attain deptimaps with sulpixel
accuracy. Framby-frame prediction of 3D scene is performed by tracking of feature point
coordinates and thus the proposed method allows depth estimation in a video without the need
for disparity computations in each single frame.

In paper[8] usage ofmotion field estimationis proposed. Caldatedmotion vectorsare
then used to extenplixel similarity metri¢ which isoriginally based on SADThe authors
adopt gtical flow Classic+NL techniqugl83, based ortlassical formulation of optical flow
by Horn and Schunck

Often, usage of more than two viewnsdiepth estimation is proposgtiB4]. Such approach
allows reduction of problems related with occlusions, texiese regions or shadows
[185[186[187[18g[189. Typically in such casegl26[184], instead of similarity metric
calculated beteen a single pair of views, similarity metrics are calculated between all
available views and the processed view, and the minimal (the best) one is used for
optimization.

In some workg185[186[206, occlusions are explicitly modeled loyarking pixels that

are believed to be hidden by other pixels, basing on the current stage of computations.
Although local estimation methods are not very often asastindalone in statef-the-art

depth estimationtechniques their concepts are expted by more advancedlobal
optimization methods described below.
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2.3. Global optimization methods

Another, far more interesting approach that asgioefind a global optimum instead of
local one (like in case of local methods described Section 2.2) is to redefine the
disparity/depth estimation as a problem which can be solved with use of ggpterization

methodsIn order to do saan energy functiofO"Q0 € o@dr a depth map is formulated
"OQoO ¢ Qi T0QO 6 ¢ i b (5)

where "0"Q0 0 aépiats subcomponentof "O" Q0o ¢ fOriction for particular pixelr in the
considereddisparitymap.Such function is often related
Aper f or man c e optimzhtonxapplidgatonsot her

Because suctDQo ¢fighction isformulated on pepixel basisit can be used in variety of
generic optimization algorithms. Among many known (like genetic optimization) only a few
of them have found application ifield of depth map estimatiordue to thefact that the
amountof considered disparity valuesrslatively large (e.g. hundreds)

The most commonly usedptimization algorithms argraphs cuts (GC) and belief
propagation (BP)197. However, he description of those algorithms is out of scope of the
dissertation, some brief introduction hasemeprovided in Subsection 2.3@&nd 2.3.4
respectively.

In the case of botlGC and BP algorithm, the functid® Qo ¢ ésitypically modeled as

a sum of twasubfunctions:O w0 W Gadd'Ydo W& | Q0O TQEeach pixel®):

"OQ0 0 € OO WO Qi © Yi OE i Q0 NERIMER (6)
where:

N i pixel (point) for which"O"Q0 0ig elvatuated,

Q i assumedlisparityof pixeln,

n i somepixel (point)in neighbohood ofpixel n,

Q i assumedlisparity of pixelr.

Owo wo ©i emodels the direct correspondence between pixels and express how given
pixel ] is similar tothose pointed by itdisparity’Q in other imagesThis is further

described in Subsection 2.3.1.
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Yi OE i QO REXND £-ipenalizes disparity maps that are not smooth.gifzen pixeln
has vatly different disparityQ thanits neighbors fixels depicted byj) it gets high
Yi ®E i QO PEnhaltyThis i® further described in Subsection 2.3.2.

Of course, more advanced approaches than presenteshuation (6) are known
[190][191][19[195[19€][197], where higher ordefO'Q0 O féniction is defined, but their
application is not very commdi42[143.

The usage 0D ® 6 W Gahd ™Yo @ ¢ i€ &0 i@ common idea of all global optimization
methods like belief propagation or graph cuts. Depending on the approach those are defined
as probabilitie202[203[204[205 or in terms of energy193[197][19]8. Some works
[215 use m#hematic concept of partition function, related Bwltzmann probability
distribution in order to exchange energy formulation into probability, and vice versa.
Unfortunately there is lack of empirical verification of whether such operations are justified

The problem of definition and formulation of [+ «F Fand 4 »F= Vi € o« Fo V<
functions is one of the main subject®f the dissertation for which results are shown in
Chapter 3, Sections 3.1 to 3.6.

Below, in Subsections 2.3.1 and 2.3, introduction to typical formulations of

Owo woaadYd e i Q0 factodswill e provided.

2.3.1.Data Costfunction

The'O & 0 ® dfunctianmodels the direct correspondence between pixels and express how
given pixeln is similar to those pointed by its dispari® in other imagesThe higher the
difference between those pixels is, the higher is the val@eib © 6 &i .0

The mos commonlyO w 0 w Oi€ defined in terms of energy relatedsimilarity metrics
between fragments of images, calculatedpixels or blocks.Typically, Sum of Absolute
Differences (SAD) 180 or Sum of Squared Differences (SSB1][204 metrics are used.
Some stat@f-the-art works which relate t® w 0 & 6fénction proposaisage offi r a ork o
i ¢ e n $1d3 for calculation ofbetter similarity metric. Work[17] proposes a more
advanced approach, where mixture of various similarity metrics is incorporated in order to
attan better quality in depth estimation, but theoretical foundations are missing.

In paper[204, which in the most related to the dissertation in area of depth estimation,
authors provide a similar derivation 60 Q0 0 function based on MAP assumptions.

Unfortunately, the authes have omitted the consequences of this derivation related to
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O ® 0 » daadhavelimitedtheir work to consideration of Gaussian model (corresponding to
Sum of Squared differences energy formulation). The authors do not provide any verification
of whether such assumptions are correct.

Similarly, work [205 employs posteriori probability for modeling &0"Q06 6 féniction.
Authors consider a more advanceddal for O 0 & 6 whicld incorporates Generalized
Gaussian model with arbitrary power exponent. Therefore, in for value of 2 Gaussian model is
considered and for value of 1, Laplace model is considered. Also here, any verification of
whether such asimptions are correct is not provided, apart from theoretical considerations.

In work [216] authors have proposed usage of truncéiteshar O ® 0 @ ofdnction which
actuallyresponds to Absolute Difference similarity metmgth is limited so that is does not
exceed some given maximal levApart from the concept being very scientifically interesting
and giving promising results, the authors have not suppdtined proposal with empirical
data verifying their assumptiondoreover, m analysis of noisenor crosscorrelation
between matched images haseerformed.

In work [217] authors thoughtfullyanalyze probabilistic model of correspondence in 3D
space. Instead dflaximum A posterior rule, a different approach for evaluating entropy and
mutual information, called EMMA, is proposed. Authors claim, that one of advantages of
EMMA is that t does not require a prior model for the functional form of the distribution of
the data, and thah¢ entropy can be maximized (or minimized) efficiently using stochastic
approximation.Unfortunately the method is presented in context of 3D modeling and not
depth map estimation itself which disallows comparison with otherastdate-art methods in

the field of the dissertation.

2.3.2.Transition Costfunction

The"Yi we i Qo Qa termoOfio®O 6fénction whichpenalizes disparity maps that are
not smoothlts role is regularization of the resultagépth/disparitymap. The hgher are the

differences between disparify of pixel ) and dispari valuesQ of all neighboring pixels
Q , the higher is the value 6Yi @& i Q0 REQIME.I O

Typically, "Yi @& i Q0 Q¢ © iK% iisodefined imlependently from pixel positionis
and ; and thusit can be simplifiedto "Yi ©¢ i Q6 V&R BAlsod very often,
Yi we i Q0 @adt definedbas function @ andQ independently, but as a function of

Q Q only:"Yi GEi QO EBEL O
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Among the most commonly known afeee modeldor "Yi @& i "Q0 Tactonic Fots

model,linear model anttuncatedlinear model

a) Potts model[198

nooee o (7)
| EMI LQ Q

Yi el QO EQET O
b) Linear model [126[190
Vi dEi QOB EQEI POQ Q. )
c¢) Truncated-linear model [216]

Vi el QoM@ £AET DET OQ Q h . 9)

Used notation:

n i pixel for which"O"Q0 6fénctionis evaluated,
Q i assumed disparity of pixg|

n i some pixel in neighborhood of pixg)

Q i assumed disparity of pix4|

| i 1 constant parameters

In general,4 OAT O E Offinktior# incOrpoate some sort ofonstant parameterkke
r or ) coefficients Themain purposef suchconstant parameters to provideweightingto
the relationwith $ A O A #uhc@o@ to which it is added to formula& E O #indiidd (6).
The most commonly used parametesf linear and truncatetihear modelsis widely called
fAISmoothing Coefficient @s its value sets how much depnaps that are not smooth are
penalized by& E O #inélidh. Usage of small values @moothing Coefficient results in
sharp depth maps which are similar to those attained with local depth estimation methods.
Usage of large values of Smoothing Coeffitiessults ingeneration ofvery smooth, eve
blurred depth maps. The selection of Smoothing Coefficient is typically done maf¢ibelly
depth estimation is thusuperviseyl which is an important problem in practical usageof
depth estimation methods baseal belief propagation or grhpcuts in applications, where
unsupervised operation is expected.

All of the mentioned model@ots, linear and truncatdihear) are typically used because
they are simple and provide some additional advantageeirtase ofbeliefpropagation

algorithm because they allow reduction of computational complexigxetuteof particular
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steps from/ $ polynomialto / $ linear time where$ is the number of disparity
considered valued#\s typicaly ‘O ranges from 40 to 100, thisqvides vast reduction of real
computational complexity.

In work [216], authors have proposed usage of trunclitethrshaped'Yi @& i Q0 Q€ & ¢
function for depth estimation and have compared it against otheo$tidteart techniques.
Although the results are promising, the foundaiointhe proposakarenot given.

In papers[204[205 authorsconsiderderivation of"Yi we i "Q0 "fudciion based on
Maximum a Posteriori rule, similar to the approach irs ttissertation Basing on this,
Markov Random Field model for stereoscopic depth estimation is formulated by means of
beliefpropagation algorithm. Unfortunately, the work proposes only an approximation of
Yi we i Qo fQ8cton. € i O

The lack o works, which provide theoretical analysis of application Maximum
A posteriori Probability (MAP) optimization rule to formulation ofrr=|= <=|= Fand <«

1 e v

support formulation of such theoretical modésne ofthe motivations of the dissertation

. for=dgpth es#mation, along with empirical experimentation which would

In Subsections 2.3.3 and 2.3.4 below, graph cuts and belief propagation algorithms are
presented. Those are used in the dissertation solely as tools for optimization of depth map
with regards t0"OQ0 6 furiction (and thusO®W O W oand ¥ weE | QO "mdtiang).i o
Therefore, as the dissertation does not reditedly to those algorithmsand thus irdepth
knowledge about them is not need#étt presented introduction will be very short. A more

comprehensivanddetailed description can be found in the references.

2.3.3. Graph Cuts

In this Subsection a brief introduction to graph cuts (GC) algorithm is provided.
The dissertation is not related to the GC algorithm it$edither than that, the graph cuts
algorithmis used as a reference technique in the experiments related to dipihtien.
Therefore, as indepth understanding of graph cuts is not needed for ngadf the
dissertation, onlya short description and survey sfateof-the-art techniques is shown
Further details and detailed description of GC algorithm can be foditdrature mentioned
below.

In general, graph cuts is an algorithm which solves energy minimization problems by
reducing thento instances of the maximum flow probl¢&®([199[19§ in a graphIn such
cases maxflow/min-cut theorem[193[194[195[194 can be used in order to efficiently
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find a minimal cut of the graph which corresponds to finding an optimal solution of a problem
represented in the considered graph.

One of theapplications of graphs cutdgorithmis solving the problem of labeling of an
image In depth estimationit relates to assigning disparity values(labels) to particular
pixels (points) of the input image It has been provefil9([193[194 that in binary cases
(where only two different labels are defin@@n be solved optimally by the GC algorithm.
If there are more than two labels (which is the case in depth estimation) the produced
solutions usually lay near the global optimyi91][192, targeted by"O'Q0 O énkrgy

function.

Terminal node

Connections to
s terminal node

Layer of nodes
corresponding —
to pixels

Connections between
nodes on the layer of pixels

Connections to
t terminal node

Terminal node

Fig. 16. An exemplary graph used in graph cuts algorithm for depth estimation.

In depth estimation based on grapits algorithm [19([192[195[198[199[200
a graphis defined éxample inFig. 16), whose nodes modgixels and whose edges model
"O"Q0 0 éomponents associated with them. Thus, the structure of the graph reflects the
definition of OW O W oand ¥ e i Qo "funhctiané Tihére are many graph structures
known from the literaturg190[192[195[198 with different complexity and performance

Although the discussion of details of specific graypits methodssiabove the scope of the
dissertation, it is worth to notice thdiet most commonly usedariant of grapkcuts solver is
so calledalphaexpansionf195. In such, multlabeling problem is solved iteratively, where
in each iteration only a binarlabeling problem is solvedin particular, two alternative
disparity maps are considered, the current oneaahglpotheticalone (filled with a single
disparity value)propose at the current iteratiomd graphis createdwhose edges represent
"O"Q0 O fariction compounds related tboth of the alternative disparity maps. Then, a
optimal cut between the current and the alternatigparity map is sought in this graph
(basing on mastlow min-cut theorem) which yields lzetter fitted (energy minimatjisparity
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map, composed of fragments of the current and the altermasiparitymap. This is repeated
with different alternativedisparitymaps (typically for all possibldisparity values) until the

currentdisparitymap is optimizedo the point of convergence

2.3.4. Belief Propagation

In this Subsection a brief introduction to belief propagation (BP) algorithm is provided.
Although the dissertation is not related to @8 algorithm itself, a short description and
survey of techniques is shown for the reference of the-gtatee-art. Further details can be
found intheliterature,althoughin-depth knowledge about belief propagation algorithm is not
needed for understedimg of the dissertation.

The belief propagation (BP)lgorithm [201][202[203[204[205 can be seen as an
extensionand generalizatioof the well-known Viterbi algorithm (dynamic programming)
The Viterbi algorithm operates on graph describindattice of observationsith one
directional connections which constit@d-dimensional field of nodes$={g. 17a).

Specifically, belief propagatiorapplied in depth estimationgextends this scheme to
a 2-dimensional fieldof nodes whee the nodes typically correspond to structural elements of
the image, like pixelgFig. 17b). The most often, bidirectional connections between the
nodes in BP are amsidered and such variant of the algorithm is called
loopy-belief-propagatiorf 207].

Node of Markov field, defined by all
possible disparities and their probabilities

Two-directional connection

between nodes of Markov field

One-directional connection

between nodes of Markov field

— Transition between the states

each-to-each each-to-each

g

a)
Fig. 17. lllustration of Viterbi algorithm (a) and belief propagati{®P) algorithm (.
In the depicted BP exampleonsidered idarkov Random Field with-dvay (left, right,
top and bottom) neighborhoad nodes andidirectional connectionsetween the nodes.
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Those nodesommunicate with their neighbors by sending messages. Each such message
is composed of beliefs of the source node about probabilities of disparities thahsicered
(and are possiblei the target node.
Therefore, BP algorithm iteratively estimate probabilities associated witksonsidered
disparity valuesind basing on that to choose the most probable disparity for each node.
Although it is not a strict requirement, it is often assumed that in BP algorithm the sought
disparity map is modeled by a-dédmensional Markov Random Field (MRF)[20§.
In MRF defined for the problem of depth estimatieach node of the field is defined by all
possible disparities ancbrresponding probabilitiedBy analogy tothe nomenclaturé&known
in Hidden Markov ModelsHIMMSs) the possil# disparities correspond to hidden staths,
Yi @& i Q0 tmréspoads Gransition probability and th® @ o0 & dcorrespondgo the
output probability In suchMRF-based belief propagation formulatid@Qo6 6 dptimization
logarithmic scale).Belief propagationcan optimize marginal probability209[210 or
maximum a posteriori probaltif [211] of optimal selection of disparities, both which are

defined by'O"Q0 o6fénction. The latter case is analogous to graph cuts algofitBh

2.5. Accuracy and precisionof disparity values

An important aspect of dense depth estimation algoritkorssidered in the dissertatias,
the degree ofaccuracy ofestimateddisparity values which is limited by the employed
disparity representation precision

Apart from the techniquesthat arebased on optical flow18][218, where practically
continuous range of disparities is outputted, both local and global methods (mentioned in
Section2.2 and 2.3 respectively) assume a discrete seispérities. Thican be defined by
three parameter<Q® and Q which correspond to miniom and maxinum possible
disparities between the viewdisparity range) aniQ. which isa minimal step between
eachof consecutivalisparity valuesexpressed aamultiple of thespatial samplingeriod in
images(quantization step of disparity representation).

For exampleFig. 18a - Kendosequenck if we considera set ofdisparityvaluesin range
from Q p and Q ¢ vwith Q p (all expressed as multigeof the spatial
samplingperiod inimages t hus di spari typinxep roegprertedarieo n
25 discretedisparity values which are mappedth equation(3) to normalized disparig¢s
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Histogram of sucmormalized disparity majs spars€Fig. 18a) asonly 25 discrete disparity

values exist.
In example depicted iRig. 18b (Poznan Carpark sequencQ ptoQ Y Twith
0 @ (thus representation dafisparityi shalffpixeld  p r).etleihistegram is more

dense as total 5 PO tiscret disparitiesvaluesare considered. In computgenerated

examples of Undo Dancer and GT Fly and sequefkigs18cd)’Q®  has been set to a such
valug so after mapping to normalizeddisparity exactly all values are possible in the
histogram(Fig. 18cd).

a) Kendo sequence, camésa b) Poznan Carpark sequence, can3era
"I_DDG., 1 1 1 L 1 1 1 L "I_DDG, 1 1 1 L 1 1 1
0.750 - 0.750-
0.500 - 0.500-
0.250 ‘ ‘ ‘ ‘ ‘ ‘ ‘ - 0.250- ﬂ A
0l ||.|.|.1|.|. UL |||.|.|..1 s o o S _JmmdlhpmulhlulluwﬂllJ|llll|||||||JI|L|||l|L|t||J,5
0 32 64 96 128 160 192 224 255 0 32 64 96 128 160 192 224 255
¢) Undo Dancer sequence, camera * d) GT Fly sequence, came3a
1_[][]1]... 1 1 1 L 1 1 1 L 1_[][]1].. 1 1 1 L 1 1 1
0.750 0.750
0.500 0.500
0.250 0.250
U T l_ T T T T T T T T 6 ﬂ T T T T T T T T T 6
0 32 64 96 128 160 192 224 255 0 32 64 96 128 160 192 224 255

Fig. 18. Histograms ohormalizeddisparity] values inground truth disparitynaps.
The graphs have beesrtically normalized to range [0;1].

Usageof asmall’Q  (e.g. fihalf-pixeld precisionor il g u apixeéloeprecisiorn) leads to

higher precisionof the estimated depth mgpnd likely, higher accuracyput increase the
computational complexity of the depth estimation algorithm as the nurhbatial considered

disparity labels is increased.
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Usage ofa largeQ  (e.g. ceverytwo-pixelo precisior) leads to lowelprecisionof the
estimateddisparity map (and likely, lower accuracyput allow computational complexity
savings.

The dependerycon computational complexity, especiallytire case of beliepropagation
or graphcuts algorithms Section2.3), typically enforces usage of orfiyll-pixel precision
[142[143 corresponding t&2 p.

There areafew papershatconsidersubpixel precise depth maps

In [182 depth map is refinefbr subpixel accuracy witluse of egeamotion of the camera.
Motion parameters of the cameras system are estingtéchcking of feature points. The
paper brings an additional benefit, because the depth indée can be estimated without the
need for disparity computations in each single frardafortunately as the method
stereoscopic video sequence with motion of the camera, it is not suitable for generic cases of
processing.

Other authors[219 have proposed an algorithm for depth map improvement by
anisotropic diffusion. This method provides smooth, ¥pgkcision disparity maps, but
unfortunately it does not preserve depth discontinuities the edges of the objects.

Authors of [18] propose an additiongbrecisionrefinement step, af@gic to the idea
proposed in the dissertation. Usage of optical flow algorithm on the top of-pedigdgation
is proposed, so that the finally outputted disparity range is aomis

The idea of evaluatichy-hypothesis, similar t@roposed indisseration is employed in
paper[22(. A variational segmentation model whiahtendsto decompose an image into
distinct regions, using piecewise smooth functioesnployed to compute a smooth depth
map, basing on multiple depth hypotheses obtained from different matching algorithms. The
certainty of the depth is not considered though, which is a drawback of that proposal.

Regardless of thevorks mentioned above, cuantly, there is lack of fast peptocessing
techniques that could improve tipeecisionof a disparity map and well preserve sahti
edges. This observation is one of motivations of this dissertafio@. author proposes
a postprocessing algorithm that increasesprecision of generated disparity maps
preserves spatial edges and is not computationally expembieeariginal results for such are

presented irfsection3.7.
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2.6. Temporal consistencyof the depth

The straigtt-forward method for depth estimation in video sequences is to estimate depth
map for each frame independentBuch an approach is simple and also allows for parallel
generation of deptmap in in consecutive framé$26q. Unfortunately, estimatiof depth
independently for each of consecutive frameth@video yields with depth maps which are
not temporally consistent due to noise. This manifests as random flacto&tlepth values,
even of objects that are still. Such fluctuationsaaheerse, because they lead to occurrence of
artificial movement in 3D representation. Desired depth map temporal consistency means tha
changes of the depth of objects in time amealated with actual motion of the objects and do
not vary from frame to frame in a random way. Therefore, one of the biggdsllEnges in
this research area how to provide depth maps that are consistent in time.

Typically, depth data for video is estimated independently for each frame of the sequence
Majority of stateof-the-art techniques that tackle temporal consistency, in various ways
expand depth estimation algorithms into time dom@&ar. example, if221] authors propose
to extend standard-deighborhood belief propagati depth map estimation schefi22? to
6-neighborhood scheme by addition of temporal neighbors: from previous and from next
frame. These neighbors are obtained by motion estimation. Therefore, depth value is
optimized with respect to depth valuesmbsequenframes In turn, authors of223 propose
segmendbased approach. In order to provide temporally consistent depth value, apart from
traditionally used spatial matching ofegnents, also temporal segment matching is
performed. Such approach increase complexity of the whole depth estimation process, whicl
already is computationally expensive.

In work [224] a method for estimating temporally and spatially consistent dense depth
maps in muiple camera setupis presented. Authors propdbat for this purpose, initially,
depth estimation is performed for each camera with the ez planaty assumption and
Markov Random Field (MRF) based relaxation at each time instant independénly,
moving pixelsare identified andIRF formulation is updated by the additional information
from the depth maps of the consequent frames through matiopensation. For the solution
of the MRF formulation for both spatial and temporal consistency, Belief Propagation
approach is utilized. Theesults presented by the authordicate that the proposed method
provide reliable dense depth map estimates hathspatial and temporal domains.
Unfortunately the method comprises substantial modification of belief propagation

algorithm, which lowers its usability.
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Although the works related tmatterof temporal consistency, including the mentioned
above, describa huge variety of techniques, still, generating maps that are consistent in time
is still a scientific problem that requires further investigatibims isone of thea u t hgoak 6 s
of the dissertationln particular,the goalis to further study and develop proposal given
the author in [3] and [20], where problem oftemporal inconsistencyis tackled by
elimination of its cause which is existence of noise in video sequenkhesfore, noise
removal techniques are employed.

Noise reduction is a weknown and widely recognized technical field. Wide variety of
examples of noisereduction techniques can be found.g. in [225[226[227]
[228[229[230[231[232[233[234[235. Classical noise reduction techniques aim to
provide a denoised image directly the audience. Ithe case of depth estimation, more
artifacts are allowed, because denoised version of the image is only to be used for depth
estimation. Thus, wider range of techniques can be considEnedgh, he problem of the
noise reduction itsels not a subject of the dissertation.

The authods results and developments related to estimation of temporally consistent depth

by noise reduction are presented in Chapter 3.8.
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Chapter 3. Proposedmethods fordepth map estimation

In this chapter,novel tools for depth estimation are proposed. Fisstheoretical
formulationfor depth map estimation based laximum A posteriori Probability (MAP)
optimization ruleis presented. It is shown what assumptions are required in order to attain
classicaly used Absolute Difference$180 or Squared Difference$181][204 pixel
similarity metrics in formulation oD @ 0 @ ofénction. Those assumptions are themified
and on the basis afttainedresults, a more general solution anfbrmulation of ;4 «F = v <
is proposed The parametersf the proposed probabilistic model are measa@girically
with use of the test sequence set.

Then, similarly,a formulation of| »#= v < functign isvproposedon the basi®f
a probabilistic modelAlso for this model, parameters are measurexbirically with use of
the test sequence set.

Next, assessment of the proposed depth estimation technique with use of proposec
Owo woaad'Yd & i QO fRActodis derdormed. The attagd gains are highlighted.

In Section3.7 a novel tool for refinement of depth map with Nievel Hypothesis
algorithm is presented which increase pinecision andaccuracy of the generatedisparity
map. The gains in terms of PSNR and computational aoxitplare shown.

Finally, a tool for improvement adémporal consistencyof estimated depth mapgth use
of noise reductioms presented alongith its evaluation.

The following Section 3.1 starts with derivation o0 ® 0 ® 0 furiction, based on
Maximum A posteriori Probability (MAP) optimization rule which will used for formulation

of proposed depth estimation algorithm,

3.1. ProposedData Costderivation based on MAP

This Sectionstarts with derivation 60 @ 0 & ofénction, based on Maxinmu A posteriori
Probability (MAP) optimization rule. Attainments of th&ectionwill further be used for
formulation of proposed depth estimation algorithm.

As mentionedn the introduction one of the most crucial aspects in depth estimation is
usage of pixel correspondengegheviews. Basing on similarity metrics between pixels, the
best matching pixel paiare chosen anased to derive disparity/depth.

In most of the workselated toblockimage matchindanddepth estimation in particular

no theoretical foundation is provided to the problem of optimal selection of the best match

47 of 241



Olgierd StankiewicdStereoscopic depth map estimation and coding technigues for multivideo systems

[19)[17][126[180[181[204]. Surprisingly often simple 8ms of Absolute or Squared
Differences $AD o SSD in blockg similarity metrics are considered80[181][204
without in-depth studiesr considerabn.

Such empirical approackvithout theoretical formulations easy, buhas disadvantages:

- It does not provide scientific foundation for the considerations,

- As there is nonathematicamodel, the probability that the chosen match is the best is
unknown.

- Thus itis difficult to incorporateempirical proposals as a part of broader framework,
like optimization algorithms, where apart from pixel similarity metric (referred to
asOw o w g, alsomther terms are uséi( W& i QOJQE € 0 € i 0O

Therefore, in this dissertationa theoretical formulation, based on Maximum

A posteriori Probability (MAP) is derived.

Let us consider disparityestimation in a case of two cameragich are perfectly
horizontally aligned with parallel optical axes. Thiews are rectified152[154 and the
distortions[152)[154] are assumed to be removed. Therefepgolar lines are alignedith
horizontal rowsn the images

Images from the left viewd ; and from the right viewy ;; havethe same widthW and
the same heighH.

For given rowof pixels with coordinatel in both views observed are pixduminance

valuesin theleft view and in the right view

~

D B R § 1 luminance values in the left view,
FAY (B R

Y i 1 luminance values in the right view (both indexed from Yo

All of those araandom variablessonsideredo havebeen observednd thughese variables
constitute oua posteriori observation set

We search for disparity valu® ; for eachpixel at coordinatesudo (in the right view)
which would maximize probability offy Qy  under the condition of a posteriori

observation®f luminancevalues in both viewsThis probabilitywill be demarked a§  y :

Nrr kN Qp OpM MR AYRAYRMBARY 5 h (10

where 0 ;D B R  RY ; AY ;B AY ; is overall conditioal expressiomf observation

of luminance values
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Therefore MAP rulefor selecting optimal disparity valuB ° can be formuted as

follows:

z

Q+ | Amhh (11

In order to allowmthe depth estimation algorithm to utiee MAP rule (11), the termm) j; has
to be modeled basingplelyon values that are knovafter theobservationa posteriori) e.g.
luminance values in the left vietv; i) B8 F)  and in theight view'Y ; RY /8 RY
We will transform equatio(iL0) with use of Bayes rule:
RO /O M(EH N6 MOD , (12

expressed itheform below:

v o né 0 o0Y (13
no —T]O
Thus we get:
n UHFUHFBFU ﬁV'YhF] - /8 AY Ry QL 14
Nhn M) - IR B X X K R h ( )
NORrMD MR FRYRHAY R rBhYﬁ

which, by rearrangement 08 <Q , termfor eachluminance separatelgan be writteras:

. NN OBH DAY NRAY QR 8AY 0 3 Qp 8 (15)
M Rf N0 B M AYrAY B RAY ¢

Assumed ispresence of noisehich has independent realizations in each of\ilegs.

Therefore,each of pixel luminance values in the left view; (at coordinatesthu) is
indepemlent fromeach ofpixel luminance values in the right vieW;, (atcoordinates hu).

Moreover, when considering thdeenominatorof (15), it can be assumed thalso pixel

luminance valugin the left viewD ) 8 )  are independent from each other, as do
pixel luminance valued the right view ; RY I8 RY . Specifically, this also holds true
for the soughpair of pixels matched by disqrity Q ;, , as denominator of equatidh5) does

not consider any specific matching or correspondence of piagl#ose probabilitiesre not

corditional with respect t@2 ;, . Thereforewe can simplify thedenominator o{15) as:
nogM MR ;AY;AY ;B ARY N Og O nYp 8 (16)
a p&o B
A similar simplification could be done ihecase othe nominator of15), but here, on the

contrary,probabilities of0 ; SQ ; and’Y ; Q are conditionglbecause are considered under

the condition ofoccurrenceof Q j;, .
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Such condition oR) ; means that in the given pixel with with coordinadéey for which
we calculate) j , a disparity valu€Q j is assumed, so thawo pixels, in the left and in the
right view, correspond to each other. Such pair of pixels is not independent, and therefore
probabilities of their luminance valugs, sh andb 2 ;h cannot be simplified as if16).
Such exception occurs, whenordinatedin the left view correspond to the same pixel in the

right view with coordinaté, which is true whermxandi are linked by disparit{ f, :

I w (xexpresses the coordinate in the right viewwhich’Q j; is considereji
C 17
a w Qp8

For other pairs of pils (not corresponding to each othegndom variables describing their
luminance values are independent, likeha case of(16). Therefore, we caexpress) j
from (15) as:

N 0 O N Y5,
. B h oo 8 h o L - , L
NAnR M 0 qn5hYs L7 N Qr 8 (18
N gy O 1 Yo
B8 B8

Also, with the exception for the mentioned c#%@é), the probability distributiongelated
ton 05y andn Yy are independent froffR ; (becausehose randonvariables

represent pixelthatare not connected by dispar®y;; ) thus

A g O N Yo
. B h oo 8 h o L - , L
N#nR M 0 qn5hiYs Ly N Qr 8 (29
N gy O N Yo
] ]

It can be noticed, thall B 8 termsin the nominatocan be simplified withb 8 terms

in thedenominatoof (19). This applies to aliandi , with except fothe cas€17):

o 0 ghYr K QR . (20)

gE O R

It can be futher sea, that termf) O . is probability distribution of luminance values

in the left view, which isindependent from the corresponding disparity valdg and

therefore can be expressedjas ; . We finally get:
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Nk ks S oy 0 phYg Dy QR . @D

The derivation offormula (21) is one of thekey achievements of the dissertation.
It describesprobability i) 75 that given pixel with coordinatedto has disparityQ 5 under
the condition of a posterioobservationsof luminance values in both views.

Therefore, selection of2; which maximizesn  fulfills Maximum A posteriori
Probability (MAP)rule (11). In Section3.4 it will be used in order to propose a novel depth
estimation method. In the meanwhile, $ection3.2, it will be shown how the mentioned
equation(21) can be simplified in order to attain classical Squared Differences (and thus Sum
of Squared Differences for blocks SSD) and Absolute Differences (and thus Sum of
Absolute Differences for block§ SAD) pixel similarity metrics that are commonly used in

depth estimation algorithms.

3.2. Simplification of Data Costto classical SSD and SADsimilarity
metrics

Let 6s now anal {2%,ederitett én the (pre\aotisteotion expressing
probability fy 5 that given pixel with coordinatesito has disparityQy, basing on
Maximum A posterioriProbability (MAP)rule. In this Section a simplification of(21) is
shown, which can be used #dtain classical pixel similarity metrics: Squared Differences
(and thus Sum of Squared Differeader blocksi SSD) and Absolute iferences (and thus
Sum of Abstute Differences for blocks SAD). The presented simplification iisteresting as
it shows the set of conditions (resulting from assumptionsyhich, if are met in a practical
case, indicat¢hat usage of SAD or SSD is optimal from Maximum A posteriori Probability
optimization point of view. Therefore, it will be shown in what cases, usage of SAD or SSD is
optimal. It can be noted though, that the presented reasoning does not limit thatiappdic
SAD or SSD pixel similarity metrics to the presented cass

Termsn 0 ; andn 'Y j areprobabilitydistributionsof luminancevaluesin the left and
right view respectivelyThey can simply be measured hstogams of the left ash the right
view. The interpretatiorof these termgs that correspondendetween pixels with luminance

values that occur more often is more probablbée mentioned terms aaitted by the state
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of-the-art pixel similarity metrics proposals. Sucborrespnds to a situation, where
histograms of the compared images are flat.

Similarly, n 'Qy , probability distribution of disparity valueg ; can be estimated as
histogram. It can be imagined, that this brings some quality to the distinction betvwatlen de
planes (e.g. foreground vs. backgrountiis also is omitted by the stabéthe-art pixel
similarity metrics proposals, which corresponds to a situation, where all disparities are equally
probable.

The termn 0 zhY; $Qp is a probability that luminance valye . of pixel in
the left view and luminance valté ; of pixel in the right view will occur, on the condition

that those pixels are corresponding to each @hdthe occurred disparity iQ , .
Again, according to Bayes rulein form (13), the termn 0 ;AYf Qp can be
expressedlternatively a®ither
n o HF,FiYF,'Qﬁ nNO  r Q) Yr O ﬁF\FDFI or as (22
NOo rfYRQr AYs O 5 YRQR . (23

Those forms are equivalent and lead to similar formulatiortheonvork will focus on the
latter (23) only. Termn 'Y j simplifies withthe term in the denomirat of (21) shown on

page51:

N &k om0 LR YRFQR . (29)

h

In order to understand the interpretation of usage of SAD or SSD similarity metiic as

model forn 0 .y YRRy ,we have to do the following assumptions:

- Thepresence o&dditive noise the same in both of the views (in particular, with equal
standard deviatiop).

- Lambertian model of reflectancein the scene, which means that the obsetigid
intensity of giverpoint in the scenes independent from the anglewaéwing, and thus
is equal amongst the views.

- Compatible color profiles of the camerasso that giverdight intensity is represented
as the same luminans&lue® among the viewgin the consideratigrfor given pair of

corresponding pixel8 ; in theleft view andY j in the right view)
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Gaussian distribution of the noise
Let us first consider the presence @aussian noise For such, theconditionsmentioned

above carbe mathematically expressed as:

Opx O0woi i Qe (25
Yrx 00061 | fQiE (26)
where Ow 0 i | fQdsenormal probability distribution, with mean valde and standard

deviation, .
The term O . Yq KQ is corsideredand thusrandom variabléY  is assumed

to be a posteriori observationwith given, concrete valudalso as Qp is considered
conditionally too), thus® 'Y j. Thereforethe pixelsare assumed toorrespond to each
other and thus bothandom variablesave the samexpected valugdy . Moreover the

difference in luminance betweetr . and 'Y results only fromthe probability

distribution'O® 6 i i Qed . of the noisgwhere both'Y ; andb . are oura

posteriori observations:

n o ﬁﬁ'YﬁF'Qﬁ ?O&@D# , (27)

thereforewe get

f]ﬁﬁ i 3—_:ﬁ\@9 i i . (28)

h n

We are looking for Maximum A posteriori Probability and thus search for the best

matching disparityQ which has the highest (maximal) probabilify; . It is equivalent to
finding Qwith maximala € 2, . After natural logarithm on both sides of the equat®n

taken

Q&R GEMRQE  aE WO G M it (29

It can be noticedhatif all terms except the last oifen the rightlare omittegdthe equation

(29) simplifies to SSD formia for pixel similarity metric:

a € M — 0 5 Yy . (30
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The terms omitted in such way, Q; andn 0 andda € ;M¢* correspond to:
probability distribution of disparity values, probability distribution of luminance values in the
left view and constant offset, respectiveBuch omissioncould be justified if all of those
terms were constants which would be true if both of the mentioned probability distributions
were uniform.

We can thus concludehat usage of SSD(Sum of Squared Differences)metric is
optimal (from Maximum A posteriorPraoability point of view)for the case opresence of
additive Gaussiannoise independent between the viewsuniformity of distributions of

disparities andluminance valuesandLambertian model ofreflectance

Laplace distribution of the noise
Now, letus consider the presenceldplace distribution of the noise.If such isassumed

similarly as inthecase of Gaussian, we can define the following:
Op* D OR & GOQ (31)
Yex 00N a @ (32
where 0 @O & W@ Laplace probability distribution with mean value® and

theattenuatiorparametera
Analogously to the case of Gaussian distribution aboeecan come to conclusion that

the probability distrition is in form of Laplace function

i h h

(33

¢

0 i i —O-MoN

h

and with use the same tri¢ks inthe case of Gaussian noise)th taking logarithm of both
sidesof (33):

Gy OEMRQR  aé ROy aseam — D (34)

Here, we can see thi@ilall terms excpt the last on€on the rightjare omittedthe equation

(34) simplifies to SAD fornula for pixel similarity metric:
a € Mhn -0 o YR (39
Again, the omitted terms) Qf andf 0 ; anda & &0 correspond to: probability

distribution of disparity values, probability distribution of luminance values in the left view
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and constant offset, respectively. Sushissioncould be justified if all of those terms were
constants which would be true if both of the mentioned probability distributions were

uniform.

We can thus concludehat usage of D (Sum of Absolute Differerces) metric is
optmal (from Maximum A posteriori Plability point of view) for the case giresence (
additive Laplace noise, independent between the viewsuniformity of distributions ¢

possibledisparities andluminance valuesandLambertian model ofreflectance

The abovementionedheoretical derivations are novel, mainly because they shaavset
of conditions which if are met in a practical case, indicate that usage of SAD or SSD is
optimal from Maximum A posteriori Probability optimization powit view. Of course, the
presented reasoning does not limit the application of SAD or SSD pixel similarity metrics to
the presented cases only and thus usage of SAD or SSD can be found to be optimal in oth
cases and under optimization on different bdss tMaximum A posteriori Probability.

The question ariss, whether thoseconditions (resulting fromthe assumptionsmade
during the derivation of SSbasedandSAD-basedequationg30) and(35) ) pixel similarity

metrics forO @ 0 & § d@rd niet in practical casesThis will be verified inSection3.3 below.

3.3. Verification of the assumptions

In Section3.1, equatior(21) has been derive(dee pag&1l), expressing probability f
that given pixel with coordinatesto has disparityQ ; , basing on Maximum A posteriori
Probability rule. In Section3.2, under some assumptions, this equaiidh) has been
simplified to forms related to SSBnd SAD (equations(30) and (35) on page53 and 54)
similarity metrics, respectivelyn this Sectiona verification ofthoseassumptionpresented
in Section3.2 will be presentedon basis of multiview video test sequence (§&g. 9 on
page23, Tablel on page?4).

Let6s remind what asirsSeag32 ons have been |

- Independence dhenoisein the framegin time domain and in interiew domain)

- Gausgn (or Laplace) distribution ahenoise,the same among all of the views.

- Uniform distributions of luminance valués the views.

- Uniform distributions of disparityaluesin the views.

- Lambertianrmodel ofreflectancen the scene

- Color profile compatibility among the views.
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The assumptions will be verified in the mentioreder. Firsindependence of noise the
frameswill be checked, then the shape of the noise distributiGasig&an or Laplace)

In order to perform the analysis of the noise existing in a practical thsamise from the
multiview video tessequeneswill been extracted with use of some proposed methiod.
description of this noise extractionmethod in presented inthe following subsection.

Then, Iasing on the extracted noise, its characteristidls be evaluated and presented.
Finally, a model fo the noisewill beendeveloped which is then used in the further part

of thedissertation

3.3.1. Noiseextraction technique used for theanalysis

The goal ofSection3.3 is to verifywhether the conditions assumedSaction3.2 are met
in a practical case of multiviewideo sequences set, developed by ISO/IEC MPEG and used
in the dissertationHig. 9 on page23, Tablel on page24). This requires that theoise which
is present irthevideo sequencdsas to be extractddr analysis.

The noiseexisting in a video sequencan be simply attained as a difference between the
original and adenoised version dahe given sequencelhere are many methods for noise
reduction in video sequences).[228[229[230[231][232[233[234[23], all of which can
be used for noise extragti. The most advanced ones includeatial filtering temporal
filtering, Kalman filtering motion estimation andackground extractiotechniques. In this
chapterthough the purpose of noise reduction is in faotely noise extraction fofurther
analysis. Therefore, there is no need for use of advanced techniques, ati: thingplest
and the most straightforward one is used

For the noise analysis ithis chaptera very straighforward techniqueas exploited, in
which fragments ofsequence representingonly still scenes (without any movementare
used.It is assumed that eadtame ofeachsequence represents the same image altered only
with different noise Therefore theimage withoutoisecan be easily retrieved, as average
of the franes.

Denoised image0'Q ¢ ¢ "QiuD tan thus be interpreted as expectedue estimator

00i & adx of many differentealizations of random proce&i ¢ Ao

0Q¢ ¢ QD ’Qg "Oi & botd (36)
where™Oi & a0 would express luminance value at coordinatesin frame with indexQ
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The sought noisealued ¢ "Qicf® , can behussimply calculated as:
0 ¢ Qi O Gacdy '0Q¢ ¢ QN0 (37)

In a casewhenframes™Oi & adfxo are independent from each other, estimé®é) is
unweighted. Otherwise, estimat(86) is weighted but it can be noted that the error of the
estimdion decreases withh . Therefore, even for moderate valuesioflike the length of the
considered sequence#)e error is negligible.

It can be noticed thahenoise value$ ¢ "Qicf® that result from such operati¢87) are
realnumbersTherefore, hey cannot be representasl integersn a classical $it dataformat
without loss To avoid thatthe resulting nise values have bearsedin their original form
(real numbers storedwith single floating-point precision). However, at some part of the
presented considerations belawe noise valueare analyzed with use of histograms. In such
experiments, the probdity distributions of noisevalues 0 ¢ "Qicf@® are measuredy
counting inbins, with binsize equalto P 0 (pof guantizaion step of the luminance values
(e.g. iN"Oi & Gudxd , where luminance valuesestored in 8bit data format)

Therefore, given value of the noise¢ "Qicfd is counted in histogram in bin identified
by indexd ¢ Qi Q6 "Oxy'‘@Rnmtified as follows:

0 ¢ Qi Q6 QRIOMhE Qicfed P @, (38)

where@@depicts the flooroundingoperator.

The presented noise extraction metlas been appliedn the sequences selected for the
test set in the dissertatioRig. 9 on page23, Tablel on page?4). Those are mostly moving
sequences, which would disallow usage of the presentedthigoiTherefore, only regions
and frame ranges that are sfitir a considerable amount of tim@able 3) have been
considered It is worth to notice, Hat Poznan Street, Poznan Hall and Poznan Carpark
multiview video test sequences have been used in dhiginal, full-length (uncut) version
(versions included in ISO/IEC MPEG multiview video test are cut to frame range where there
was some movement).

In all of theused sequences, range of frames and spatial regions, in which the scene is still
have been extracted manualljhe selection of used regions is summarizeBlign 19 (spatial
positions of selected regions) and Tiable 3 (frame ranges and the area of the marked

regions).
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dPoz3tarne e t O seq!l OPoznan Carpar k¢

OLovebirdlo set

- \

o
(9]

oPoznan Hal l

= L B
y i
1fa__
L

!F”
oBall oonso seq ONewspaper o sec

Fig. 19. Regions in the multiview video sequence set that has been manually markkd as sti
for the sake of estimation of the noise. Unused regions haveria&ed in gray.

In column E inTable3, number of pixels that have been marked as &iij. L8) for each
of the sequences is shown. In general, sequences with lower resolution (Column B) have
lower number of pixels per view amer frame than sequences with higher resolution. On the
other hand, Column F iable3 summarizes the total number of pixels in regions marked as
still (Fig. 19) per view, but in the whole analyzed range of franfedle3 column D).

Those numbers are provided hereTable 3, because they mentioned duriveyification
of statistical hypothesespresented fidther in Subsections 3.3.2 to 3.3.5.

Computergenerated sequencesGT Fly and Undo Dancer have not been used for the

analysis of noise, clearly because there is no noise in those sequences.
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Table3. Multiview video sequencesgsedfor analysis of the noise.

A. B. C D. E F
. Total
Areaof regions
. | number of
Sequence : Frames| marked as still .
Resolution Camera . pixels
name used |(number ofpixels
. marked as
[ view / frame) | .. .
still per view
Poznan Street | 1920 32 563 047 18017 504
Poznan Carparl x| C2nonXkel, 3CCD 1, 587 030 37 569 92
camera =
Poznan Hall 1088 32 1384 2871 44297 184
Point Grey Flea camel
Lovebird (CCD), Moritex 64 105984 6 782 976
ML-0813 lenses
1024 Point Grey Research
Newspaper 7X Flea camera with 32 71680, 2293 760
68 1/3-inch Sonyenses
Balloons XGA CMOS; It 48 27648| 1327 104
Kendo RGBRBayer camera Movingseq.¢ no still regions
GTFly 1920 Computergenerated sequencesno noise
UndoDancer x1088 Pulerg a

For Kendo sequence it was impossible to estimate the noise with use of the technique
described in 3.3.1, as the whole scene is moving. Instead of that, a sequence recorded with tt
same camera systgifiable3) has been usedthe Balloons sequence.

After the noise has been extracted with the method described above, the verification of the
assumptions made in Section 3.2 could be started. Statimgerification of the assumption
about independence of the noise in subsequent frames in the multiview video test sequence

the results are presented below.

3.3.2. Independence othe noisein the subsequentirames

This Subsectiorpresents verification of thassumption of independence rajise in time
domain, particularly in subsequent framesanalyzed video sequencdsrst, the noise has
been extractedrom the original test sequenceqTable 1 on page24) with technique
mentioned irSubsectior8.2.1.

In order toverify the hypothesi®f noiseindependencehe following metricshave been
used

- Pearsorcorrelation (linear) calculated for each pair of subseqguantes,

- 2-dimensional histograms of noise valuesdach pair of subsequent frames,

- oXXindependence test of noise valfieseach pair of subsequent frames.
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As a first check,linear correlationcoefficient has ber evaluated for each pair of

subsequent frames in each of considéiedble 3) test sequences:

G¢Qidd (¢ 0BEQ o (& i Q

06§ o : (39
béQifd ¢ W beQi B & iQ

The results for all pairs of frames in form of graphs are attached in Appenéig, Bil to
Fig. 86. It can be noticed, that for some pairs of frames, the linear correlatesficent is
higher and reaches even level of abod205 (Balloons) e.g. inFig. 20. Apart from the
value itself,it can benoticedthat all of the grapk are quite random, fluctuating on both

positive and negative valueshich indicate that there is no linear correlation between noise

in subsequerframes.

PCG,, Balloons- linear correlation coefficient for pairs of subsequent frameisl andi

0.15 e Camera 0

= Camera 1

= Camera 2

e Camera 3

= Camera 4

= Camera 5

Camera 6

Fig. 20. Linear correlation coefficient measured for tsudbsequerframes,
indexQ p and indeXQfor Balloons sequence.

PCG Balloons- linear correlation coefficient for pairs of subsequent frames,
#.1,i

sorted in ascending order
0.15 ——Camera 0

= Camera 1

0.1

= Camera 2

sqrted = Camera 3
idx

0.05

0

= Camera 4

-0.05

———Camera 5
-0.1 T== Camera 6
-0.15

Fig. 21. Results fronfig. 20 sortedin ascending orddf ¢ i & Q. inear correlation
coefficient measured for twaubsequerframesfor Balloons sequence

As the results ifrig. 20 are difficult to interpret, the values of correlation coefficient have

been sorted in ascending order (from the lowest &alue to the hightest) arabain,in that
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newform, presented iffig. 21 It can be seen, that high levelsiofy &alues occur rarely and
that in the most of frames, 6 danges from0.05 to 0.05 which is negligible.

Moreover,even higher values (likeé.1295for Balloonssequence or abo0t056 for some
Poznan sequengedo not provide evidence that the random variables are linearly correlated.
Also levels of the measured correlation coefficitartother sequencd3able4) indicatethat
the noise insubsequenframes is not linearly correlated. Bveragethe linear correlation
coef fi ci e®Ol-0.03swhiehlisoeagligibleN

Table4. Linear correlatiorcoefficient calculated over pairs of frames in test sequence set.

S(—;g:ﬁgce i Helrp g H |H| I d tre |7 He Fr
PoznarStreet 0.0569 0.0142 -0.0569 0.0344
Poznan Carpark 0.0561 0.0158 -0.0561 0.0533
Poznan Hall 0.0211 0.0084 -0.0211 0.0138
Lovebird 0.0396 0.0117 -0.0396 0.0339
Newspaper 0.0360 0.0113 -0.0360 0.0293
Balloons 0.1295 0.0325 -0.1163 0.1295

As mentionedabove the performedexperimens indicate that the noise irsubsequent
framesis not linearly correlated. Of coursdinearcorrelationis notthe onlyexisting form of
dependence between random linear variables.

A simple and robusinethod of verifying whier there is any dependence between two

random variables, e.g. andf is the usage of formula:
AR Al (T h (40)

which is true only isuchtwo variables andf are independent.

In order toperform suchverification the twodimensional histograms @f ¢ "Qici@b VS.
0 ¢ Qi ‘@ have been measuredn exemplary histogram has been presentefign22.
Onre axis of the histograms relates to the values of noise in the fi@aed the otheaxis
relates to the values of noise in fraifee p. The analogous histograms for other sequences,
averaged over all frames have been gathereBign 23 (in the same presentation form
asin Fig. 22).

If there would be any dependence between those two random variables (modeling noise it

frame" @and"Q p), there would be an asymmetry in the graph, related to the faq@t)as

not meet.
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Noise;i1(X,y)

8
MAX

Noisej(x,y)

-8

Fig. 22. Exemplary ot of two-dimensional histogram df ¢ "Qicf® vs.0 ¢ Qi ‘@ for
Poznan Street tesequence, camerafdame 0 Oneaxisof each histogram relates to the
values of noise in the frani@and the otheaxisrelates to the values of noise
in frame’Q p. The same visualization method has been us&ir23.

Camerandex

Sequence

Poznan Street
(cameras 0..8)

Poznan Carpark
(cameras 0..8)

Poznan Hall
(cameras 0..8)

- * +
+ %+
+ %+
+ * |+
+ * |+
+ * |+
+ * |+
+ * |+

Lovebirdl
(cameras0..8)

|+ * 4+

Newspaper | & | &% | # | # | # | # | # | # | #

(cameras 0..8)

Balloons - ™ * * * * *

(cameras 0..6)

Fig. 23. Plots of twedimensional histogram df ¢ "Qicf® vs.0 ¢ Qi ‘@ for various
test sequences and cameras, averaged over frames. The plots are prefenszariavay as
in Fig. 22 butfor the sake of brevity, visualization of axes has been omitted
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As can be noticedFg. 23), the graphs are separal{#0) in both dimensions which
indicates that the random vaioles are independent and thus that the noissulisequent
frames is independent.

Apart from such visual verification, the independence has been tested mathematically.
Given normalized 2limensional histogram (depicted 1y O operator, with bins desceld in

(38) on pageb7) of noisevaluesin subsequent pair of fram&sndQ p:
00 € Qi ¢ Qi @ | A (oSN (I (41
histogram of noise values in frarke
00 ¢ Qicfd A Q) (42)
and histogram of noise values in frai@e p:

00 ¢ Qi ‘o | Q 1, (43

we assume that those normalized histograms correspond to probabilityudiistis of noise
in the corresponding cases. If the noise distion are indegndcent between the frames, then

according tq40), the expected distribution & et will be:
o oeh Q) o0Q 1. (44)

The energy of difference, between the expected distribiponaz i  and the observed one
% | i has been used in order to perfoiim] independence test.
C

R 4
@ i 8 (49

O

«©
Q:J(

R
5 is a set of possible noise valuégange[-8¢ 8] has been selected in order to cover the
whole usable range on noise valleg. 22 and at the same time, to avoid small number of
sampels in histogram bins, which is desired in case(#i test. Therefore, ¢ |f
which resultsn totale  p xof values.

The working null hypothesis is that the observed distributions are dependent.

The working alternative hypothesis is that the observed distributions are
independent.

Now, number of degrees of freedom will be calculated, whiagqgisal to the number of

cellse 3 , minus the reduction in degrees of freed@i2 . As the expected distribution has
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been estimate(t is not known from a theoretical mogiethe number of degrees of freedom
have to beeducelby’ Q™Q < + p(the number of rows and cols (#5) is equal ta3).

Finally, thenumber of degrees of freedom is
QQg «2> + « p CU.Q (46)

The confidence level has been assumed to be 0.05 and thus the corresponging

value calculated from leftailed... distribution,is:

8 C W& g T X (47)

For each of the sequences and each of viewsg statistic has been calculatednd

compared ta.. g value
5 8 g (48)
As left-tailed? distribution 5 usedyalue of... g which is greater oequal thamp
(measured.. g statisticis greater/equal than. g ) means that the null hypothesis

cannot be rejected and thus the observed distrimibbthe noisevaluesmay bedependent.
Value of ... g which is smaller thanp (measured... g statistic is lesser than

8 ) meansthat the null hypothesis must be rejected and thus the observed
distributionsof the noise valueare independent (#te givenconfidence level).

From the results presentedTable5, it can be seethat... g is definitely below 1
(ranges from 0.0145 to 0.038uhich is negligiblg. This leads to a conclusion that the null
hypothesis has to be rejected. Faily, this provides evidence that the noise in subsequent
frames is independent.

Table5. Results otXXYindependence tedor pairs of succesive frames of
the test sequenceBhe results have been averages over time and over cameras.

Sequencename Y
Poznan Street 0.0145
Poznan Carpark 0.0249
Poznan Hall 0.0194
Lovebird 0.0387
Newspaper 0.0269
Balloons 0.0307
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In Fig. 23 it can be noticed that ithe case ofLovebird 1 sequence, amera2 of has
slightly different graph than other cameras. It can be supposed that this particular view has
been acquired with dérent camera settings. Similar phenomenon can be observed in results
presented in theextSubsection

Now, it has been prowethat the noise in succesive frames of tested multiview video test
sequences is independent. Taiges positive verification athe first of the assumption made
in Section3.2. Next, verified will be the second condition which consists in assumption about
Gaussian or Laplace distribution of the noise in the video sequences. The results are provide

below.

3.3.3. Probability distri butions of the noise

In Sectior8.2 it has been showthat from Maximum A posteriori Proability point of
view, apart from other conditionsisage of SSD metric @ptimalwhen condition of presence
of additive Gaussian noise is meet and that usage of SAD metrignsabpthen condition of
presence of additive Laplace noise is meletre, those conditions will be verified on practical
example of multiview test sequencesoiir those sequences, noise has been extracted with
use of the tealique mentioned irBubsectior3.3.1. In the previousSubsectiont has been
proven that the realizations of noise smbsequenframes of the tested sequenca®
independentTherefore thesought probability distributions of the noise can be estimated with
use of histogramsalculated over all frames of each sequence. If the noise was not
independent between the frames, averaging over the frames wailtisgcallyincorrect.

For the reasns stated irsubsectior8.3.], the histogram analysis of the noise is performed
with use ofbins) ¢ Qi Q6 "Cay'@Sfied in(38) on page57, with bin sizeof ¢ o Of the
normalquantizaibn step of the luminance valuge smallest representable luminance value
difference)

The results hae been presented iRig. 24 - Fig. 30 in form of average (over htameras)
for visualization The soure data an be found in Appendix iRig. 87 - Fig. 102

As can be noticed, none of measured distribution of the noise, extracted from the test
sequence setiepresentsa Laplace distribution. This means that usage of fornf8&
(presented on pad®t), which connects Laplace noise distribution with[BAixel similarity
metric cannot be justified basing on MaximunA posteriori Probability (MAP) ruleThis is

a very important result, because most of the staitthe-art depth estimation algorithms
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[19)[126[147[143[189[19[188[201][204 use some form of SAD pixel similarity
metric.

In generaljt can be said, thahe measuredoisedistributionsarevisually very similarto
Gaussgan (rorma) distribution.For the visual comparison, Fig. 24 - Fig. 30 (and inFig. 87
- Fig. 102in the App@dix), apart from the measured data (marked in continuous blue line),
on the same figures, also Gaussian (normal) distribution has been dépiatkdd in dotted
red line) Thevisualized Normal distribution has the same parametend, (Table 6).
There are some exceptioftm this mentionedisimilarityo to Gaussian distributiothough
described below.

In the case ofPoznan Street, Poznan Carpark and PoznarHall sequences, the
measured distribution is slightly skewed in such a way, that the maximum of the distribution
is at position of about 0.4This may be a results of internal noise reduction algorithm
implemented in th&Canon XHG1 camera or a results dfiternal nonlinear processing of
data from the camera sensBtandard deviations are very similar among the vigwable6),
but there are little differenceamongthe sequences. Those are 2.45 (Poznan Street,), 2.28
(Poznan Carpark) and 2.01 (Poznan Hall).

In thecase 6 Lovebirdl sequence, standard deviations taes lowest in the wholtestset
and are vengimilar across all of the camerast level of abouf.66. The onlyexcepion is
camera2, where the standard deviation is abo®ttines higheii it has been measured to be
about 1.65 This might be evidence that this particular view has been acquainted with
different parameters e.g. the exposure time has been shorter, which has been corrected with
higher amplification gain, which also amplified the noise. Apart from that anomaly, the
Gaussians areell-symmetric and centered @alue of 0. This means that the distribution of
thenoise in such example is waéntered.

The probability distribution ofthe noise in Newspaper sequence is very similar to
Gaussian distribution in all of the cameras. Btendard deviatiaare very similar among
the views at a level aibout 1.23.

The distributionsof Balloons sequencsstrictly follow Gaussiarfibelld shape. Alschere
standard deviations are very similar among the views, at level of about 1.01.

For Kendo sequence it was impossible to estimate the nweile use of the technique
described in 3.3,1as the whole scene is moving. Instead of that, a sequecmeled withthe

same camera system has been iidbe Balloonssequence
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Poznan Street (average) - probability distrubution of Noise values
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Fig. 24. Measuredrobability distribution of nois@aluesin Poznan Street sequence
(averaged over all vieysestimated with histogram bin sizeeqf,
See(38) on pagex7 for more details.

Poznan Carpark (average) - probability distrubution of Noise values
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Fig. 25. Measured mbability distribution of noisealuesin PoznarCarparksequence
(averaged over all vieysestimated with histogram bin sizeeqf,
See(38) on pageb7 for more details.

Poznan Hall (average) - probability distrubution of Noise values
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Fig. 26. Measured pbability distribution of noisgaluesin PoznarHall
sequencgaveraged over all vieysestimated with histogram bin sizerqgf,
See(38) on pages7 for more details.
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Lovebird 1 (average) - probability distrubution of Noise values
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Fig. 27. Measured mbability distribution of nois@aluesin Lovebird 1sequence
(averaged over all vieysestimated with histogram bin sizeeqf,
See(38) on pagex7 for more details.

Lovebird 1 (camera 2) - probability distrubution of Noise values
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Fig. 28. Measured mbability distribution of nois@aluesin Lovebird 1sequencécamera 2),
estimated with histogram bin sizeeqf (See(38) on pageb7 for more details).
In the case of this camert#)e standard deviation is about 2.5 times higher than in
other camerasf Lovebird 1 sequence..

Newspaper (average) - probability distrubution of Noise values
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Fig. 29. Measured pobability distribution of noisealuesin Newspapesequence
(averaged over all vieysestimated with histogram bin sizeeqf,
See(38) on pagex7 for more details.
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Balloons (average) - probability distrubution of Noise values
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Fig. 30. Measured mbability distribution of noisealuesin Balloonssequence
(averaged over all vieysestimated with histogram bin sizeeqf,
See(38) on pagex7 for more details.

Table6. Summary of the Gaussianodel-
parameters of the noise distributianghetest sequences.

Sequence Standard Max!mqm ppmt
Name deviation of distribution, Notes
related to EX

Poznan Street 245 0.41
Poznan Carpark 2.28 0.42 Measured dstribution is skewed
Poznan Hall 2.01 0.51
Lovebird, w.0. cam2 | 0.66 0.02 Camera2 of Lovebirdl sequendeas
Lovebirdl, camra?2 1.65 0.01 vastlydifferent noise profile
Newspaper 1.11 -0.02
Kendo 101 0.01 Kendo is a mvingsequenceg values
Balloons ' ' takenbasing orBalloons sequence onl
UndoDancer .
GTFly Computergeneratedsequences, no noise

In this Subsectionprobability distributions of the noise measured in the test sequences has
been presented. Visually, it was notidbat undoul#dy thosedistributionsare not Laplace
distributions whichviolatesone of the possible assumptions mad8ewction3.2.

Although it was also noticed that the measured distributionsisually very similar to
shape of Gaussian function, the statistical proof for that wagrowtded. This will be the
goal of the nextSubsection where assumption about Gaussian shape of the measured
probability distributions will be verified statistically with use @& E Eoodnesf-fit

statistical test.
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3.3.4. Chi-square test forGaussianprobability distribution of the noise

In previousSubsectiont has been shown thatea distributions presented ig. 24 - Fig.
30 (and alsoin detail in Appendix in Fig. 87 - Fig. 102 undoubedy are not Laplace
distributions, buin general follow the shape of Gaussian functiéet it has not been proven
whether those distributions aredeed Gaussianor not First at all, the shape of noise
distribution slightly varies among the views. Also, in some of the sequences (Poznan Street,
Poznan Carpark, Poznan Hall) the distributisrskewed, such that its maximupoint is
displaced in relation to the expected valliak]e6).

Therefore, toprovide a proof, astatistical test has to be performed. As measured
histograms of theconsidered distributions are availabktatistical 6XX) goodnessf-fit

statisticaltest... has been used.

In fact, the following reasoning will show that, in spite of the visual similarity, the
measured distributions are rgaussians

The working null hypothesis is that the observedistribution is normal (Gaussian)

The working alternative hypothesis is that the observed distribution is not normal
(Gaussian)

As stated infSubsectiorB.3.1, the histogram analysis of the noise is performed wsihof
bins. T EOA" &l yefigd in(38) on page57, with bin size ofe of the normal
quantization step of the luminance value (which corresponc tg of the smallest
representable luminance value differefcEpr the practical reasonsgob of thedistributions
(for all sequences and all viewsas been observed with use 256 bins. As the dynamic range

of noise values is-2 5 5 é 2 ®48rémevalues), theobserved rangef noise values in
measuredhistograms i$-8;8], because— .

In the analyzed case al(X) goodnesof-fit, the observed distribution thus will be
histogram of noise in given view/sequence and the expected distribution is Gauksian. T
standard deviation and the mean of expected distribution has been estimatext kan@vn

from a theoretical model) the number of degrees of freedom is:
NQ ¢quep ¢ CULO (49

The confidence level has been assumed to be 0.05 anthéhcsrresponding .

valug calculated from rightailed ... distribution,is:

CWOPTP XTI (50)
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For each of the sequences and each of views statistichas been calculateand

compared to.. value

s &
Q¢ Q . (51)

As righttailed ... distribution is used, alue of ... which is smaller thanp
(measured..  statisticis lesser than.. ) means that the null hypothesis cannot be
rejectedand thus the observed distributioray beGaussianValue of... which is
greater o equalthanp (measured.. statisticis greater/equathan ... ) means

that thenull hypothesisnust be rejected and thus thieserved distributiors notGaussian
Theresultsof equation(51) calculated for the test sequenegs gathered ihable7. It can

be noticed thafor the most of the casethe ratio between.. and ... is of

magnitudeof aboutp 1T p 1T proving that the distributions are not Gaussians. Gilg

exceptionis the Balloons sequence, where. fluctuates aroundl (the presented

multiplied showing the level ahagnitudeof p 7). Thus depending on a particular camerfa
the Balloonsthe hypothesis thahe distributions are Gaussiamaistbe rejectedmarked in
white inTable7) in or may nobe rejected (marked in gray Trable7).

Therefore, in spit®f the visual impression that the observed probability distributions are
Gaussiarlike, generally it can be concluded thiatr most of the sequences, the null

hypothesis must be rejectecand almost none of them is Gaussiafat given confidence

level).
Table7. ...i & oréRalts for all views ofhetested sequencegalues that are less than 1.0
(marked in gray) indicate that given cases plas3 test.
Camerandex 0 1 5 3 4 5 6 . 8
Sequence
Name Multiplier F »= qscaled by the multiplier

Poznan Streefcameras 0..8 10'R 7.93|7.65|6.71|6.82| 7.00| 4.90| 5.54| 5.51| 5.11
Poznan Carparfcameras 0..8 10°R 3.89| 3.56|3.03| 3.18| 3.03|3.33| 3.31| 2.02| 1.89
Poznan Hallcameras 0..8 10°R 2121166|184|1.75|1.64|2.08|1.76|1.55| 1.28
Lovebirdl(camerad..8) 10°R 0.50(1.49/0.46|184|1.95|1.56|1.08|0.86|1.33
Newspapercameras 0..8 10'R 1.30(1.38|1.03|2.07|1.92|1.24| 2.03| 1.84| 2.65
Balloons(cameras 0.6 10°R 103|142|116|0.88| 0.94| 1.90 | 0.69 -
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Both the graphs presentedFig. 24 - Fig. 30 (and inFig. 87 - Fig. 102in the Appendix)
andTable7, refer to the question, whether the probability distributions of the noise in tested
multiview video sequences afgaussans.A comparison of the visual impressions that can
done basing on the mentioned figures (that the distributions are simi@adssians)and the
results of statistical analysis (that almost none of the distribuiom&aussian) show that
there is dscrepancy between those two methods.

This discrepancy(between the visual impressions arsbults of... 0 Q) aan be

explained on the basis of number of observed samples. As number of samples increase, the
... testbecomes more discriminating/ith a largenumber ofobservedsamplegmillions in

the experiment Table3 column G on pages9), the measured distribution should be almost
exactly Gaussian in order to paghrough the&XX) test, while the measured distributions still

have slight variationsT@ble6 on pages9, Fig. 24 - Fig. 30 and alsdan Appendix inFig. 87 -

Fig. 102.

As almost none of the test sequences have passed the perffedst and the null
hypothesiqthat their noise distributions are Gaus}iaave been rejected conclusion about
formula (30), presentean pageb3in Section3.2, which connects Gaussian sedistribution
with SSD pixel similarity metrican be drawn. Basing on Maximuinposteriori Probability
(MAP) rule, the usage of this formulzannot be justified This is an important result,
because many statd-the-art depth estimation algorithm491][192[199[194 use some
form of SSD pixel similarity metric.

The results described above conclutie part of thalissertationaimed at verification of
the assumptions aboube noise in the multiview video sequences. In tdlowing
Subsectionsother assumptionsill be tested. Firstverification of theassumptiorabout the

uniformity of distributions ofuminancevalueswill be provided.

3.3.5. Uniformity of probability distributions of luminance value

In this Subsectiora short verification of uniformity of distribution of luminance values is
provided. This was one of the assumptions nthdeng the derivations Section3.2.

The desired disibutions have been measured as simple histograms of luminance, averaged
over al frames of the tested sequences in each view separatetgtal nunber of 256 bins
have been used.
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The examples are presented-ig. 31 while the detailed results can be found in Appendix
(Fig. 113 to Fig. 120). The graphs have been normalized to range [0;1] for the sake of

visudization.

Poznan Street sequence, camera 4 Poznan Carpark sequence, camera 4
1.000+ . L 4 . ! ! ! 1 1.000+ . L 1 L L L | :
0.750 0.750
0.500 0.5001
0.250 0.2501

0 4 T T T T T T T T {,ﬁdg 0+ T T T T T T T T {Ilml}g
0 32 64 96 128 160 192 224 255 0 32 64 96 128 160 192 224 255
Lovebirdl sequence, camésa Newspapesequence, camera 4
1_DDD Il | | 1 L 1 1 | 1 1_DDD L | | 1 L 1 | | Il
0.750 0.750
0.500 0.5001
0.250 0.2501
0 T T T T T T T T T {"Léi?ljg 0 T T T T T T T T T {,w]ni
0 32 64 96 128 160 192 224 255 0 32 64 96 128 160 192 224 255
Kendo sequence, camera 3 Undo Dancer sequence, camera 3
1.000+ . 4 L ! ! ! 1 1.000+ . L 1 L L L ! :
0.750 0.750
0.500 0.5001
0.250 0.2501
0 4 T T T T T T T T {,ﬁdg 0+ T T T T T T T T {IU.!']TH
0 32 64 96 128 160 192 224 255 0 32 64 96 128 160 192 224 255

Fig. 31 Histograms of luminance values of pixelsexemplaryiewsof the tessequence
The graphs have been normalized to range [0;1].

Even a short visual verification shows that binmminance distributions are not uniform
and that more detaileahalysiswould be redundant. In fact, the figures are brought into the
dissertation, only becausigey will be used furtherin the work.

It can be concluded that y@inother of assumptionsis violated, from theones maden
Section 3.2(uniformity of luminance distributionsyvhile performing simplification of the
formula (21) (page51) to forms connected with SS{30) and SAD(35) (pagess3 and54).
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This confirms that the usage of the mentioned formgkmsnot be justified basing on
MaximumA posteriori Probability (MAP) rule.
In the next Subsection, similarly to th&ubsection, verification of another assumption,

about uniformity of disibutions ofdisparityvalues, is performed.

3.3.6. Uniformity of probability distributions of disparity value

In this Subsectiora verification of uniformity of distribution adisparityvalue is provided.
This was one of the assumptions made during the derivati@ection3.2.

The estimation of parameters related to depth values for depth estimation is a-eligken
problem. Therefore apart from performing the depth estimatiee sought distributions have
been measured with use of ground truth depth maps provided with the multiview test
sequence set (see: Section 1.5). The depth value distributions have been calculated as simple
histograms. Those have been averaged ovdraatles of the tested sequences in each view
separatelyi a total number of 256 bins have been used, as histograms of depth (normalized
disparity) have been used.

As it can be seen, the histograms of ground truth depth maps for natural sequences are
sparse only some of the disparity values are present in the depth maps. It results from a fact
that those ground truth depth maps have been estimated with use of a predefined limited set of
disparitiesi e.g. only pixelprecise disparities were considered. Asse limited set of
disparities is scaled into normalizdsparities (depth) as mentioned in Chapter 2, with use of
equationg3) or (4), the resultant depth distribution is sparse.

In case of the amputergeneratedsequences (Undo Dancer and GT Fly), the histograms
are dense, because all of the disparities in normalized rang8 @r& present.

Similarly to the previous Subsection, even a short visual verification shows thaspttie
distributions are not uniform and that more detailed analysis would be also redundant.
Again, the figures are brought into the dissertation, ontabsehey will be used furtherin
the dissertation

This Subsection can be concluded thiate agairone of theconditions made in Section
3.2 is not meet Again, it confirms that the usage of the formulas mentioned on page
and pageé4 (related to SSBelated formulg30) and SADrelated formulg35), respectively)
cannot be justifiedbasing on Maximum A posteriori Probability (MAP) rule.
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Poznan Street sequence, camera
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Fig. 32. Histograms ohormalized disparityalues of pixels in depth maps. The graphs have

Poznan Carpark sequence, candera
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Lovebirdl sequence, camésa
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Undo Dancer sequence, camara
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been normalized to range [0;1].

750f 241



Olgierd StankiewicdStereoscopic depth map estimation and coding technigues for multivideo systems

3.3.7. Lambertian model of reflectance and color profile compatibility
among the cameras

In this subsection the last two of assumptions fro@hapter3.1that have beemade, will
be verified. Those are assumption abbambertianmodel ofreflectancein the sceneand
assumption about the compatibility of the color prafitenong the views. Verification of
those two assumptions is provided together, becausk lite peformed on the same basis.

The most important consequencela@mbertian model of reflectancein the scene, for
the considerations in the dissertation, is that the observed light intenaigyvein point in the
scene is independent from the angle andpbsition from which it is observed by some
camera. Thus, the observed light intensity is equal amongst the views.

On the other handcolor profile compatibility meansthat given light intensity is
represented as the same luminance v@laenong the viewsTo met that, all parameters and
elements used in the cameras (lenses, exposure time, sensgropessing) during the
acquisition must be calibrated.

Both of those assumptions, if are met, sum to a condition where given point of scene is
observed with He same light intensityLémbertian model of reflectancevhich then is
represented as the same luminano&lof profile compatibility. Therefore, bth of those
issues can be verified by a test whetherltneinanceof given pixel is the same in all oféh
views (which differentiate by position, settings and sensor characteristics) and whether the
small differences can be explained purely by the existence of noise (which as has been shown
in SubsectiorB8.2.2- is independent among the views).

In order to &st that an experiment has been perforntad. 33), in which values of
luminance of corresponding pixels in two views have been compared {diraeBsional
histogramin which one of the axes is related to pixel value in picture from one camera (called
view X) and the other axis is related to pixel value in picture from second camera

(called viewY).

>

video 2 i ;

View Y » < - 2-dimensional
histogram
View X

video . 4 pixels from the View X
View X View Synthesis synthesized to positions

depth of corresponding pixels in the View Y

Fig. 33. Scheme of the experiment for verification of Lambertraodel ofreflectance and
color profile compatibility assumptions.
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PoznarStreetsequence.
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Fig. 34. Graphs of Zlimensionahistograms of luminance values (in logarithmic glewel
scale) of corresponding pixels in the viewaixd Y for some othetested sequences.
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PoznarStreetsequence.
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Fig. 35. Graphsof 2-dimersional histograms of luminance values (in logarithmic geel
scale) of corresponding pixels in the vievand Y for some ofhetested sequences.
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In the experiment, the correspondence between the pixels in views has been based o
ground truth deptimaps available for the tested sequence (see: SubsectionThBI2]1 on
page24). Pixels that have no correspondence in the second view (e.g. are occluded) have bee
omitted. The test sequences and views required by the settings descillzdxdei on page
26 have been used.

Fig. 34 presents exemplary results of measuredinZensional histograms déiminance
valuesof corresponding pixels in views andY. The rest of attained graphs can be found in
Appendixi Fig. 103- Fig. 111 It can be noted thah case ofatural sequences, luminance
values do ot lay strictly on the diagonal of the graph. The curve is slightly distorted which
suggests that the color profiles in the consideaaderasare not strictly compatible and thus
that the colorcalibration andccorrection hae not been done perfectly. Mareer, the width of
the curve is changing over the luminance valwdsch suggests that the relation between the
luminance values in the considered views is not striethulting fromLambertianmodel of
reflectance in the sceme that the amplitude of theisevaries with the luminance level.

It can be seen that some of the regions of gtais34 andFig. 103 - Fig. 111that do not
occur often are invisible due tomaalization. Therefore for presentation purposes, the graphs
have been normalized with respect to the probability of given luminance to bdowr
luminance histograms of vieX. Those histograms used as normalization factor have already
been presented Fig. 24 - Fig. 30 (on pages7) and alsdan Appendix inFig. 87 - Fig. 102

The 2dimensional histograms of luminance values of corresponding pixeisw X and
view Y, normalized in the way mentioned before, are presentedyir835 (examples) and in
detail in Appendix Fig. 121- Fig. 129

It is worth to notice, that in case obroputergeneratedsequences (e.drig. 357 Undo
Dancer o GT Fly) the graphs of presented normalizedirdensional histograms are straight
lines with unitary width. This confirms that:

- there is no noiséor computergeneratedequenes

- thecolor profiles arecompatibleamong theviews of computergeneratedequences

- the Lambertiaimmodel ofreflectancéhas been used for rendering of those tanputer

generategequences

Theseabovementionedstatements are not true for the naturd sequencesThe curves
for natural sequences are not straight lines (they are curved), they have width (there is noise i
the sequences) and the overall shape of thegngstois randomly distorted (which may

indicate that the Lambertianodel ofreflectance is at least not strictlalid).

790f 241



Olgierd StankiewicdStereoscopic depth map estimation and coding technigues for multivideo systems

This is animportant result, because it shows that two more of #ssumptions made in
Chapter 3.1are not true. Therefore it can be concluded, that for the natural sequences, the
usageO @ 0 w ordoded simplified to the form of SS¥30) or SAD (35) pixel similarity
metrics, canat be justified basing on Maximu posteriori Probability (MAP) rule.

As practically most of the statd-art depth estimation techniquese some form of SSD
or SAD pixel similarity metrid126[142[143[191][192[195, question arise whether their
performance could be improved if th@owledgeabaut the distributions measured in this

Chapter was known. Answer to this question dprovided in the followingsection3.4.

3.4. The proposedprobability modelfor Data Costfunction

In previous Section 3.3 a verification has been provided for theuagstion made in
Section 3.2, during the simplification of formulé2l) (see pagedl) to classical Squared
Differences (and thuSSD- Sum of Squared Differenceformula(30), pageb3, for blocks)
and Absolute Differences (andus SAD- Sum of Abslute Differencesformula(35), page
54, for blocks) pixel similarity metrics. It has been shown that at least some of the required
conditions are not meet. Therefore iasvconcluded that the usage of such simplifications
canna be justified basing on Maximuw posteriori Probability (MAP) rule.

In this Section anovel depth estimation method will be proposed

The main idea of the proposal is thaistead © performing the mentionedver
simplification, the derived formulé1) will be used directlyas formulation forO® 0 W6 € i O
function

To remind the formula(21) describesMiaximum A posteriori Probabilityhat for given
pixel with coordinatesdtodisparity’ thasoccurred:

. rih R s RR O g (52
NAahR 5 .

h

¢

In order touse this formula direct]yall of theterms of probabilityin eq.(52) have to be
modeled. Fortunately, all of the required terms have already been measured during the
verification of the mentionedssumption Section3.3. In particular:

Probability distribdion of luminancevalues inthe left viewr) 0 ; andin the right view
N Yr have beeseamlessly calculateabhistogramsof the input picturesas thoséermsdo
not depend on pixel correspondemekated tadisparity’Q . The results fothat have already

been shown ifrig. 31 (on pager3) and in AppendixFig. 113to Fig. 120
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On the other handprobability distribution ofdisparity 1 Q , and probability of
corresponding luminance valuestire left and the right viewf 0 sy € depend

on disparity Q j, . Having aground truthdisparitymap for given scene, both of those terms

can bedirectly modeled

- N 'Qp , which is probability distribution of disparityd ;, has beenestimaed
as a Istogram of the giveground truthdisparitymap (seeFig. 32 andin Appendix:
Fig. 130- Fig. 134).

- n 0 ﬁﬁﬁYﬁ €0 is a 2dimensional probability distributionthat has been
estimatedas a2-dimensionahistogram of luminance valués . and’Y ; of pixel
pairs, which areknown to correspond to each othdyasing on giverdisparity value

Q from theground truth disparitynap. These also have already been showRig
34 and inFig. 103- Fig. 111in the Appendix.

Finally, having all of the terms measurade can expressO @ 0 & 6fér ipigel } (with
coordinatesifty) to be equal to the expression presenteelqnation(52) in logarithmic scale.
Usage of logarithmic scale is a common trick used in fortimaof energy and probability
functions for optimization algorithn{491][197] (seeSubsection2.3.3 and 2.3.4)

WeretrieveO & 0 o 6ta bie as follows

000 HOERP p 18 T ik (53
which can be simplified as:
00O WorEQp pm@ T § 0 rlvg Qp (54)
p1d T Q5 p 1@ T1C0 j pmd TigY, 8

The final formulation of$ A O A #éfie®in equation(54) is expresseds logarithmic
scale, because stabéthe-art depth estimation abgithm use it for calculationgl42[143.
Therefore, such formulatiohas allowed for direct applicationof the proposaln graph cuts
algorithm implementsn MPEG Depth Estimation Reference Softwik2q].

The results othe proposediepth estimatioomethod attained with use of the estimated
model are presentddrther. Before thata formulation for'Yi @& i Qo0 Tactioo wili be

proposed in Section 3.5, so that the results will be reported jointly in in Section 3.6.
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3.5. The proposed probaility model for Transition Costfunction

In Chapter2.2 it has been mentioned, that the stateof-the-art depth estimation
techniques™Yi we¢ i "Qo Taction betweerisparitiesQ and’Q of neighboringpixelsr
and fj is denoted asYi @& i QO NE'@ M .i b most of the statef-the-art depth
estimation techniques)Yi @& i Q0 @picallye dimplified as a functionof a single
argument: Q  'Q . Examples arésee page5): Pots model[19§ in eq.(7), linear model
[126[19(Q in eq.(8) or truncatedinear mode[216 in eq.(9).

Such usage dhose modadlis arbitrarily, due to at leadtvo reasons:

1. The relation between probability of disparities between neighboring nodes is typically
not measured empirically anttherefore, assumption about the correctness of given
Yi we& i Q0 iRédelca’d beverified only by performinghedepth estimation.

2. All of the mentionedYi @& i "Q0 "Méde!® ibcbrporate constaparameterge.q. |
andl in equations(7), (8) and(9) on page35). Those constarare typically chosen
experimentallywhich is donewith limited precision (for example, only four different

values of are tested).

In this dissertation a probabilistic model for 4| »3= v:ii <« is propesed ®imilarly as
in Chapter3.1, a theoretical formulation will be shown, which then Wwélverified with use
of empirical estimation basing on the ground truth data.

The proposalemploys assumptionthat "Yi % & i "Q0 Q¢ @ K¢ ican be modeled
basing onprobability that given two neighboringixelsj andy have disparitief2 andQ
respectively This will be denoted as-Bimensional probability distributiof Q HQ , for
the sake bbrevity anddistinctionbetween fxel ) and dimensional probability distribution
n  Othat will be introduced later.

It is asumal that consideredprobability distributionry Q KQ is independent from
position ofpixels | andrj in the image and the only constraint is thatels ) andr are
directly neighboring.

Therefore,as inSection3.4, we can expres$¥i we i Q0 ‘Rdogaditbnictscale, so that

it could be used directly inside sfateof-the-art depth estimation algoritrsh12q:

i GEl QONEQIMET oprD T/ QHQ . (59
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The main idea of the proposal, similarly as in Section 3.4, is tisaad of making

assimptions about the shape ofi we i Qo foaction,dt wid be measurd empirically,

basing on the grountluth dataavailablefor the test sequences.

The formulation of "Yi @€ i "Qo "Qéfined éni equation(55) depends orprobability

distribution 1)

‘Q HQ 8For real data it can be measured adirBensional histogram of

disparity value pair and’Q of neighboringpixels fj andn. In the dissertation this has

been performed over all frames of all used test sequancked! views for which ground truth

depth data is availablsequences

listed ifable1 on page24).

Some of the results (exemplary histogram per sequence) are preseiftigd 3 (left
column)andFig. 38 (left column) The resiof the gathered daia providedin Attachment
Fig. 135to Fig. 143(left colunms). The results are presented in a form describédgn36.

As the distribution ofnormalized disparity; is spase (E.g. inFig. 32), for the sake of

visualization, the plots have been done in domairdisparity A Therefore, the attained

2-dimensional distribution is dense and monotonic. It can be noticed that the maximum of the

curves lay approximately along the diagonal but also there are strong bands on both sides

Such strong band in the histograneansthat for given pixel rj with disparity’Q , in any

neighboringpixel r, a value ofdisparity Q is prdbable to occur if it lays withirthe

probabilityband of disparityQ .

d -10log( p(d,,d) ) -10log( p(d-d)) ) MAX
12311 | || | U'I.!.B I i i 1 | I | U'L!B
MAX P
ods 96 S 10dB- H
64 e (% 20 dB-
32 : > 30 dB-
0 1 T T d " 4UdB ‘h'_'_hdp_dq
40dB 0 32 64 96 1287 -128 -96 -64 -32 0 32 64 96 128 40dB

Distribution of probability
N 'QHQ that neighboring pixels
f andr, in the ground truth disparit
map have disparity valu€3 andQ |,
as plot of 2dimensional histogram

3

> Probability p(dy-de=32)

Distribution of probabilityty Q Q

that neighboring

pixels ) andn, in the ground truth disparity map have
difference of dparitiesQ  'Q, as plot of idimensional
histogram, calculated with use @&®6). Exemplary calculation fi

n Q Q

o0 ¢ has been shown in red.

Fig. 36. Explanation of plot&ig. 37 - Fig. 38 andFig. 135- Fig. 143 showing probability
distributions of disparity valuéQ andQ of neighboringpixelsr andr. The both histograms
are presented in logarithmic scale and in the same shading, where black reflects the maximur
probability value, and white reflects 40dB of attenuation of the probability.
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Poznan Street, camera 4
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Fig. 37. Histogram of neighboring disparity valu€® andQ in ground truthdisparitymaps
for some of the test sequenc&bhehistograms hee been visualized as 2D pi&fieft) and
histogransin domain ofQ  'Q disparitydifference (right)All plots are presented
in logarithmic scalend in the same shadirfgeeFig. 36 for explanation.
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Fig. 38. Histogram of neighboring disparity valu@s andQ in ground truthdisparitymaps
for some of the test sequenc&be histograms he been visualized as 2D p&fieft) and
histograns in domain ofQ  'Q disparitydifference (right) All plots are presented
in logarithmic scaleSeeFig. 36 for explanation.
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Because often,’Yi @& i Q0 '@ expréssed as a function of a single argument
Q Q ,instead of two independent argumentsQ) - e.g. see pages: eq.(7) [199 or eq.
(8) and eq. (9) [126[190[214, it is interesting to also see whether such formulation is
justified. In order to do that, apart from figures presenting’Q KQ as 2dimensional plots
(e.g. inFig. 37 on the left), also -Himensional plots off Q 'Q probability of given
disparity difference)  'Q have been visualized such that (also,Hge37):
n Q Q n aQ 8 (56)

h qd
The results are shown on the right sides of the mentioned fidtieST - Fig. 38 andFig.
135- Fig. 143in the Appendi). Having a look on these presentedithensional distributions
of Q 'Q (expressed in logarithmic scale) one can notice that the plots are firstly falling
approximately linearly and then thegach plateau until the limits of the histogram plot. Such
plots resemble the shapes (examples presentédyir39) of linear model(8)-page38 and

truncateelinear model9) for"Yi @weé i QO0O.QE € 6 €i O

Linear Truncatedinear
TransitionCost( d-d )=|d-d TransitionCost( d -d_)=min(|d-d |, 96)

U 1 1 L F‘ 1 q 1 pl f-]' 1 U U 1 1 L P Iq 1 1 J-’II q

32 32

64 64

96 96

128 d-d 128 d-d
PF g

Py
-128 -96 -64 -32 0 32 64 96 128 128 -128 -96 -64 -32 0 32 64 96 128

Fig. 39. Exemplary gaphs of classicdlyi @& i Q0 fQactiodse linéar (left) and truncated
linear (right) Figuresuppliedfor comparison with graphs presented in the right cokimn
of Fig. 37 andFig. 38 (detailed results=ig. 135- Fig. 143in the AppendiX

Therefore we can conclude that those classioodels ljnear and truncatelinear) may be
adequate for the case, when'thie @& i Q0 &preéss @rabability in a logarithmic scéie
which "Yi @& i "Q0 s theeh depictd in figures)vhat is important in case of each
sequence,”’Y W¢E i Q0 "QBas different scale. Without the knowledge coming from
empirical analysis of theYi @& i Q0 ,'Reérformed likewisasin thedissertationthis scale
would have to be caliated manually of experimentall{e.g. wih use of Smoothing
Coefficient in DERS) This is an important advantage of the propoal presented in the

dissertation.

86 0f 241



Olgierd StankiewicdStereoscopic depth map estimation and coding techniques for multivideo systems

3.6. Experimental results for the depth estimation with the proposed
FitCostmodel

In the previousSections3.4 and 3.%robabilisticmodelshas been proposefr O® 06 W € i 0
abd "Yi @& i Q0 "tEspectively. Bhe functional advantages of the proposals has been
presented, which include lack méed formanual calibratiomf parameters.

In this Sectionan experimentalssessment for those models will be providBdose two
proposalsogethera complete model f6l0O'Q6 o6 fanction, which, as mentioned irquation
(6) on page35, isasum oD OO0 woaad'Yd0 we | QO TRActoastSuch™O'Qo ofénction
model will be used in the experimental assessment tesldoelow.

The proposed w0 woahd™ we i Qo @édelshasibeen implemented inPEG
Depth Estimation Reference Software (DERS), version [226. The test have been
performed, followinghe evaluation methodology describedSabsectiorl.5.3 Theusedtest
sequences and view settingggive beendescribed inTable 2 on page26. The model
parameters foD 0 0 w 6abd™d & | Qo /@hiechthdadieen estimated iBection3.4 and
in Section3.5, have been used.

The original gnmodified DERS algorithmis a supervised algorithm in a sense, that
special control parametérSmoothing Coefficient has to be given. Therefqra wide range
of SmoothingCoefficient has beetested. For the sake of brevity, the best and the worst
performing settings for each sequence has been identified.

The overall results are presentedTiable 8. The more detailed plots can be found in
Appendixi Fig. 144 andFig. 145 It can be seen that the results of DERS with the proposed
probabilisticmodel are very similar to the best case of the originamodified) DERS in
most of the caseandare verlittle better in someases.

In averageover the tested sequencéise poposed method provides abduD&IB gain
over the best identified caggenerated byhe original (unmodified) DERS (with manually
crafted Smoothing Coefficient per sequence) abdut 2.79B gain over the worst case
generated by DERS

The most important thing to notice is that the propakaath estimation techniqu®es not
require any manual settings (usage of such depth estimation is thus unsupeiiiged)
employed fitcost function model, based on Maximum A Posteriori rule is inhered from the
knowledge coming from analysis of thél @& | Q0 ."Qkherdiogeth® proposed depth map

estimation method has been tested only once in one configuration.

\
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Table8. Gains attained witfpint usageof the propose® @ 6 ® Gadd'Yd W& i QO QEE O ET O
models related to the best atige worst results attaindxy the original (unmodified) DERS,
depending orsmoothing Coefficienparameter setting.

PSNRdB] ¢ virtual view versus the original view
Virtual view was §yr1thesized witlise of
Sequence disparity mapswith a TR Ey:t.Be'tiss’jon estimatedwith use of
Name Orl_glnal Or!glnal Proposed
(unmodlfled)_DERS (unmodlfled_) DERS probabilistic model
the worst setting of the bestsetting of . .
Smoothing Coefficient Smoothing Coefficient implemented in DERS
Poznan Street 27.56 31.98 32.02
Poznan Carpark 29.05 30.71 30.95
Poznan Hal 32.17 32.85 32.81
Lovebird 27.09 29.80 29.83
Newspaper 27.86 31.91 31.95
Balloons 29.95 32.94 32.98
Kendo 33.02 35.46 35.69
Average 29.53 3224 3232
Averagegain of the
proposed method +2.79 +0.08 -
related to given case

In Sections3.1 to 3.6a complete probabilistic model fol0'Q0 6 €0iIOD @ O &nd O
Yi we i Qo0 )héas beenipposed. The part of the dissertation first started with general
theoretical derivation ofO@® 0 @ O lBased on Maximum a Posteriori Probability rule
(Section3.1). Then, the derived formul@1) from page51 has beerthoughtfully analyzed
with respect to simplificatiorfSection3.2) to clasical forms related with to SSD or SAD
(equations(30) and (35) on page$3 and54) along with verification of the conditions that
have to be meior such simplification. It has been shown that at least some of the conditions
are not meet in a practical case of multiview test sequeSaesign3.3) and basing on that
anotherformulation for O ® 0 @ 6rdoded has been propose8ettion3.4). A method for
estimation of parameters of this model has been shovamerample of the test sequences.
Next, a probabilistic model folYi @& | "Q0 iz beert proposed (Bection3.5) also with
a method for estimation of parameters this model. This Section concludes these
consideratioawith resultspresented above

In the following Sections3.7 and 3.8other subjects of the dissertation, related to depth
estimationwill be studied Frst, the subject oflisparityprecision and acaracy refinement
and then the subject e¢émporal consistencywill be shown Each of Sectionswill self-

contain the achieved results.
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3.7. Depth refinement byMid-L evelHypothesis

This Section shows the authors achievements in area of depth estimatatedreio
precision and accuracy refinement of depth maps First, the problems stated, thenan
original proposal of algorithm is presented. Finally, the results contigi8ection

As mentioned in theChapter 2 modern statef-the-art disparityestimation techniques
comprise optimization using iterative algorithms like Belief Propagation or Graph
Cut419Q[191][201]]. These algorithms are robust, but their complexity increases vastly with
requestedsize ofthe outputied disparity mapln particular the complexity ofdisparity map
estimation increases with

- Theresolutionof matched imagese.g. estimation of FWHD depth frame takes about

4-times the same time as of XGA frame

- The disparity search rangQ® to Q (the computational complexity increases

approximatelywith linear proportiorto the width of the selected rarnge

- TheexpectedorecisionQ  of disparity values e.g. estimation oflisparitymapwith

i h gixelo precision(Q =0.5) takesappoximately twice the time of needed for

estimation ofifull -pixelfi precision(Q  =1.0)disparitymap.

39 - 600
37 -
_ | = 500 /
S 35 2 400
33 - E /
= = 300
= 31 5 /
= = 200
T 29 & /
L 27 2 100 ’//
7
o 25 T T T g 0 T T T
o
4 2 1 % % 4 2 1 Y2 Ya
|

Fig. 40. Quality (a) and computation complexity (b)
of disparity estimations. precision of the disparity map, agiaction ofQ
(@ isexpressed asmultiple of thespatial sampling period in images

Unfortunately, complexity of depth estimation increases faster than the growth of
benefits from attained higher precision. As research done bthe author (Fig. 40) has
reveakd increasing the number of disparity levels vastly increases the complexity of
disparity estimaon, but the fidelity of 3D scene modignds to saturate Results shown in

Fig. 40, havebeen generatedith use oflISO/IEC MPEG test sequencgb][24( for which

disparity mapshave been estimated with algorithm implemented in Deftimation
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Reference Software (DER$)2€. Variousdisparity precisionsettings ofQ  have been
used- from quarterpixel precision Q T} | to four-pixel precision(Q T). With
use ofthe methodology mentioned in Sectidrb, the quality of estimatedisparity maps$as
been measuraddirectly (Fig. 10 on page25) by assessmemf quality of a synthesized view,
by PSNR related to the original vieflSNR values are depictedFig. 40).

The results of the abovementioned experimeants rationale of the statement, that
it is not efficient to estimate high-precision depth maps in a regular singlestep process
because the costs such highegcision estimation do not provide proportiqrisiredgains.

In spite ofthe mentionedsaturation effecbf fidelity of 3D scene modeklccuracy and
precision of disparity estimation is an important issue for 3D video representations.
Such applications require that disparity is estimated with accuracy to fractions of the spatial
sampling periods in images, which in turn means that the precision e$tineated disparity
should besubpixel. Due to computational complexitgubpixel disparity estimation could
be difficult in the context of future reéime applications Therefore, intypical scenario,
disparities are estimated with only fpilxel precision[142[143 corresponding t@ p.

Unfortunately full -pixel precisionis insufficient for most applications related to 3D video.
Such hck of precisior{and thus also lack of accuradg)especially noticeable in the case of
continuots flat surfaces that are neaflyot exactly) perpendular to the optical axis of the
cameralfig. 41). In the corresponding disparity map, there exists a false contour as a result of
only full-pixel precisionof disparity. Such a fak contour may be observed asrat-step
edge Fig. 41a) that results in severe artifacts by reconstruction of #&e. These artifacts
could be substantially reduced by refining the disparity map tgisebprecision In the case
of half-pixel refinement, a unistep false edge would be replaced by two-btp edgesHg.
41b). This would yield significantly reduced artifacts in the reconstructed 3D scene.

>
>

© ©

(<8} (8}

= =

S o g

] 3

o o

2 %)

a [a)
a - > b >
) Image coordinate (x or y) ) Image coordinate (x or y)

Fig. 41 False contours in disparity maps for a surface nearly perpendicular to the camera
axis: a) fultpixel precision Q p , b) haltpixel precision Q e .
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In order to avoid the@bove mentioned problemthe author proposedsage oftwo-step
disparity estimationKig. 42) with original refinement technique calldid-LevelHypothesis
(MLH) technique In the first stepdisparity § roughly estimated usually with precisionto
the sampling periodfull-pixel precision. In the second step the disparity map is refimed

orderto attainsub-pixel precision and accuracy

1 g
Multiview | Any disparity Proposed depth
plus Depth estimation refinement technique .
techni Rough by Mid-Level Hypothesis | Refined
echnique disparity map disparity map

(e.g. pixel precision (e.g. quarter-pixel precision)

Fig. 42. The idea of MidLevel Hypothesis depth refinement technique.

This MLH technique identifies the false edges in a rough disparity map. Then, at individual
pixels, the technique introduces m@lel (the intermediate level) values of disparity in order
to reduce the false contours of disparity maps. In that way the quamtizépof the
disparityvaluesis halvedand thus the precision is doublé€df course, this technique may be
used iteratively. Afteg iterations, the disparity quantization step is reduced by faétqr

andthusthe precision of disparity representetiin also enhanced by factorf.

3.7.1. Idea of depth refinement byMid-L evelHypothesis algorithm

At the input, there is a disparity map with limited precision. Such cmae from any
disparity estimation techniguebut in the experiments DERS algbm has been used
Moreover, at the input of the algorithm, thereaiset of input viewsThe basic viewis the
view that corresponds to the disparity miagng processed. The other viewill be called
side viewg. Those side views are used to refingdisty map of the base view.

From the basic view and the rough disparity map, a synthetic sids arewbtained. The
more accurate is the disparity map, the more similar are the synthetic sigdos/tber actual
side vieve. Therefore, increasing similarity of the two versiongath ofthe side view may
be used as an indicator of the increasing accuracy of the depth map.

At the beginning of the process, the edges that correspond to the disparity quantization ste
are idemnified. For full-pixel disparity map, these ananit-step edgesFor the sake of
simplicity this name will be used. The disparity map is processed only locally along those
potentially false contourd={g. 43). The potential improvement may be done by introduction

of the midlevel values into the disparity map.
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&= disparity levels
= unit-step edges

Fig. 43. Disparity map (left) and the same disparity map with markedstef edgegight)
for exemplaryi V e nimagy€[142. The image has been selected for illustration, because it is
composed from simple objects and the depth edges can be easily noticed.

False edges occur when an inaccurate rough estimatidorded to quantize disparity
levels. The unistep edges may be false contours or may also represent actual depth
differences. Therefore there is an uncertainty to be resolved. In our refinement algorithm it is
done by verification of the mitevel hypohesis. At first,the algorithm assumes that each
pixels neighboring to unistep edgesHig. 44) in the disparity map, should have the
intermediate disparity level. Emwis hypothesis is verified for each pixel.

Unit step edge

.
>

--‘-‘-‘Mﬁ—_—.—_;--— Hypothesized disparity value
- —p

Disparity value d

y

Image coordinate (x ory) "

Fig. 44. Spreading of midevel hypothesis
starting from a unistep edge.

Therefore, along those potentially false edges, a question arises that has to be answered at
each individual pixel: Shouldthe algorithmchange the disparity value to a rd&lel value
or not? Hypothesis that this question can be answered positivelried by comparison of
the two alternatives-or those two alternativespdal synthesis of side views is performed
twice (Fig. 45) i once with theunmodified disparity value and once with assumed change to
the hypothesized mitkvel value. The synthesized contents of the-side/s are compared to

the real contents of the side views. The hypothesis which provides higher level of similarity is
assumedo be true.
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Thus, he hypothesis of the disparity rielvel value is verifiedoositively if the newly
synthesizeatontents in theide views aremore similar to the real side vievwas compared to

thecontents in thaide views synthesized using the input rough disparity map.

‘ Refined
Mid-level
hypothesis A
Initial Unit-step e :
analyzed edge o HHypOthes'ZEd
disparity detection
map Side view
:. ........ 45-> SmteslE OUtp:
Base view ' . : .
being =====" > A — disparity
refined H _ v_ ' etore A map
L Side view '
synthesis H
' ’ - disparit
Before L Hypothesized p y
Side v \ 4 ¢ e=ecp view
View CTTmeses=ess P Which synthesis is better? ¢««««««-- ‘' ....p control

Fig. 45. Scheme ofheproposed disparity refinement algorithm. For the sake of brevity,
thecase of onhasingle side view is presented.

So, i n pr-ewldyppte s isagsumedito be tra each edge pixel, i.e. set the
pixel value to intermediate value. Theine hypothesiss verifiedby checking if the synthetic
size view is more similar to the original side view.

Then, iterativelymid-level hypothesis is spread framachunit-step edge. Spreading stops
when no point passes the verification t€3t(45).

Therefore, the precision of the disparity map is improved by insertion of intermediate
disparity levels irbetween of existing levels. The proposed technique never asgthd
processed idparity map, because the verification mechanism does not allow that to happen.
Thus, also the accuracy of the processed disparity map is enhanced.

Below, implementation of the MLH algorithm is shown, with particular steps that are

performed, highlighted.

3.7.2. Implementation of the algorithm

Steps of thadepth refinement by Midlevel Hypothesis algorithm angresented below
The algorithm continues until loegxit condition is reachedvhich has been formulated in

Step 5. If the loogexit condition is nbmeet, the algorithm goes back to Step 1.
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Step1. Detection of unitstep edges
The proposed technique detects atép edges in the disparity map by simple comparison of
disparity values in the neighboring pixels. Pixels, whose dispabsisdiffer by 1 (and thus

at the current precision their disparity values differ@y ) from neighboring pixels are
classified as belonging to a wsiiep edge. Those pixels are marked for further processing
(Fig. 46). They potentially belong to a false contour in the disparity map.

21 disparity level d

mm intermediate disparity level
- disparity level d+1

" [(disparity level d
I intermediate disparity level
mm disparity level d+1

Fig. 46. Detection of unistep edges. Fig. 47. Intermediate level hypbésis.

Step 2. Introduction of intermediate disparity levels
It is supposed that the marked pixdisg( 47) should have intermediate values of disparit
So, pixels on both sides afunitstep edge are processed.

Step 3. Verification of intermediate level hypothesis

Unit-step edges may occur two distinct cases: they may represent actual edges in the scene
but they also may result from rough disparity quantization. That decision ambiguity is
resolved by verification of hypothesis of intermediate leke].(48).

Side view *
Input
disparity P Localimage
value content — Similarity Selected
P synthesis Svnthesized comparision disparity
Base view )s/ide view with use of value
rflﬁ'n'g’d i (two (si/?nDof '
variants)
Local image Absolute
Hypothesized content _> Differences)
disparity P synthesis
value

Fig. 48. Scheme of the verification step. For the sake of bremggcase of only single side
view is presented.
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Assumed disparity value is verified by comparison of the quality of the two synthesis variants
of the side view: one obtained from the input disparity values and the second one obtainec
with the assumed intermediate disparity value. The disparity valueptoaides better
synthesis of the side view (measured by Sum of Absolute Differer8a®) is selected as

a resultant disparity value.

Step4. Spreading of the hypothesis

The pixels, that have passed the verification, retain their intermediate tjisfdies. Then,

the midlevel hypothesis is assumed for the neighboring pixels. Thus, the hypothesis is spreac
to all neighboring pixels within-8onnectivity neighborhoods. These pixels are also marked

for further processingg. 49). The midlevel hypothesis is tested for all those pixels.

\\\ —1disparity level d
mm intermediate disparity level
mm disparity level d+1

== marked points

rdisparity level d
@ intermediate disparity level
mm disparity level d+1

Fig. 49. Spreading direction of intermediat  Fig. 50. A disparity map refined with MLH
level hypothesis. algorithm.

Step5. Loop-exit condition

If there are still marked pixels, algorithm loops to step 2. The algorithm stops when there is
no pixel marked for processing. The result of the algoriham improved disparity map with

new intermediate disparity level&i¢. 50). Note that usually only a portion of all pixels is
processed, i.e. the idilevel hypothesis is verified in the selected pixels only. This

observation is closely related to the low complexity of the technique.

3.7.3. Experimentalresults for depth refinement

For the evaluation of the proposed depth refinement bylMigtHypaothesis algorithm,
first, the reference data has been generated.-pigelse and quartgrixel precisedisparity

maps have been estimated for the test sequences and viewsssogbed in Sectioth.5
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(Table 2 on page26) with use of original (nmodified DERS algorithm. A wide range of
Smoothing Coefficient has been testnd the best and the worst performing settings for each
sequence hae been identified.

After that, the pixeprecisedisparitymaps have been refined with use of MLH algorithm
in order to generate quaripixel precisedisparitymaps. Thereforé two versions of quarter
pixel precisedisparity maps were availablé generated directly by original (unmodified)
DERS and generated by MLH algorithm on the base of input-ppeglisedisparitymaps.

All of the resultandisparitymaps have been used to synthesize virtual views which have
been then compared to the original views (according to the methodology described
in Subgctionl.5.3).

The results are gathered Trable 9. In averageover the tested sequencéise proposed
method provides even better results than pure gdairtel precision forabout 0.28dB This
extra gain comes from the fact that MLH algorithm not only provides enhanmeetsipn
(from full-pixel to quarter pixel) but also refines thisparity values with usage of
information from the neighboring side views. Compatiagixelprecisedisparitymaps, the
gains are even higher and atsout 2.01dB in averageover the tesset.

For il lustration purposes, the MLH algorithm
set[147, where the improvement can be seen by unarme(Fayes1).

a) before refinement: full b) after refinement: quartgixel precise
pixel precise disparity map disparity map

Fig. 51 Results of proposed Millevel Hypothesis precision refinement
algorithm used on 13 oomposedfyomi Venus o i mage
simple objects, thanks what thedisparityedges can be easily noticed.
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Table9. Average virtual view synthesis qualitgf the proposedVLH refinementtechnique
compared to original (unmodified) DERS technidfoe thetest sequencesvaluated
according to methodologyescribed irSubction1.5.3

PSNRAB] (vs. the original view) of thevirtual view
synthesized vith use of depth maps estimatewith:
Sequence DERS (fudpixel
name DERS. DERS + Propo(segMLIL
(quarter-pixel (full-pixel (result is quarterpixel
precision precision precise)
Poznan Street 35.53 31.98 35.49
Poznan Carpark 31.22 30.71 3184
Poznan HaR 35.21 32.85 35.39
Lovebird 31.13 29.75 31.26
Newspaper 33.07 31.91 33.25
Balloons 34.28 32.94 3487
Kendo 37.27 35.46 37.57
Average 33.96 32.23 34.24
Avg.n t { _tgam of the proposal +0.28 +201
related to given reference

Table10. Averageframecomputation time ofhe proposedMLH refinementtechnique
compared to original (unmodified) DERS technidioe thetest sequencesvaluated
according to methodologyescribed in Section 2.5

Average frame omputation time [s]

Sequence DERS DERS Proposed MLH
name (quarter-pixel | (full-pixel + CERS (fulpixel)
precisior) | precisior) | (result is quarterpixel precise)

Poznan Street 18235 4538 4538 + 424 =  49&2
Poznan Carpark 17983 4325 4325 + 384 = 4709
Poznan Hall 2 18129 4363 4363 + 413 = 4776
Lovebirdl 932 237 237 + 33 = 270
Newspaper 955 246 246 + 72 = 318
Balloons 912 239 239 + 84 = 323
Kendo 976 254 254 + 87 = 341
Average(rounded) 8303 2029 2029+ 214= 2243

Avg.speed-up of the proposal

related to given reference 3.7R 0.9R

What is worth to notice is the fact thtae mentionedaveragegain of 2.01dBis attained at
much lower computational cost that the direct quagoibetl precisedisparity estimation.

Computational complexity of the proposed MLH refinement technique wapareoh against
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the directusage oDERS technique with use of PC compute6GHz processor). The results

prove thatin the tested conditionsthe direct fullpixel estimation and quartgrixel

refinement isabout factor of 3.4  8.8) (about3 . 7 laveriage)faster than direct quarter

pixel estimation using theriginal (unmodified)DERS techniqueOf course, MLH algorithm

used withprior full-pixel precise depth estimatipwo r ks a't speed of about
10% slower) than pure usage of soli-pixel precise depth estimation.

Therefore it can be said, that advantages of MLH algorithm can be seen from two
alternative points of view. Firstly, it can be seen as precision and accuracy refinement
technique that bringsveragegain ofabout 2dB related to input pixeprecise depth maps and
0.28dB related to input quartpixel precise depth maps. Secondly, it can be seen as speed
optimization technique which allows for abdactor of 3 . Edmputational cost reduction,
related to application of dice quarterpixel precise depth map estimation.

In the Section above, novel algorithm for precision refinementdi§paritymaps has been
proposed. In the nexdection another subject of the work will be analyzed, related to the

temporal consistency ofi¢ estimated depth.

3.8. Temporal consistency improvement of the depth by noise
reduction

This Sectionshows the developments of the author in area of depth estimation related to
enhancement of théemporal consistencyof stereoscopic depth maps. Thelpem has been
already stated in the introductioBgction2.6). Here, an original proposal for estimation of
temporally consistent depth maps is presented

The main idea of the proposed approach is that the estimated depth can be more temporally
consistentf a noise reduction technique is applied to the input video a priori to the depth
estimation.The presented approach extends the previous authors \8H&g .

Although, as it has been mentionedere are many methods for noise reduction in video
sequenes, all of whichcould be used, Wing the author works, two methods have been
developed. First one iStill Background Noise Reduction (SBNR) and the second ons i
Motion-Compensated Noise Reduction with RefinemefMCNRR).

Both of those methods are prested belowin Subsections3.8.1 and 3.8.2. The

considerations are summarized3nbsectior8.8.3by experimental results.
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3.8.1. Still Background NoiseReduction (SBNR) technique

This technique us based early works of the authdB][20] in which noise is reduced by
filtration of regions that are still,na presumably belong to the background. The filtration is
performed in time and independently for each view of test sequences.

The first version of the algorithif20] wasworking in rectangulablocks. Each block has
been classified as moving or still, with respect to differences between consecutive frames an
processed reference frame. Moving blocks were left unchanged during processing and woul
be ignored in the cose of noise analysis. Blocks classified as still were linearly filtered with
respect to previous frames and would be used for the further analysis of noise. Such a natur
of the processing was resulting in bloekfyect similar to the one known from comgseon.

Therefore, a second version of the algorithBh working with single pixels has been
proposed and has been used in digsertationlt originally consists of three main steps:

1 Motion detection, where pixels azkassified as moving or steady.
1 Noise filtering, where steaqyixels are filtered in time.
1 Artifact removal, where errors of motion detection stage are repaired.

Because the purpose for ajpplion of this noise reduction techniqueworks related to
this dissertationis not to achieve a subjectively pleasant denoised video sequence, but to
extract and analyze the noise, the third step from the original proposal has been omitted. |

would beuseless, as only pixels classified as steady are used in noise analysis.
Stage 1 Motion detection
The role of motion detectiori{g. 52) is to classify pixels froninput frame as moving or as

steady. Result of this classification is combined into a binary map, called motion map.

Current frame

Frame; i i i
; f\gzzgﬁ? Maximum motion cues
differences Dilation
Framei., z > i M
o : S | > (2D WlndOW) P Vithreshold
:ﬂ- : > abs = Binary
... previous Max Steady or .
frames Max =9 g ] mOVinyg’) g
: ! map
Frameon . L Pixel
Né abs = > Bn;;arlzatlon > counting ¥ Dinreshold
threshold (2D window)

Distributed motion cues

—» Single component
=P RGB image

Fig. 52. Block scheme of motion detector$ill BackgroundNoiseReduction
(SBNR)algorithm.
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Each pixel ofinput frame is compared with corresponding pixels of N previous fréayes
means of absolute differences. These absolute differences are then maximized between frames
and over RGB color components. Resulting maximum absolute differences are feed to two
pardlel paths Fig. 52) which provide (for each pixel) different cues about motion that occur
in neighboring pixel$ one provides cues about maximal motion, and ther athe provids
cues about distributed motion:

- Maximal motion cue map (top path kig. 52) is obtained with use of dilation filter.

Dilation is performed with squareask.

- Distributed motion cue map (bottom pathHFig. 52) is obtained by counting of pixels

that exceed certain level (binarization/thresholding) in window surrourgiclg pixel.

Fig. 53. Motion map bottom) obtained for exemplary frameof)
of Poznan Carpark sequence (white pixefsoving, black pixel§ steady).

Output of the motion detectionbinary motion mapKig. 53) - is produced by combining
of motion cue maps from top and bottom path. Pixel is marked as moving (demarked in white
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in Fig. 53) if any of motion cues indicatenovement (exceextertain level). Otherwise, pixel

is marked as steady (demarked in blackim 53).

Stage 2. Noise filtering
Pixels classified as moving are left unchangacet not modified by the algorithnand are
ignored in the course of noise analysis
Pixels classified as steadyeassumed to be stationary in time and thlighanges in the
signal are considered as noiges shown in Section 3.2.2, the noise is independent in the
subsequentrames and thus filtration can be used in order to attain statistically unweighted
estimaton of the expected real value. From the signal processing point of erdythe DC
component should pass thought the filtering process. Therefore, th# fnelquendes were
set as low as possible for given filter structure, cally at level of abut 2 Hz.
The tested filters were:
- FIR (Finite Impulse Respfilters (ParksMcClellan equiripple)of order 5, 10, 50100,
- lIR (Infinite Impulse Response) Butterworth filters of order3,
- lIR (Infinite Impulse Respons@liptic filters of order. 1, 3.
All of the tested filters yielded with very similar results and thus the simplest, the most
computationally efficient has been usdist order Butterworth IIR filter.
Arbitrary parameters used in the noise reducpiootess, like window s&s and threshold
levels depend on image resolution and camera system. These were optimized for experimen

empirically. The values that have been usard gathered ifiablel11.

Tablell. Thresholds used in SBN#&gorithm for the st sequences

Sequence EPS Window [IR filter cut ” 1
name size | offfrequency | ! «1>m Y| T<l>mv |~ «l>m¥

Poznan Street 25 89 25Hz 8 20 15
Poznan Carpark 25 $B9 25 Hz 8 20 15
Poznan Hall 25 89 25Hz 8 20 15
Lovebird 30 k9 3.0Hz 8 20 15
Newspaper 30 89 3.0Hz 8 20 15
Balloons 30 k9 3.0Hz 8 20 15
Kendo 30 kB9 3.0Hz 8 20 15
S:chl)yDancer ;g Computergeneratedsequences, no noise
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Stage 3 Artifact removal
Noise removal scheme in SBNR technique, consistingahon detection andoisefiltering
steps is simple and computationally efficient. Unfortunately, it may be a cause of artifacts
resulting from harelecisive classification of pixels as steady or moving.

Fig. 55 shows three trajectories of exemplary pixel: original vghie filtered value(b)
and value after artifact removét). At the beginning (segment 1), the pixel is classified as
steady. It varies due to noise, which is filtered (filtefigds the same ag)). Then (lI), pixel
value starts to change significantly and is classifieti@gng. As a result ahat, thefiltering
phase is omitteda), (b) and(c) are the same. Up to this moment, there are no artifacts.

In segment Ill, pixel is classified as steady, because its value changes very slowly. Filtered
pixel trajectory changesven slower, resulting in discrepancy between trajectoFies 35),
which is lesser than threshold of motion detector. After a while, the discrepancy rise beyond
threshold and pixel is instantaneously classified as moving in segment IV. Filtering switches
off, and thus trajectories are updated to original, which causes another steady segment V.

Rapid switching causes visual artifact in the output image.

|.steady [I.moving lll. steady IV. moving V. steady
a) Original _/j\[\}/\\r\\‘\\\\\\\\5____
_\
b) Filtered J\}\)/\/\ e Cause
e of error " [F—mo—o—
c) Artifact J\}\)/V\
free —0n7 |
True _ Artificial
motion Linear ¥— motion
detected interpolation detected
time

Fig. 54. Artifact removal inStill BackgroundNoiseReduction(SBNR) technique
on example ofrajectories of exemplary pixel values.

Therefore, an additional step of artifact removal is proposed, where errors of motion

detection stage arepairedFirst, rapid changes of pixel classification (steady or moving) are
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predicted. If such rapid change is predicted, pixel value is linearly interpolaigdSp)
between originafa) and filtered(b) trajectories before the change occurs.
The results for SBNR are provided further in Subsection3.8.3 In the meanwhile,

another noise reduction technique developed by the author will presented below.

3.8.2. Motion-CompensatedNoise Reduction with Refinement (MCNRR)
technique

The technique described abo{&ill BackgroundNoise Reduction)performs well over
notmoving background regions. Unfortunately, it omits moving regions which disallows
noise analysis @ar the whole scene. In order to overcome this drawback, a motion
compensated noise reduction technique has been used.

This technjue consists in two main stages. The first onglasion -CompensatedNoise
Reduction and the second one iRefinement Both corstitute MCNRR noise reduction

method described below.

Stage 1 Motion-CompensatedNoiseReduction

For the sake of work savings, authorstdecided to use an already developed motion
compensation p ac k a g e-t o a[R4fewhichfisravplugn for VirtualDub/AviSynth
video scripting framework246. As this package is degied for singleview processing, each

view of a multiview sequence is processed separatelyg interview correspondences are

used.
dl dl dl | - | - | -
Frameis Framei, Framej, (GG Framejs, Framei;, Framej;s
Frame;

vV V vV V vV V A \ 4 A \ 4 A \ 4
MCP MCP MCP MCP MCP MCP
L ]

vV V.V V VvV V'V

Average

lFiItered frame
Filtered;

Fig. 55. Noise reduction scheme usedMotion-Compensated Noise ReducticdMGNRR)
algorithm.The MCP block depicts motion compensated prediction
presented ifrig. 56 in detail.
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The proposed algorithm is as follows. Each frame of each view is processed indédgende
Block-based motion estimatiofrig. 55) is performed in order to find motion vectors pointing
to frames neighboring in time (3 previous and 3 following ones). Thenp#®s filtering is
performed on matched blocks under the fasimsimple average which is estimation for
expected value (seaubsectior8.1.1).

It can be noticed, that not all blocks from motion estimation are used in the average. The
compensated block is firstly compared with the original contents of the ctnaem Eig.
56). Only if the best candidate found by motion estimation is similar enough (basing on Sum
of Squared Differences criterion) it is feed to the averagekblOtherwise it is omitted.
Therefore, average may be performedvariousnumbes of blocks, from 1 (only the current

frame) to 7 (the current frame, 3 previous and 3 next frames).

—» Motion estimation [ ¢——

Reference Current
frame ——p lMotion vectors «—— frame
e.g. Frame;; Frame;
Motion
—p —

compensation

Motion compensated
frame

Block similarity

validation (SSD)

Blocks similar to the
original current frame
V ONLY

Fig. 56. Motion mompensated predictiarsed inMCNRR algorithm

Stage 2 Refinement
The result of nise reduction depicted Fig. 55 are filtered frame¥0'Qd 6 ‘@BhiQ Mthough
subjectively the results are satisfying, the analysis of suppressed noise shows that this process
is vulnerable to errors and producesfacts in form of edges which are not perfectly matched
at the motion estimation stage. Moreover, blocks with those edges are not discarded in the
similarity validation stageHig. 57). As a result of that, the edges of fast moving objects are
slightly blurred.

Therefore, the authoof this dissertationproposes a refinement stage in which those

artifacts are reduceqgFig. 58).
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b)

Fig. 57. Exemplary artifacts generated in extracted noise, generated-byotsunotion
compesated noise reduction technique: a) the original fr@he G o of Poznan Street
sequence and b) difference between the denfige®’™0'Qd 6 ‘@hiCEAd the original
O & G, denotedYd & Y "@H in Fig. 58, showing artifacts on the edges of fast
moving objectsGray levelrepresents zernoise valugno difference).

First, the filtered framed0 Q& 6 ‘@diQaPe compared with the iginal (not processed)
frames’Ol & Gdo with respect to Absolute difference measure, performed on each RGB
channel independently, giviny o i ‘OARIQ Then, sum of thee differencesYo & 'Y "@iU
is calculated and feed to a noise gate, wheafaes lesser than with threshot@ are
zeroed. The result is processed with-@irfBensionaldilation filter, which leads to thepatial

extension of regionsvhich arenonzero in the processed images. Then, each value is
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normalized, relatively to standard deviatign

calculated inparallel, basing on

YO & 'Y @ signal After that, the normalized values are feed to another noisevgagee

values lesser than with threshald

are zeroedThen, directly neighboring pixels, that

are nonzero, are gathered into segments. Segments, which have relatively small area, lesser

than™yY pixels, are deleted (zeroed).
Original
current frame >
Frame; .
Linear
& Filtered frame Interpolation
Filtered, ——p|

v

*5 AbsDif;

R+G+B

SumRGB;

4
Noise gate

Gthreshold

v

Dilation
(2D window)

A

calculation

‘ Normalization k

. SsumRGB

v

Noise gate
Nthreshold

v

‘ Segmentation ‘

Small segment
removal Sinreshold

Interpolation
weight map
Weight;

Refined
> denoised
frame
Denoised;

-------- P Control parameter value

— Single component
=——p RGB image

Fig. 58. Scheme ofherefinement stage iIMCNRR algorithm.

In the experiments, the thresholds values wsze to 'O p, 0 P,

Y p, uniformly for all sequences and views.

The idea behind calculation 6f Q “WOA signal is to detect the regions that suffer from

artifacts introduced by application of otion-compensated noise reducticagorithm

(Fig. 57).

In regions wherethe artifacts occur, high values (up to.0l of & QWA

are generatedOn the other hand,niregions, where there are no artifacts, low values
(around 0) ofd Q "WOA are generated.
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Thefinally attained signaty Q "M@ used for linearriterpolation between the filtered
frames’O'Qa 6 ‘@hiQEAd the original (not processed) fram®s ¢ G §d . Thanks to that,
the resultantrefined denoised franf@' Q¢ ¢ "D IQ practically free from artifacts.

For now, two algoritms for noise reduction, developed by the authors for works on
estimation of temporally consistent depth maps, have been presented. Suhbhection

below, experimental results of depth estimafmmthose two methods are presented.

3.8.3. Experimental results for temporal consistencymprovement

In order to experimentally asses the proposed approach, the two noise reduction
algorithms developed by the authohave been usedig. 59) on the multiview video test
sequences set@blel on page?4). This includes usage &till BackgroundNoiseReduction
(SBNR)andMotion-CompensatedlioiseReduction withRefinement (MCNR).

Sill Background Noise - Depth
™ Reduction (SBNR) - DERE g
Denoised
multiview
Motion-Compensated | video Depth
» Noise Reduction with > DERS > Comparison
Input Refinement (MONRR) —
- DERS= Depth Estimtion
multiview
. Reference Software
video
Depth
> DERS >

Fig. 59. Scheme of the experimearforassessment of the techniques relataéthfimovement
of temporalconsistency by noise reduction.

In Fig. 60, exemplaryvisual results attained with and without usetbé proposednoise
reduction techniquesAs can be noticed ofrig. 60a,b, moving objects (people) are left
unchanged while lzkground (wall and cars) is significantly denoised. It is worth to notice
that denoised images are not blurred, because only temporal filtering is empltilgedgh
quality of depth mapsHg. 60c,d) has not changed, temporal consistency expressed as
difference between frame#i{. 60e) is vastly improved. As shown, backgrounanesns
static (black means no changes) and thus is consistent is time. Of course, there is n

improvement over moving objects, because they are not filtered.
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After the visual examination of the resultsf noise removal, application o8BNR
techniquefor depth estimation has been tes{@jl. Basing on the denoised view, depth maps
have been generated, which have been evaluated with respect to their @uglity9).

In particular, it has been done indirecfiyig. 10 on page25) through assessment of quality of

virtual views, synthesized with use of depth maps, generated basing of the denoised videos.

Original Denoised (SBNR) Denoised (MCNR)
| e d

Fig. 60. Exemplary results of proposed technique: original (left), denoised with use of SBNR
technique (center) and denoised with MCNRR technique (right).
The images has been intensified for better reproduction of the differences:
a,b) original image, c,d) depth maps for two consecutive frames,
e) difference between depth maps.
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depth maps obtained from original sequence
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Fig. 61. Subjective evaluation results for SBNR technique, quoted [f8pm
Please note that thesedsequence sét dfferent from the set used in the dissertation.
Also in work [3] quarterpixel precise depth estimation has been used which
is the source of discrepancy between PSNR values ifahle12, whereas PSNR

gains/losses are quite similar in both cases.

Tablel2 Averagael virtual view synthesis qualitgf the proposediepth estimation with noise
reduction in the input vide@ompared to original (unmodified) DERS technidfoe thetest
sequencesvaluated according to methodolaigscribed irBubgction1.5.3.

PSNR [dB{vs. the original view) of the virtual view
synthesized vith use of depth maps estimated
Sequence with pixgl-precision basing on:
Name Views denoised with Reference
ProposedSBNR | ProposedMCNRR (original
technique technique views)
Poznan Street 31.93 31.92 31.98
Poznan Carpark 30.74 30.79 30.71
Poznan Hal 32.78 32.83 32.85
Lovebird 29.79 29.78 29.80
Newspaper 31.90 31.91 31.91
Balloons 32.91 32.93 32.94
Kendo 35.41 35.39 35.46
Average 32.21 32.22 32.24
I SNJ 3 S t
related to the referJ::-ncé ~0.03 ~0-02 i

Both objective and subjective evaluation have been performed with use of four test
sequence$85][24(0 1 Poznan Street, Poznan Carpark, Book Arrival and Alt Moabit. This
limited set & sequences has been chosen, because only a small number of subjects availabl

for subjective testing were available (15 persons). The results are shown: objective PSNF
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(Fig. 61 as values on vertical bars) and subjective Mean Opinion Score (NF@SHL), both
in comparison to the original views. In the study, M@$xpressed by a ifbint continuous
scale. Rating of the quality was inr ange from 1 (Avery bad
impairments/artéh c t s 0 ) exdelent, arOfacts @ie mper cept i bl eodo) .

It can be seen that application 8BNR techniquefor noise removal fronthe tested
videos used theror depth estimationprovidesgain ofabout 0.7 to 1.2 MOS point It can
also be noticed thaPSNR levels have not changed. The latter is not surprising, because
PSNR measure is not designed to ssggality of temporal consistency.

After such initial assessment of SBNR technique (described in more defd])ion
limited set of sequences, both proposed noise reduction technigB&HR (@nd MCNRR)
have been assessed in a similar \{lgig. 10 on page25), but with usage of all of the test
sequences selected in the dissertation. View synthesis settings descflladdei on page
26, have been used. The results are presenteédhiel12.

It can be noted, that there déscrepancy between PSNR values in Tlable 12 and the
ones presented priewsly in Fig. 61 as values on vertical bars. This discrepancy comes from
a fact that in[3] quarterpixel precise depth estimation hasebeused and in the newly
presented caseT@ble 12) full-pixel precision has been used. Apart from that, PSNR
gains/losses are quite similar both cases and fluctuate around zero average, there are
practicallyno gains or losses of PSNR. Again, tisigiot surprising, because PSNR measure

is not designed to assagiality of temporal consistency.

Table13. Averaged ihear correlation coefficient between depth valuesuinsequerframes.

Linear correlation coefficient averaged over each sequence
Depth maps estimated from:
A. _
Sequence Ground C.Views D. Views
name truth B denoised | F denoised T
depth Oqgnm with SBNR W p with W p
maps VIews technique MC'\.IFR
technique
Poznan Street 0.9496 0.9552 0.9558| 100.6% 0.9562| 100.100
Poznan Carpark 0.9607 0.9393 0.948&% | 100.99%0 0.9547| 101.64%
Poznan Halk 0.9264 0.9225 0.9257| 100.3%% 0.9319| 101.026
Lovebird 0.9911 0.9608 0.9751] 10149% 0.9799| 101.9%
Newspaper 0.9972 0.9941 0.9964| 100.23% 0.9967| 100.%%
Balloons 0.9960 0.9622 0.9789| 101.4% 0.9796| 101.8%%
Kendo 0.9651 0.9544 0.9651| 101.12% 0.9560| 100.1P%0
Average 0.9694 0.95% 0.9637 | 100.8%% 0.9650| 100.9%%0
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The results presented ifable 13 show that application of the proposed noise removal
techniques for depth estimation provide gains in a form of increase of correlation between
subsequentlepth frames in given view. Columi presents linear correlation coefficient,
averaged over all frames and views, calculated betwabsequentrames of ground truth
depth maps of given sequence. ColuBn€& andD present similar results but calculated for
depth estimated with use of theignal views, views denoised with SBNR technique and
views denoised with MCNRR technique, respectively. It can be seen that although the gain:s
in linear correlation coefficient increase are small (up to 1,81%, ab06%0. 1.99% in
average, related to kkonn B) it must be taken into perspective that the improved regions are
mostly edges of the objects that cover only a small portion of the whole scerfag(S&@
ard sometimes, differences even between the ground truth (column A) are very sall
Newspaper sequence which is already highly correlated (the most the scene is not movin

background).

Tableld4 Bj) Bnt egaar d (mpgativensimbiers arebbitrate savingal PSNR

(positive numbers denote quality increasesults of MVC compression of depth maps
estimated with use of DERS basing on denoised test sequences, related to compression of
depth maps estimated with use of DER£Sing on the original test sequences (anchor).

Sequence name ProposedSBNR technique | ProposedMCNHRRtechnique

dBR, % dPSNR,dB dBR, % dPSNR,dB
Poznan Street -31.47 1.34 -35.14 153
Poznan Carpark -46.57 2.01 -45.19 1.85
Poznan Hall 2 -26.44 1.54 -29.01 1.70
Lovebirdl -34.12 1.10 -34.91 1.17
Newspaper -33.64 1.34 -33.42 1.33
Balloons -23.96 0.93 -21.99 0.86
Kendo -0.02 0.00 -5.26 0.24
Average -28.03 1.18 -29.28 1.24

Finnaly, another test has been performed. The estimated depth maps, resulting from
conderations above, have been coded with use of MV Z[113 video codec. The
compression performance has been measured and depicted of jmf3 n t engtrécarhed
results are shown iable 14 below. It can be seen, that application of the proposed noise
reduction techniques on the input video, haaeosisly influenced the estimated depth maps,

because their compression performance has vastly changes.
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The coding performance of such (compared to the original depth maps estimated with
modified DERS basing on the original multiview video) is al81036 higher in the case
of SBNR (which relates to increase of PSNR of about 1.18uBjbout29.28% higher in the
case of MCNRRwhich relates to increase of PSNR of about 1.24dB)

In general it can be said, that the averem®pression performanggin overthe tested set
Is about 30% of bitrate reduction, while providing the same quality of synthesized views
(the bitrate reductiorhas beemmeasured witlBB ] R n t engtacavedPSNR of synthesized
views). This provides as strong indication that the temporakonsistency of the estimated
depth has been vastly improved as one one the main compression tools in coding
technology implemented in MVC is temporal prediction. The more the subsequent frames are

correlated, the higher compression performance cattédeed.

3.9. Summary of the achievements in the area of depth estimation

I n this Chapt er , ndaasulthrelated so the arba oé degthmestimationa
have been presented, related to these$3 &f the dissertation. The main covered top@ios
proposal of probabilistic modélased on Maximm A posteriori Probability optimization in
depth estimationproposal of accuracy refinement technique basellidrLevel Hypothesis
and improvement okemporal consistendp theestimated deptmaps.

In Sectiors 3.1 to 3.6a complete probabilistic model f6® Q06 6 fénkction (composed of
Owo woahd™™ & i Qo Jas been iproposed. Thart of the dissertatiohas been
started with general theoretical derivation pH <= ased orMaximum a Posteriori
Probability rule (Section3.1). Then, the derivedformula (21) from page51, has been
thoughtfully analyzed with respect to simplificatio®éction3.2) to classical forms related
with to SSD or SAD (equationg30) and(35) on pagesb3 and54) along with verification of
the conditions that have to be meet for such simplification. It has been shown that at least
some of the condiins are not meet in a practical case of multiview test sequeBeeson
3.3) and basing on tha novel formulation for O® 6 & 6 ddaé) has been proposed
(Section3.4). A method for estimation of parameters of this model has been shown on
example of the test sequences. Next, a probabilistic modg| e+ v <« has beenv «
proposed (inSection3.5) also with a method for estimation of parameters of this mbdel.
the end of the considerations, the results have been shown.

The attained results show averaggn of about0.08dB to 2.8dB in averageover tested
sequence sgtalculated with respect to PSNR of virtual views, synthesized with use of depth
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maps generated with the proposed method, over the reference. As refénermeginal
unmodified Depth Estimation Reference SoftwdRERS) has been used with manual
calibration of Smoothing Coefficient per sequenEer the case of selection of the worst
checked (yet rational) Smoothing Coefficient value for the original DERSaverage gain is
about2.79B. For the case of selection of the best found Smoothing Coefficient, the average
gain is only about 08dB, but it can be noted that the proposed technique attained that
without manual of such coefficient.

This constitute®ne of the biggest advantagesf the proposed depth estimation metiiod
it does not require arbitrary manual calibration of coefficients. All required model parameters
can be algorithmically estimated like it was shown on example of the tested sequences ir
Section3.5.

In Section 3.7 authofs achievements in area of depth estimation relatedctoiracy
refinement of depth mapshave been shownA novel depth refinement by Mikkvel
Hypothesis technique has been shown. The proposed method provides an alternative solutic
for generating suipixel precise depth maps, without necessity to increase complexity of the
core depth estimation algorithmin the proposal the depth in refined in a pegtocessing
step.

The presented results show that the quduitezl-precise depth mapgenerated with use of
the proposed techniquptovide gains of about 03dB of PSNRin average(over the tested
sequences related to the quartguixel-precise depth maps generated witte original
unmodified Depth Estimation Reference SoftwlpERS) Comparing to fulpixel-precise
depth maps generated with the original unmodified DBR& gains are even higher and
are about 2dB of PSNRIin averageAll of the PSNR gains Iv& been measured as quality of
virtual view synthesized generated with use of the given depthonepthe tested sequence
set As for complexity, the proposed technique provideduction of about 3.1 of
computation time, related to direct quartgrixel-precisedepthestimation using theriginal
(unmodified)DERS technique

In Section 3.8 developments of the author in area of depth estimation related to
enhancement of theemporal consistencyof ster@scopic depth mapkave been shown.

A novel approach is proposed in which temporal consistency of the estimated depth is
increased by application of noise reduction technique in the input video, a priori to the depth
estimation itself. Two noise reductitechniqueshas been developed by the author in order to
provide proof of the presented concepStill BackgroundNoise Reduction (SBNR) and
Motion-CompensatedNoise Reduction withRefinement(MCNRR). Although the developed
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noise reduction techniques are fairly simple, they have provided evidence that the proposed
approach brings substantial gains.

In results it has been shown thasual quality of the input video has been improved
Further results of experiment with depdéistimation hae been shown. It has been noticed that
although the proposal does not provide gains in case of objective PSNR metric, the subjective
evaluation, of the views synthesized basing on the depth maps generated with use of the
proposed noise reduah technique, shown that application of the proppsaVvides gain of
about 0.7 to 1.2 MOS points (Mean Opinion Score). Finally, temporal consistency of
generated depth maps has been verified with use of Pearson Linear correlation coefficient and
with useof video coding (MVC). Both of the tests has shown that the application of the
proposed noise reduction methods increase temporal consistency of the estimated depth. For
instancethe gains in compression of depth maps are abo®0% (Bj B nt engtacarr d
average over the tested sequencerséining the same synthesized views quatiéyated to
the compression of depth maps estimated with the original, unmodified Depth Estimation
Reference Software.

The abovementioned summary end the part of therthsiom relate to depth estimation.

Further Chapter 4 and 5 will focus on area of depth coding.
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Chapter 4. State-of-the-art in depth map coding

The 3D video systems are evolving from simple stereoscopic systems to sophisticatec
secondgenerationsystems that provide more rettisperception of the 3D spad@47.
Prospective applications of the secayeheration 3D video systems include autostereoscopic
displays, variabldaselinedistance systems as well as the 4fvemvpoint televsion
[250[25]. The secondeneration 3D video systems nedticeent representations of 3D
scenes. Practical description of a 3D scene is multiview video plus depth (\8D) i.e.
multi-viewpoint video togetbr with the corresponding depth maps estimated during the
process of content production.

In this chapter an overview of coding tools that involve depth will be provided. Then,
techniques that are directly related to the dissertation, which is represenfatie depth for

coding, will be highlighted.

4.1. Coding tools that involve depth

The new generation of 3D video is a subject of research in many laboratories around the
World and is a very fast developing field. From @0@otion Picture Experts GrouMPEG)
of ISO/ITU founded a newnultiview/FTV/3DV activity [248[249[144[250[25]] targeted
at developing a framework and technology that will be a part of a future 3D stahdants
to MPEG, many research centers around the wantgperate in order to develop an agreed
techndogy. These works include multiview coding, depth estimation depth coding etn
be said, hat works of MPEG (and furthelCT-3V) participants eflect the current statef-
the-art in the area of multi view video and 3DV

The first step of MPEG towds 3D video was Mukiew Video Coding (MVC)
technologycompleted in 2009MVC, described as annex &f ISO/IEC 1449610:2012and
ITU Rec.H.264 video coding standards anextension ofAVC (Advanced Video Coding)
technology,extending it with ability taransmit multiple videos in a more efficient way that
exploits interview similarities. This is attained by usage of waibwn motioncompensation
prediction mechanism, adapted as wwew disparity compensation. Such approach is
a balanced compromideetween higher codec complexity and compression efficiency. The
gains of MVC over AVC simulcast are about 30% for the dependent views
[2][7][76][148[149. The base (hodependent) view of MVC isoded in he samavay as in
AVC and thus this view single view of MVC Imckward compatible with AVC.
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The MVC standard itself does not enable coding of supplementary depth data. The works
of MPEG group on development 8BWC/MVC extensions, allowing coding of depth maps,
have beemproceedingn parallel to the development ofits di sser t at Mdth . I n par
Extension for Inclusion of Depth Maps ( MV C+ D) coding technology h
included in Annex | ol SO/IEC 1449610:2012and ITURec.H.264 video coding standard.
Another, more advanced AVC/MVC extension, calf@VC compatible videeplus-depth
extensiono is currently (end of 2013) goi ng t
ISO/IEC and ITU committees. The description, as annex IB&V/IEC 1449610:2012and
ITU Rec H.264 is expected to be finalized i®24.

Another thread os$cientific worksin MPEG groupis development of a new generation of
2D (monoscopic) video coding technolognamed High Efficiency Video Coding (HEVC)

HEVC provides substantial gains owYC, ranging from 40% to 60%®53. It is worth to
notice that such gains are higher than those of MVC over AVC. In context of multiview/3D
video coding, it means that it is more efficient topboy HEVC simulcast (for each view
independently) rather than to use MYTE.

On the other hand, usage of intéew coding tools (like those in MVC) in HEVC can
bring even higher gains. Therefore, multiview extension of HEVC (in a way similar as MVC
is an extension of AVC) is lontime target ofscientific works around the world and in the
MPEG group.

During the abovementioned works, the compression of depth waglentified as an
important research task. This task is somewhat different from the task of video compression
where the goal is to compress visual data in such a way that the decoded video is possibly
similar to the input video. On the contrary, depth iswatched by a viewer but it is used to
synthesize virtual views needed for an autostereoscopic display or in -giefngmint
television system. So, mostly the decoded depth quality is expressed by the quality of the
synthesized views.

The developmentsni area of depth compression include coding methods which have
various levet on compatibility with legacy technologies defined by standards.

In work [254] authors anafze coding of depth with use of wavelet transform with use of
techniques developed for JPEG2008Iithough the technique could be extended with
mechanism applicable for efficient compression of depth video sequences instead of still
pictures, at the presat stage such feature was missifigis lack ofresearcthas been filled
in work [255, where authors propose complete coding system, along with analysis of impact

of wavelet compression on imagased rendering synthesis of virtual views. The results are
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promising, yet still, authors did not address the problem of compatibility with existing coding
standards.

In work [25€] it is suggested that wavelet coding with motion compensated prediction can
provide good efficiency when used for coding of mixture of homogenous regions and sharp
edges, like irthe case of depth map&Similar cancepts are developed in workad57[258,
where usage ofadaptive wavelets wh treebased partitioning is proposeAlthough the
authors mention promising compression performance, the proposed approach is no
a compellingsolution, because it uses coding technology which is incompatible with existing
video coding standards, both regarding to the syntax and technology.

In work [259, depth coding in AVC is considered, which incorporates-skqule selection
decision based on distortion analysis. The authora shat thanks to their approaabt only
the codingperformance is improvebut also temporal consistency of the reconstruct@thde

is enhanced.

4.2. Stateof-the-art directly related to the proposals in the dssertation

The techniques that are more aligned with stétthe-art in videocompression include
platelets[26([261][262 wedgeletd265[266. In work [26( plateletshave been proposed
for medical applications. Authors phper[261] haveproposedlateletsas a efficient depth
coding tooland have developed this approach over yg#8[263. In suchdepthcodingis
integrated with existing coding pipeline based on macroblocks and coding units as a specia
coding modeThe general ides that inside of given coding region (e.g. macrobladding
units) the depth isnodeled as a flat plane called platelatiependentlyusage of platelets is
considered 133 in context of MVC codec.

Wedgelets are extension of the idea of platelets, where given block is represented with
more planes, separated by edges. The foundations of such idea have been [6d] in
where partitioning schemes have been theoretically considered. The application of platelets tc
depth coding can be found [265 and furtherdeveloped formn [26§. In those works,
depth coding is alsmtegratedwith coding pipelineas a coding mode. In particular, the depth
can be modeled as a single plane (plateletyvo planes separated by a discrete edbese
location is signaled in the bitstrearim work [267] a contoufbased coding of depth is
proposed. In such, edges in the depth maps are identified and then their positions are signale

in the bitstream. The proposal relates to huiwding only but provides interesting gains.
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In the standardization expert groups like MPEG, VCEG and-3€Tthere is strong
expectation to use the existing coding tools as much as possible for coding of depth.

The basic compression tools are usually capable @epsing &it samples, and they use
uniform quantization, i.e. the quantization with the constant quantization step that might be
changed for some data structures like slices and macroblocks or coding units. Such uniform
quantization is characteristic footh basic mdern video standards: the AC1] and the
new onei the HEVC[121]. On the other hand, it can be intuitively understood that exact
depth is very important for foreground objects while small depth degradations in far
background are mostly well tolerated by the human visual system. Thereforenifmm
quantization wald probably be appropriate for depth coding. Therefore, in order to preserve
conformance with the standards like AVC and HEVC, we propose to process the depth values
using a noflinear function. Such processing together with uniform quantization is déeuiva
to the requested naimiform quantization.

The idea of depth processing using lioiear transformation of the depiample values is
not a new onelt was already considered if268 but with no particular relation to
compression. The authors consider the influence of the depth representation on the attained
visual quality only.

In [269, a nonlinear transformation of sample values was used to obtain finer depth
guantization in the background, i.e. a Amear transformation was used in the opposite way
to that proposed in this dissertation. Although, the authors show #haivrall objective
quality of a virtual view synthesized with use of their proposal is increased, it is missed that it
is the gains are coming from the background areas (for which the depth is represented more
precisely) and no analysis on impact of tbeefround objects and thus on the visual quality
is done.

In paper[27(Q author also propose depth coding tool abased orundarm representation
but unlikely in thedissertation, the depth prediction signal is transformed instead of the depth

values.
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Chapter 5. Proposed nonlinear depth representation for
coding

In this Chapter, research conducted by the author in area of depth coding will be presentec
In particular the concept of depth representation will be studied. First agfrooncept idea
will be presented, using a simple Alamear function. Then an original theoretical derivation
for nonlinear representation of depth will be provided. The resiltbe shown in form of
both subjective and objective assessment. Finally, adoption of proposdoheayndepth
representation to video coding technology standards developed by ISO/IEC MPEG group is
highlighted.

5.1. The idea of nonlinear depth representation

The straightforward approach ttepth map transmissioms to use uniformly quantized
disparity values nor mal i zed t o r a@)gT¥at aule &sb be acgaite | e «
good method if the application of the transmitted datanisnown. Howeverin the case of
next generation 3D video systems, considered indissertation the transmitted depth map
is used to synthesize virtual views. Therefore, mo#tly decoded depth quality is expressed
by the quality of the synthesized views.

Mentioned, straightorward linear representatiorof depth with uniform quantization of
disparity, unfortunatelyloes not match the properties of theman visual system thais
more tolerant to disparity errors in the background of a synthesized scengig. 62) than
to errors in the foregroundrherefore, the author has developed a coding scheme which
resemblesiontuniform quantization, so that distamlbjects are quantized more roughly than
the closer ones.

In the standardization expert groups like MPEG, VCEG and-3¢Tthere is strong
expectation to use the existing coding tools as much as possible for coding of depth. The basic
compression too)ss characteristic for both basic modern video standards: the[AY{ and
the new oné theHEVC [121]], are usually capable of processingi8samples, and they use
uniform quantizationwhich is not optimal for coding afepth for the purpose of virtual view
synthesis.Therefore, in order to preserve conformance with the standards like AVC and
HEVC, it is proposé to process the depth values using a-lwwear function.Such processing
together with uniform quantization exjuivalent to the requested Roniform quantization
(Fig. 63).
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Fig. 62. Exemplary artifacts resulting from linear quantization in codihdepth maps,
especially visible for objects in the foreground, marked in red.
a) fiPoznan Hall @ sequence, Undo Danced sequence, djPoznan Streétsequence.
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Parametersfor
Non-linear Depth Representation
|~ - -~ T- -~~~ T T T = == 7 7 |
| o A 4 A 4 . A 4
1 U ) b 16
—» F » Encoder —» bitstream—» Decoder » Fl i —>»

Fig. 63. Nonuniform quantization realized by a transfoi@performed on depth valugson
the input of the coded and inverse transfd@m on the output of the codec.

Assume that distance to a point on a real objegt Rractical limitations yield that for all
objects in a scene the depth values are within a final intervalyi.,e. & & where
o anda are the distances to closest and the farthest object in a scene. The depth dat

are usual} stored aslisparityQwhich is proportional to the inverse @f159:

1T o- ¥ : (57)

where) is 255 for typically used-8it depth samples.

For uniform quantization, this representation has the following advantage: a higher depth
resolution of nearby objects is obtained. In order increase this effect, an additioialeaon

transformations proposed to be performed on the deggimple values

LI © (58)

wheret is the transformed depth aif@Ois a nonlinear function, e.g. as shown kig. 64 for

the most common case o8 representations.

T
255

']

0 255
Fig. 64. Nontlinear depth transformation performed before coding.
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The transformation(58) is performed on depth samples before coding. Now, the depth
coding itself is performed on the internal valdeastead of the external valugs This non
linear transformation influencegqgliction errors and their linear transforms (mostly BDCT
like) that are used in the course of the ifiteane and inteframe coding. The transform
samples are quantized and this process is influenced by the proposédeaprdepth
transformation.

After transmission, the process is reversed with inversdinear function’O O so that,
basing on reconstructed transformed defa#hreconstructed linearly quantizewrmalized
disparity] ags retrieved:

1 'O ftee (59

In the nextsubsectiora simple proposal fononlinear transformatior(58) and inverse
nortlinear transformatio(59) will be presented. This simple proposal will provide a proof of

concept of nodinear depth representation idea.

5.2. Proof of concept proposal for nonrlinear transformation

The first proposal for nefinear depthtransformation proposed by the author is based on
the idea of gammaorrection well known from luminance coding in classical video systems.
It is proposeé to use nodinear disparity representation in the codec, so that each sample

value is defined by thisllowing powerlaw expression:

[
T 1 Ofa o (60)

Taoo
where] and t are themaximal values off and T, respectively(e.g. 255 for &bit

precision)

In such way, closer objects are represented raccarately than the distant ones and thus
quantization is nowmniform. The definednonlinear transformation has beesunccessfully
employedin Poznan University of Technologgsponse t@iCall for Proposals for 3D Video
Coding Technology[129 issued by MPEGIt was shown experimentally that already simple
choicey  p® (for small QP values) arid p® (for large QP values) gives good results.

Obviously, a reciprocalperation is performedtar decoding the disparity map:

i
tee P (61)

| e Dave

Tavo
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The initial proposal for nofinear depth transforr(60) has been implemented by author as
a part of codec developed by Poznan University of Technology, Chair of Multimedia
Telecommunications and Microelectronics, which has been submitt&htiofor Proposals
on 3D Video Coding Technology$sued by MPEQroup in 2011/129. This proposal has
been rated very high among other proposals and was found to be one of the best performin
proposals in HEVC category. The excellent results attained by the proposed codec, provoket
a deeper analysis of the share of gains provided hicylar tools[271][272, citedin the
graphsbelow (Fig. 65 - Fig. 68).

10 PoznanStreet
9
8 i
7 i
w8
O 5 -
=
4 i
3 =< All coding tools
2 o,.-' Nonlinear depth
! PSR -4-HEVC simulcas
0 ‘
280 480 800 1310
bitrate [kbit/s]
Fig. 65. Subjective test results for Poznan Stesgfuence.
9 PoznanHall2
8
7
6
%)
3 5
=4
3
o T e o =<All coding tools
........ Nonlinear depth
1 .= .. @ .
----------- -#-HEVC simulcas
o+ @
140 210 320 520

bitrate [kbit/s]

Fig. 66. Subjective test results for Poznan Hall 2 sequence.
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Fig. 67. Subjective test results for Undo Dancer sequence.
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Fig. 68. Subjective test results for GTyFEequence.

Results of this analysig-{g. 65 - Fig. 68) show that sole application of ndinear depth
transformation described by equati(@®) leads to improvement of the subjectively assessed
quality of the reconstructed viddry about 1 MOS (Mean Objective Score paitit)can be
noticed that this also corsgpond to about one third of the overall subjective gains provided by
the whole codec (with all coding tools) over HEVC simulcast coding of multiview test data.

Promising results of resolution of CfR29 issued by ISO/IEC MPEG and results of
further evaluation presented in the dissertation, provided a-pfdab&-concept for proposal
of nonlinear depth transformation. This has motivated author to do a staretued

approach to the subject. The devised formulation is presented in theubsgttion
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5.3. A theoretical approach to selection of nofinear transformation

In this subsectiona theoretical derivation for ndimear depth transformation will be
provided. The requirement is thdistant objects are quantized more roughly than the closer
ones. Thereforehe assumption is that the quantization $t&ép decreases with increasing of
disparity] . Also, the expectation is that the quantization $tep changes uniformly across
the whole disparity range.

For the sake of simplicitpf derivation instead of considering valuesjofand T (within
range 1t to | andtto t respectively)and transform functionQ l et ds cc

transform functionOandvalues of andtdormalized to range [0..1] so that:

1 T
— 5 — 62
1 . n 1o ¥ 8 ( )

For small values df (far objects) the quantization stefis assumed to be large, while for

large values df (close objects) the quantization is expected to be fine:
i1 8 °h (63)

wherel is aconstanparameter (e.g. T@® UL8tis a typical choice used in tipeeliminary

experiments). As the sum of all the quantization steps should cover the whole unit:interval
. . 0
P i QdQ 60 Q °dq |—O'Q P , (69

where'Qis the integration variable used insteatl afr tgand the parameté,

o 6
o o o (65)
Thus, the inverse ndimear depth transformation
o . 0
1 "0 18 RQQQ 60 Q 2070 |—C)'Q ° o : (66)
and after some mathematical operations
0
) —20 2 p : (67)
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a Q o 68
63) p Q : (69)
P 'gcp o | O (69
|E:j I %S{) p 16 - (70

and by substitution ab and some further simplification:
P

, s A |
to |—:] Ip —l—j) . (71
O o
6 "0 Piip 10p 0 N7

|
Finally, if the original notationwith (not scaled) variablés, T and"Ois usedwe can get the

desired forward transformation:

1 50 0 @

dTp(]

. T

T O .
The results attained with use of transformat(i6®) lead not only to comparable subjective

gains as inthe case of powelaw-based expressiof60) but ako provide objective gains

(measured by PSNR). This fact, has been brought to the attentMRBE group [49] for

consideration as a tool for a new generation cotéingnology standards.

5.4. Approximation of non-linear depth transformation

One of therequirementsconsidered by experts during evaluationpobposed tools, like
nontlinear depth representation tooy the autharis that standards should be definedain
flexible way. Therefore it would be not feasible to define a single arbitrary transform
function, e.g. defined by60) or (73). In order to fulfill this requirement, the author has
proposed that the shape of the plot of functi@® is directly given to the encoder,
transmitted in the bitstream and then decoded by the decoder

The a u t h propésal of non-linear depth representation has been accepted@nd it
was decided (e.d.114[117]) that thenonlinear transformatiorfunction will be linearly

approximated in the intervals. Was accepted that only a set of the equidistant deviations
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from the diagonal will be signaled in the bitstream (B&p 69) [49]. These deviations are

defined solely byhedeviationvector 0 0 ) B

256

224 ,,
192 ~ {V?/

160

128 -

9% . AW/ o
N

64 \ e

32

0 #
0 32 64 95 128 160 192 224 256

Fig. 69. Transformation definition by equidistant deviatiansand the linear approximation
in the intervals. In this example deviation vediois 4 element vector.

The advantages of such approximatdmonlinear depth transformaticare as follows:

- Shape of the transform may be optimized individually byetheoder.

- Further developments may bring new ideas about the definitions of the transformation.

- The proposed approximation can be easily calculated usingpoiad arithmetic.

- The transformation can tssvitchedoff if in particular case it does not bring any gain.

In particular, it has been noticed tlifathe distribution ofnormalized disparityi samples is
concentrated around small part valuesasfger8 usually it is better to switch off the
nontlinear depth transformation. Such abnormal depth distributions are idei@#sety on

expected valu®]  of normalized disparitynap] f :

Ol n —== 1 (74)
N B N8

wherew andOcorrespond to the width and the height of the image, respectively.
Therefore it is beneficial to disable nrbnear depth transformation, whéi  is below

a predefined® value (hat was set to 100 in the experiments wHiit8sampes). This

relatively simple condition can be used for automatic switching the toolndno# for

individual sequence:

"6 & ("0
01 60,

o

0¢ & @Y (79

@)
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Thementionedadvantage of flexibilityof nontlinear depth representation proposdieady
have led to development done author and other research d@i@rs

In the nextsubsection experimental evaluation of the Ndinear Depth Representation
coding tool, submitted by the author for consideration of ISO/IEC MPEG group, will be

presented.

5.5. Experimental results for depth map coding

The nonlinear depth representation tool (under the name of NDR) has been submitted to
ISO/IEC MPEG group and has been evaluatedirigrnational experts in a sers of
Exploration Experiment®.g.[237[238[60][63]. These Exploration Experimentsompare
several tools related to given subject (e.g. depth coding) on the common ground environment,
constituted in Common Test Conditions (CT[@36 document. Each submitted result must
be confirmed by at least one independent research center in order to be considered. Basing on
such evaluation, only the best and the motgresting tools are adopted to the standard under
development.

The experiments have been done for depth coding extensions of the AVC standard
[114[119[114[117[118[119, which have been under development at that tifw/C+D
and AVG3D.

In all experiments, the transformation defined in equatit® has been used with
parameter  p&. The transformation was implemented by approximation with 41syode
i.e. deviations have been defined for 39 nodes (for two boundary nodes, for normalized
disparity] Tt and ¢ L,uhe deviation is always 0). The deviation vectofseeFig. 69)

which has been used is as follows:

O chtixiip 1p @ tp & Jp @ Tt i & & % X X (76)
o kK @ @ ix it & tp o fAdplo].
The final results hae been submitted to MPEG [57] and favebeen independently cress

- -K

=
-S'ga'(
%‘(ﬁ'(

checked by Samsung Corporati@7r4]. The Nonlinear Depth RepresentatigNDR) tool has
been turned onin the case ofthree sequencdsom the set(GT Fly, Kendo and Balloons
while for others Poznan Street, Poznan Hal|lUndo Dancer, Newspapet)as been turned
off due to application atherule described irquation(75) with value of theO =100.
The results are summarizedTable15 andTable16. The average gains in bitrate (dBR)
as well as in PSNR (dPSNR)er e cal cul at e dneasusefl@d7y 3 vileyws3and egaar d
3 depth maps are coded and results for respective bitstream components are presented.
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The gains werealculated forthe following cases (AB, C and D), which are reflected in
headings ofrablel5andTablel6:

A.

B
C.
D

Video-only bitrate (depth bitstream not included) andrage PSNR for 3 views.
Depthonly bitrate and PSNR for depth (aage for depth maps for 3 views).
Total bitrate for 3 views and 3 dépmaps andwerage PSNR for 3 decoded views.

and 6 viewssynthesizedn spatial position in between the coded vidig). 70).

Tablel5.B) Bnt egaar d

gains i

n

bi t r adinear depth

Total bitrate for 3 views and 3 depth maps and average PSNR for 3 decoded views

PSN

representatiom HP profile 3 views and 3 depth maps are coded and results for respective
bitstreamcomponents are presented.

A. B. C. D.
Sequence Multiview video Denth codin 3 views with 3 views with depth maps
q coding P 9 depth maps and 6 synthesized views
dBR [%|dPSNR [dE dBR [%]dPSNR [df dBR [%]{dPSNR [dB dBR [%] | dPSNR [dB]
GT Fly 0.00 0.00 -21.93 1.37 -1.25 0.05 -0.11 0.00
Balloons -0.01 0.00 -25.87 1.34 -3.27 0.17 -2.59 0.13
Kendo 0.00 0.00 -25.76 1.64 -5.28 0.28 -4.13 0.20
Average 0.00 | 000 |-2452| 145 | -327 | 017 2.28 0.11
(3 seqs.)
Poznan Street
Poznan Hal . . o .
Undo Dancer Zero gains Nonlinear Depth Representatias disabled due tequation(75)
Newsgaper
Average 0.00 | 000 |-1051| 062 | -140 | 007 0.98 0.05
(all 7 segs.)
Tablele.B) Bnt egaar d gai ns iapplidatiort of rodinear deptid

PSN

representatiom EHP profile.3 views and 3 depth maps are coded and results for respective
bitstream components are presented.

A. B. C. D.
Multiview video . 3 views with depth | 3 viewswith depth maps
Sequence : Depth coding h .
coding maps and 6 synthesized views
dBR [%|dPSNR [dE dBR [%]dPSNR [df dBR [%]|[dPSNR [dE dBR [%] | dPSNR [dB|
GT Fly 1.36 -0.05 -23.87 1.49 0.63 -0.02 0.74 -0.02
Balloons 0.44 -0.02 -21.79 1.13 -1.35 0.06 -1.18 0.05
Kendo 0.19 -0.01 -20.35 1.30 -3.41 0.15 -3.13 0.14
Average 066 | -003 |-2200| 131 | -1.38 | 0.6 -1.19 0.06
(3 seqs.)
PoznarStreet
Poznan Hal . . S .
Undo Dancer Zero gains Nonlinear Depth Representation is disabled duedmation(75)
Newspaper
Average 028 | -001 | -943 | 056 | -059 | 0.03 0.51 0.02
(all 7 segs.)
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IR TEIEE

Fig. 70. The arrangement of the views: the v isn@&ked in black while the views synthesized
in the receiver are marked in gray.

The overall bitrate reductiorwith respect to the case iB up t04.13 while there is no
measurable increase of complexity average, the gains abe98% (HP profile) and0.51%
(EHP profile) when the has beeone forall of the test sequencésalso thosdahat do not
fulfill the requirements for the depth distribution as described in Chapeey. &4) (for these
sequences the transformation was switched Offily in the sequences in which the transform
has been turned on are considered, the gains are 2.28% (HP) and 1.19% (EHP).

Please ne that those mentioned gains are coming from coding tools for depth solely,
while depth is about 10% of the whole bitstreadnmore optimistic interpretation of the
results, presented icolumn B ofTable 15 and Table 16, shows that the bitrate of the depth
itself has been reduced i9.51% (HP)and9.45% (EHP) when considering average over
all test sequences a2d.52% (HP)and22.00% (EHP)whenthe averagds calculated only
over the test sequences that use the proposed tool.

Also subjective testf57] have been performed in order to compare visual quality of the
synthesized views produced from the compressed depth maps both in the presence and in the
absence ( Aanc ho-linear deptrerepeesentatian)(for thé samedbitrate). For the
tests, 32 subjects have assessed the quality of stereo clips (2 subjects needed to be rejected)
using the single stimulus method.

The subjects hee been presented a coumétests inDouble Stimulis Impairment Scel
(DSIS) method[12§. First, the reference (stereo pair synthesiz&éom uncompressed
original) sequence was showrhen a tesed case was showrthis could berandomly either
one of:

1 3D-ATM [12Q anchor, or
1 3D-ATM with proposedNorntlinear Depth Representation

The tested sequence has been always coded &thnbbitrate: from the highest (R4) to the
lowest (R1), reflectingCommon Test ConditionQTC) [46][236 and general methodology
developed by MPEG for exploration experiments (EBS.

The presented stereo pair was composed from two synthetic views, around the base view.
After each testsubjectsgave theirscores reflecting quality The sessions were performed

during the MPEG meeting in Geneva.
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The results for various bitrates (R1R4) are depicted irFig. 71, together with 95%
confidence intervals. The bitrates have been selected according to MPEG guidelines fot
individual test sequencd46][23€. The results show that ndimear depth transforntian

improves coding efficieng although some of the confidence intervals overlap.

m 3D-ATM with Nonlinear Depth Representation @s3D-ATM Anchor

=
o

I
L
Ly
—

O P N W H~ 01 O N O O
|

BalloonsBalloonsBalloonsBalloons Kendo Kendo Kendo Kendo GT_Fly GT_Fly GT_Fly GT_Fly
R4 R3 R2 R1 R4 R3 R2 R1 R4 R3 R2 R1

Fig. 71. Results of subjective evaluation of Nonlinear Dep#presentatio(NDR).
One of the cases (Balloons sequence, R3paitat, Anchor) is shaded because the ressilts
not reliable due to presentation problems that have occurred during the viewing.

One of the cases (Balloons sequence, R3paitet, 3D-ATM Anchor) is shaded because
the results is not reliable due to presentation problems that have occurred during the viewing
i one of the presented views from stepzor had artifacts not related thet experiment,

which has influenced ratinggven bythe viewers inadequately.

5.6. Adoption of non-linear transformation in international coding
standards

Each tool that is proposed to be a part of a standard under development is thoughtfully
tested andjuestioned by the experts. The considered aspects include provided compressiol
gains, computational complexity, configurability, implementability, etc.

One of the strongest expectations for coding of depthuséahe existing coding tools as
much as pasble. The proposedNon-linear Depth RepresentatiofNDR) tool conforms that
requirement in both afwo major scenarios of depth codititat have been formulatedntil

now.
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1. Depth is compressed independently from multiview videa gense that depth does
not influence coding and decoding of multiview video. Such an approach is used in the
depth coding extensions of the fltniew coding techniques: MVC[113 and
MV-HEVC (MHVC) [122. For MVC, this approach is supported by ATHP test
model software.

2. Depth values are used in the course of video coding and decoding, e.g. fer view
synthesis prediction. Such an approach is used in the 3D video codipgpsad as
extensions of the AVQ117[118[119 and HEVC[123 standards. For AVC, this
approach is supported by AFEHP test model software.

In the first approachHig. 72), the transformations do not influence any elicg or
decoding process. Therefore the information aboutlmear depth transformation may be
transmitted in the SEI (supplementary enhancement information) messagdspitheoding
extension[114[119[11§ of MVC [112 has already incorporated depth representation
information SEI message that optionally may be used to transmit the information about depth

transformation.
Fy T LA s A
— F Encoder [—» —| Decoder | g |
}bitstream {
Multiview Multiview'
| Encoder | —p|Decoder |

Fig. 72. Independent depth codifgandt denote the originalormalized disparity maand
transformednonlinearly representedalues,] aand taare decoded (reconstructed) values
andd 6 & 0 "@Qndd ® & O "Gar&Xiginal and decoded multiew video, respectively.

5 T T’ [3]6,
Encoder —» Decoder [ 7'
1 T
- | Decoder
F bitstream
6!
Muitiview Multiview’
———— Encoder |—p» —po Decoder ————p

Fig. 73. Depthdependent coding] andt denote the originalormalized disparity maand
transformednonlinearly representedalues,] aand taare decoded (reconstructed) values
andd 60 & 0 "@Qndd ® & O "Gar&Xiginal and decoded mulliew video, respectively
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In the second approackig. 73), the encoding and decoding of muliew video exploits
the information about depth. A good example of such a elgbendent operation is view
synthesis prediction. Such prediction needswvalues of (normalized disparifyrather than
T (transformedrepresentation Therefore the values of the external representatiotust be
used in the course of multiview video encoding and decodind~(geg3).

Therefore, in both cases, the proposéah-linear Depth Representatio(NDR) tool is
compliant with existing coding technology concepts and do not impose any ovérhetd
related do encoder nor det® complexity.

The advantages of the proposed Nioear Depth Representation (NDR) tool and positive
verification, performed by independent research centers in MPEG group, resaltigpion
of the proposed NDR tool tonew 3D extensionsof ISO/IEC 1449610 and ITU Rec.

H.264 international video coding standards, describing new generation of 3D video coding
technologies, known und@ames of MVC+D and AVED. The first one has already been
included as Annex | of AVC specification. The second one is expected to be finalized in 2014
and to be included as Anxé of AVC specification.

Table 18 and Table 17 show the syntax that has been adoptedthose standards,
describing to MVC+D [114[119[116 and 3D-AVC [117[11§[119 video coding
technologiesrespectiviy. The parts related to adoptBdDR proposal havdeen marked in
gray.

In the case of MVC+D Table17), the coding is deptindependentig. 72 and therefore
NDR tool has been adopted in form of a spe@applementaEnhancementnformatian
(SEI) message. Thealue of 3 of fielddepth_representation_type the bitstream indicase
that Nonlinear Depth Representation tool is turned on. In such case, field
depth_nonlinear_representation_num_minus$ignaled with the encoded size of deviation
vectorU. Next allelements of deviation vectorare transmitted. Thanks to that, the shape of
nontlinear transformation function can be reconstructed at the decodé&iigsé8).

In the case of AVG3D (Table18), the coding is deptbependentKig. 73) and tlerefore
NDR tools has been adopted in Depth parameter set unit. The syntax of the signaling is ven
similar as inthe case of MVC+D with exception that the Depth Representation tool is turned
on by value ohonlinear_depth_representation_ndield greateithan 0.
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Tablel7. Adopted syntaxf Non-linear DepthRepresentatiofmarked in gray)n MVC+D
coding technology if114 Annex i Mul t i vi ew and DbDfepth video c
ISO/IEC 1449610:2012 andTU Rec H.264video coding standasd
1.13.1.3- Depth representation information SEI message syntax

Syntax elemem C Descriptor
depth_representation_info( payloadSize ) {
all_views_equal flag 5 u(1)
if( all_views _equal flag==0){
num_views_minusl 5 ue(v)
numViews = num views minusl + 1
} else
numViews = 1
Zz near flag 5 u(1)
z_far_flag 5 u(1)
if(z_near_flag || z_far flag) {
z_axis_equal_flag 5 u(1)
if( z_axis_equal_flag)
common_z_axis_reference view 5 ue(v)
}
d_min_flag 5 u(1)
d_max_flag 5 u(1)
depth_representation_type 5 ue(v)
if( depth_representation_type == 3) {
depth_nonlinear_representation_num_minusl 5 ue(v)
for(i=1;i<=depth_nonlinear_representation_num_minusl + 1; i++)
depth_nonlinear representation_model[ i ] 5 ue(v)
}
}

Table18. Adopted syntax oNon-linearDepthRepresentatiofmarked in gray)in AVC-3D
coding technology. The related specification is currently being finalizeg as Annex |
of ISO/IEC 1449610:2012 andTU Rec H.264video coding standasd

J.7.3.2.13 Depth parameter set RBSP syntax

Syntax element C Descriptor
depth_parameter_set_rb9g(
depth_parameter_set_id 11 ue(v)
pred_direction 11 ue(v)
if( pred_direction== 0 || pred_direction== 1) {
ref_dps_idO 11 ue(v)
predWeightO = 64
}
if( pred_direction== 0) {
ref dps_idl 11 ue(v)
pred_weight0 11 u(6)
predWeightO = pred_weight0
}
num_depth_views_minusl 11 ue(v)
depth_param_additional_extension_flag 11 u(l)
nonlinear_depth_representation_num 11 ue(v)
for(i=1; i <=nonlinear_depth_representation_num; )++
nonlinear_depth_representation_modelj ] 11 ue(v)
if([depth_param_additional_extension flag == 1)
while( more_rbsp_datg()
depth_param_additional_extension_data_flag 11 u(1)
rbsp_trailing_bits|
}
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5.7. Summary of achievementsn the area of depth coding

In this Chapter, a novel ndmear transformation has been proposed for representation and
coding of the depthFirst a proofof-concept proposal has been presented, with use of
a simple nodinear function,based on the ideaf gammacorrection, well known from
luminance coding in classical video systems. The verification of this preliminary proposal has
been performed in with use of a codec developed by Poznan University of Technology, Chair
of Multimedia Telecommunicationsd Microelectronics. This codec has been submitted to
"Call for Proposals on 3D Video Coding Technolo¢gfP) [129, issued by MPEG group in
2011, and has been rateery high among other proposals. Promising resulthefcodec in
theresolution of CfP and aldartherresults ofsubjectiveevaluation, aegated a motivation for
more advanced proposal. The devised, theoretical approach yielded with a novel formulatior
of nonlinear transformation for depth representation.

The final proposal has been evaluated experimentally with use of coding technology
implemented in MPEG Reference Software for AW&sed 3D video codingechnologies
[120 7 MVC+D and AVG3D. It has been shown that application of the proposedinear
depth representation provides substantial subjective gdirebout0.3 to 1 MOS point
(depending on the cada the tested sequence Jsahd considerable bitrate reductionn
averagaup toabout25% bitrate reduction of thegppth component of the bitstream.

Finally, adoption of the proposed nodinear depth representation to new 3D
extensions of ISO/IEC 1449610 and ITU Rec H.264 international video coding
standards has been highlightedt is worth to notice, that the idea of proposed -inaar
depth representation i s a s ubijyefcTechnolégyip e nd
Poland[105 andin USA[9§].
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Chapter 6. A new 3D video codingechnology

In 2011 ISO/IEC MPEG group has issued a "Call for Proposals on 3D Video Coding
Technology"(CfP) [129. The aim of theCfP, was to chaéinge the availablstateof-the-art
3D compression technologies and to reveal the best one as a starting point for further works
Research centers armbmpanieswhich has shown interest includ®icrosoft, Samsung,
Sony, LG, Qualcomm, Orange Labs, Nokia, Ericsson, DisnegdRels, Fraunhofer Institute
for Telecommunications Heinrich Hertz Institute, or universities like Aachen University
(Germany), Nagoya University (Japan), National Institute of Information and
Communications Technology (NICT, Japan), Gwangju Institut8axnce and Technology
(GIST, China), Zhejiang University of Science and Technology (China), Electronics and
Telecommunications Research Institute (ETRI, Korea) and also Poznan University of
Technology- Chair of Multimedia Telecommunications catMicroeledronics @olitechnika
PoznaEska, Katedra T adidMikmeteutronikk KTéMjMi, Polnd). t i me

This Chapterdescribesc o mpr essi on technol ogy propose
Technologythat has been presentiedthe response to the call of MB. The novelty of this
proposal consists in new coding tools anthmselection of the tools resulting from extensive
experimentsThetechnologyhas been described in MPEG documé®6] andin conference
contributions[11][12][9]. Some of thetools have been already described in the conference
paperd14][10][282[283[284]. In paper 1] a detailed description has been provided.

The author of this dissertation was one of the members of the tetimat has developed
the proposal from Poznan University of Technologg. in-dept description of the proposed
codec has been shown in works mentioned abowe, this dissertation,
only a brief description is provided with focus on theriginal achievements of the author

in that area.
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6.1. Comparison with other state-of-the-art codecs

| n (Caldor Froposal®o n 3D Vi deo Co di2% tgvo chtegoriesihwel o gy 0
been defined AVC-compatible and HEV&@ompatible.The most of the major MPEG group
participants ha provided their contributionsin total there werd?2 contributions in AVC
category and.1in HEVC category. All of the proposals have been assessed both subjectively
and objectively by independent researclotakories275[276. Results that has been shown
in the end of 2011 revealddat there were three spectacular winnbBigkia Research Center
[277] (winner in AVC category), Heinrich Hertz Institute (HHR78[279 in cooperation
with Disney Research Lad28(Q (winner in HEVC category) and Poznan University of

Technology-Chair of Mul ti media Telecommunications

a

Pozna@Eska, Katedra TeliekMdimkino & kEKiMr, Bdhardi i one d i a |

i co-winner in HEVC category.

The proposal was rategery high, getting asecond placqust after technology provided
by Fraunhofer Institute for Telecommunicationgieinrich Hertz Institute HHI - in few
configuration variants)- Fig. 74. Other participants of the competition (that ranked worse)
decided not to reveal thexactidentity, which remains hidden undé&Pxxo codenames.

—

P32

P10

SamsungSony, LG, Qualcomm, P12
Orange Labs, Nokia, Ericsson, 4

Nagoya Univ,NICTGIST, —= P11
Zhejiang Univ, ETRI 1

(exact identification is unknown). P20

P14

\ P15

Poznan University of Technology - KTMIM - P23
Heinrich Hertz Institute + Disney Research - P25
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Heinrich Hertz Institute (configuration B) - P19
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Fig. 74. Outranking of the CfP129 proposals from various participan@ther participants

of the competition that ranked worse did not revealed their identity which remains hidden
underfiPxxo codenames.
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In brief[276[281], all of the best performing proposals of the competition use very similar
approaches. Differences in tools are summarizedahle19. Those can be categorized into
the following categories:

1 Base coding technology the technology that is used for backward compatible coding

of a single base view. This is AVC or HEVC.

1 Disparity compensated prediction- a tool which is used for prediction of dependent
views with the reference to the base view, similar to-edwn motioncompensated
prediction. Typically, a toolset similar to MVC has been used.

1 Base view coding order- orderin which componentsvideo and depth) of the base
view are coded, which also constitutes the possible coding dependencies betweer
them.Noticeably, in all of the proposalgideois coded before the depth.

1 Dependent view coding order- order in which compaents Yideo and depth) of
subsequent dependent views are coded, which also constitutes the possible codin
dependencies between théeng.video-codedfirst or depthcodedfirst )

1 Depth imageresolution - spatial resolution in which depth component isesbd~ull
resolution means, that the depth is coded with the same spatial resolutiorbasethe
video Reduced resolution meattst the coded depth is decimated PI .

1 Depth coding tools- enhanced set of tools dieated for coding of the depth.

1 View-synthesis prediction - usage of viewsynthesis for provision of additional
prediction mechanisms.

1 Inter-view filtering - filtering tool that processegdeo or depth data in inteview
domain. Those include tools that refinddecs or depths with use of imfmation
exchange between the views.

1 Noisemodeling - tools that allow representation of a noise in the video separate
layer.

1 Prediction between components of MVD existence oprediction mechanisms that
operate between the component g/pe.g. the depth is predicted from thieleo or
thevideois predicted from the depth.

1 Camera arrangement constraints- constraints which are imposed on spatial 3D
positions of the coded viewfh many cases, only linear alignment of cameras along

a straightline (Fig. 12b) is allowed.
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Tablel. Compari son of similar coding tools wused
forPrope al s on 3D Video[lZWodi ng Technol ogyc
Proponent Nokia Poznan University| Heinrich Hertz| HHI+ Disney
Tool P Research of Technology | Institute (HHI)| Research Labs
Center[277) - KTMiM [66] [278[279 [280]
Base coding AVC HEVC HEVC HEVC
technology
Disparity
compensated MVC MVGlike MVClike MVClike
prediction
Base view coding Videq Videq Videq No depth,
order then Depth then Depth then Depth Videoonly.
Dependent view Depth, Depth, Videaq Instead, so
coding order then Video then Video then Depth | called "warps"
Depthlmage Reduced Full Full are coded gnd
resolution the depth is
: derived at the
. Nonlinear Depth
Depth coding tools - Representation Wedgelets decoder.
Prediction mode, Disparit
View-synthesis Prediction | motion prediction party
. ) : vector -
prediction mode and disocclusion -
: derivation
coding
. I Jointview Unifieddepth
Inter-view filtering . . - -
filter representation
Noisemodeling - Spec?tral and s.patle - -
noise modeling
Prediction VideoQP Depthmap
between . . generation
- adjustment basing - -
components of on Denth Motion field
MVD P inherence
Camera Linear Linear Linear
arrangement arrangement| Not constrained | arrangement | arrangement
constraints only only only

In Table19it can be noticed that the promising results of proposal from Poznan University
of Technology results frorthoroughgoingselection of coding tools, comparable with those
existing in other prposals. Also, it can be noticed that some of the tools are present solely in
the proposal from Poznah e.g. nonlinear depth representation, noise modeling or not
constrained camera arrangemefame of hosetools will be described in the following

Sectonsof thedissertation
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6.2. The structure of the proposed 3D video codec

The proposed codec is compliant with the requirements that were defined by iMBEEG
Call for Proposals (CfP)129 [66] for HEVC-compatible category. These requirements
resulted from studies of potential applicatiolmsparticular, one of the viewscalled the base
view i is coded in compatibility with HEVC syntax, which allows extraction of a base view
by a legacy decoder. The remaining views are called the side views.slthegews and all
depth data are cod&dth the use of neywroposedools[1].

Fig. 75 presents such scheme in exdnpf coding of MVD data, composed of 3 video

streams and 3 depth streams.

Side view 1 HEVC @ HEVC Side view 1
Depth for encoder > S —> decoder Depth for
side view 1 + p * side view 1

@

- Base view
Depth for o @ o Depth for
base view Lo - 0 base view

| 88 I d 48 >

Side view 2 o = ® o a® Side view 2
Depth for Depth for
side view 2 > side view 2 >

Fig. 75. Overall structuref the proposed 3Dideocodec,showing compatibility with HEVC
syntax for the base view.

It may be pointed out that encoding and decoding of the side views and depth maps exploi
information from the already coded views, which are used as references. Such hierarchica
view coding structure, similar to Multiview Video Coding (MVE)13, is used for both
videoand depth.

In fact, only contents of the base view are coded as a whola the side views, only
a very small part of the image is transmitted atHie remaining, not transmitted parts are
reconstructed basing on the contents of the base view, with use of virtual view synthesis
DIBR (Depth Image Based Rendering) technique. Such approach is called Disoccluded
Region coding1][12].
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All of the proposed tools atategrated with the MVC structure and basic {level HEVC

compression tools like intfliame prediction, inteframe motiorcompensated prediction,

transform coding, ifloop filtering and others.

. base view
base view HEVC 3.0 bitstream | Substreams
Encoder Embeder
N - HEVC-based b‘fixiums
- Layer texture layer 7 Texture —
R — .
video Separation Y Encoder
A 0
——
HEVC-based residual layer
k . bitstream
» Residual Layer .
high frequency residual layer Encoder £ g
A m 8 a |—
0 f==]
[(p =]
; HEVC-b d depth maps E
> - -based
Unified depth m Depth bitstream
m »| representation|  depth maps Encoder
depth maps
t |
|| camera parameters
| Camera bitstream
camera parameters > ParamEters 7
Encoder
Fig. 76. The proposed 3D videmeoder structure.
sequence base view
bitstream Substreams bitstream HEVC 3.0
Extractor Decoder
n :+ n
i A textures
loxtures HEVC-based
bitstream Texture n1
Decoder
‘[ *.—'L n
residual layer HEVC-based .
5 bitstream . Residual Layer e ol
> Ignh frequency residual layer
£ Decoder
Ly g E‘ A[ A | m
- J
n e
§ | depthmaps | HEVC-based
bitstream m -
Depth >
Decoder depth maps
L
camera parameters
bitstream Camera
» Parameters >
DeCOder camera parameters

Fig. 77. The proposed 3Dideodecoder structure.
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The detailed structure of the proposed coder and the decoder has been visualized i
Fig. 76 and Fig. 77, respectively. These figures present a more general look on the codec,
wherearbitrarynumber of video streams, depth streams and other, can be transmitted.

The specific tools that are used in the 3D video codec are described below, with the
achievements of the author of the dissertation highlighted.

Detailed explanation of the tools usadhe codec can be found[ih[2][11][12].

6.3.A u t h contdbsition in the proposal of thenew 3D video codec

The author of the dissertation hagbstantially contributed to the development of the 3D
video codec in the following ways:

- Theauthor contributed in formulation of tlwerall structure of the codec

- The authorhad decisive voicen the selection of the toolsthat have been finally
included in thdinally proposdcode.

- The author caleveloped the coding approach based Layer separation by
proposing the original idea and providing noise reduction algorithm (MCNRR,
described irBubsectior8.8.2 of the disseation).

- The author had participated in the proposalUoified Depth Representationtool,
among others by incorporating the Migvel Hypothesis algorithmdescribed in
SubsectiorB.7 of the dissertation.

- The author proposed and implementddn-linear Depth Representation tool that
already has been described in Chapter 5 of the dissertation.

6.3.1. Layer separation

The proposedD video codingtechnology usean approach, similar to Scalable Video
Coding (SVC) or to wavelet codingjn which input video isspitted into layerqLayer
Separation Fig. 76) in the spatial frequency domainaéh layer presens different level of
detals and all layersepresent the input vab.

In the case of our proposaheinput video is split into two layers:

- low-frequencytexture video layer (similar to base layer in SVC), which contains

content that can be efficiently coded with classic predictive coding.

- high-frequencyresidual layer, which containsigh frequencyesidual content thaan

be represented jointly for several views
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Both layers are transmitted tioe decodeand after decoding are sumntegdether in order
to produce reconstructed video.

The separation of layers occutstlae very beginning of the processing as a resulioafe
reduction technique, already described in the dissertaéfionsectior8.8.2 of the dissertation)
under the name dflotion-CompensatedloiseReductionwith Refinement (MCNRR)

The process yieldew-frequency texture layer whids fed tovideotexture encoder.

The high-frequency layer is modeled as a rgiationary random process. There are two
component®f the modethat need to bencoded Fig. 78): spatial energy distributio(EDE)
and spectral envelop@he spatial energy distribution is estimafed each frameFor this
purpose, a frame fronheé high-frequency layeis divided into rectangular nesverlapping
blocks. In each of those blocks energy is measured. Energy values, associated with respective
blocks, constitutea frameof spatial energy distribution, whose resolution is smallen tha
resolution of the input video.

Low-frequency
texture layer
e A L .

R

Low-frequency
” texture layer

Spatial energy

_>-_> distribution
(SDE)
low frame resolution

layer separation

Noise
modelling

Input video

Temporal subband

High-frequency ————» Spectral envelope
residual energy LPC filter coefficients

Fig. 78. High-Frequency Residual Layer Representation in the encoder.

This estimated spatial distribution of energy is used in order to normalize the high
frequencyesiduallayer.

The secondcodedcomponentof high-frequencyresiduallayer is spectral envelope. It is
estimated from energyormalized higHrequencysubbandusing a technique similar to LPC.
The resulting set of separable IIR filter coefficients (in horizontal and vertical direction) is
encoded using LARoefficients(log-arearatio [285) with 8-bit representation. A set stich
filter coefficients isestimated for each frame and transmitted to the decoder.

Parameters of the noise de are highly correlated among the vieWwse frames of the
spatial distributiorof energy ofall views are mapped through view synthesis to a position of

the base view, anthenaveragedThis operatiorresuls in only one joint spatial distribution
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of energy(SDE) Similarly, theenergy envelopes of all of the views are averaged, resulting in
one jointspectrakenvelope.

In a decoder, pseuderandom white noise is generated and then modulated by the
upsamped spatial energy distribution transmitted lne tbhitstream and then filtered with IR
filters that reflect the envelope of the origifagjh-frequencylayer spectrum. The resultant
video, which resembles the original hiffequencysulband, is added to theeconstructed

low-frequency layein order torestore the higifirequency components.

6.3.2. Unified Depth Representation

Another tools used in the encoder is Unified depth representdtign7@). It is used to
inter-change the depth information between the views.

As mentioned beforehe idea behind the proposed technologth#é only the base view
(videoand depth) is coded directly as a whole. In side views only the disoccluded regions are
coded, while the amaining parts are reconstructed from the available views using DIBR
techniqueln suchan approach, the amount of depth information in-side/s isconsiderably
reduced.Unfortunately, if the view synthesis algorithm uses inconsistent depth maps, it
rencers very annoying artifacts in the synthesized vidiarause the amount of coded depth
data is limited, it is necessary to adjust the input set of depth maps in such a w#y that
singledepth mapelated to the base viesontains as much information psssible.

For that reason, the first step of {h@posed3D video compression algorithm is the depth
map interview consistency refinement that produddsified Depth Representatiofnamed
Consistent Depth Representatiorf 1.

The refinement techniquemploysMid-Level Hypothesisdescribed in th&ubsectior8.7
and in[14]. This algorithm increases precisiand accuracgf the artificially estimated depth

maps aneétnhanceslignment between the dephd the corresponding texture.

6.3.3. Non-linear Depth Representation

The 3D video codec from Poznan University of Technologyiheluded he nonlinear
depth representation tool proposed by the author in a form that has been presented i
Section5.2 of the dissertation.

The results presented theFad. 65 - Fig. 68 on pagel23) and also irf271][272 show that
sole application of nofinear depth transformation described by equatieads to

improvement of the subjectively assessed quality of the reconstructedoyiddmut 1 MOS
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point (Mean Objective Score} can be notice that this also correspond to about one third of
the overall subjective gains provided by the whole codec (with all gddwls) over HEVC

simulcast coding of multiview test data.

6.4. Experimental results for the new 3D video codec

The proposed 3D video coding technology has been submitt&hatbfor Proposals on
3D Video Coding Technologyissued[129 by ISO/IEC MPEG.AIl of the proposals have
been assessed both subjectively and objectively by independent research labofdteries.
results of this evaluation fiabeen shown ifrig. 74 at the beginning of Chapter 6.

In this subsection experimental results that allow to estimate the overall compression
performance of the technologgs well asto estimate the efficiency of the individual tqols
are presentedrhis is done using subjective and objective tests of decoded video quality. The
methodology resembles the one used by MP&Get of8 MultiView plus Depth MVD) test
sequence$ias been usedéble 1 on page24, Table 2 on page26). Four of them were in
19201 (FQI$D) resolution (Poznan Hall 2, Pozn&treet, GT Fly and Undo Dancer).
Ot her four test MVD s e XGA)HommatsFonmihe sage of bnevity, h e

results will be presented forthe 1920 0 80 sequences onl y.

G 2[EEE

Fig. 79. The arrangement of the views: thews being coded are markedbiack
while the viewsi v 0  kyathesized in the receiver are marked in gray.

For the experiments3 views from each sequenocadeo anddepth)have beerencoded at
four different bitratesThen the sequences have been decoded,as®tlilon the decoded data
six virtual viewshave been synthesized. These six virtual viédilg. 797 "v1", ... ,"v6")
have beenuniformly placed between the original viewsid. 79 "1", ... ,"3") selected for
coding Table2 on page26). Similarly, six virtual views at the same spatial positidfig.(79
T "vl", ... ,"v6") fromthe uncompressed dathave been synthesized in order to provide a
referencdor assessment. PSNR values (luminance) have been caldlat#d20, Table21,

Fig. 80 left) and basing on themyerage bitrate reductions versus HEVC simulcast were
cacd at ed wusi ng t he[l28]ltBamn beengtedatmapsthdtio referandeawere

used instead of the video captured by real cameras because our aim ssess$otlze quality

1460f 241

1024



Olgierd StankiewicdStereoscopic depth map estimation and coding techniques for multivideo systems

degradation caused by the coding technology, not caused by the view synthesis algorithn
itself.

For theview synthesis of the virtual views at positions "v1" to "vBig( 79 ), algorithm
implemented in ISO/IEC MPEGynthesis Reference SoftwdrE24] [125 has been used,
with the default configuration.

In all cases, original (not pqereprocessed) sequences have been used as references for
quality measuremeritboth objective (PSNR) and lsjgctive (MOS).

The subjective tests have been carried[8df][272 in accordance with the general rules
of ITU Recommendation BT.50[128. A total number of 62 young persons were viewing
each sterepair (composed from virtual viewsv 3" and "v4" , 4$wedaiFi g
S465D polarization monitorThe Double Stimulus Method was selected for the subjective
quality assessment that followed the rules used by the MPEG for evaluation of the proposal
for the 3D video coding techtogy in 2011 [66].

In our experiments, the number of subjects involved was higher than in the official MPEG
evaluation. The high number of subjects yielded that @8¥fidence intervals were very
smallie.of order of N(O.180.25) . Therefore, t
(Fig. 80right).

Fig. 80 in the left column,shows objective evaluation s@its (PSNR versus bitrafie
BD-rates- in Table20) andFig. 80 in the right columnshow subjective evaluation results
(11-point MOS versus bitrateBD-ratesi Table21), for virtual syntlesized views for all four
tested FUHHD sequences.

Please ate that both subjective and objective quality assessments leaddwkat similar
conclusions. Application of Nolinear Depth Representatiodgble 20 and Table 21 i
column A) may result in more than 20% bitrate reduction.

View-synthesis inteview prediction combined with MV@oolset Table20 andTable21
- column C) yields about 5&0% bitrate reductionDisoccluded Region Codingiplemented
in a standard HEV@vithout the MVC toolseprovides similar bitrateeductions (column B)
of about 45%. The discrepanbgtween the results obtained by subjective and objective video
guality assessment ke most noticeable in the caseRiznan Hall Zequence (S01) which
probably results from low quality of associatexpth maps.

The application of all devised tools except the Joint Higbguency Layer &resentation
results in 50% or more of bitrate reducti@rable20 andTable21 - column D). When High
Frequency Layercoding is usedwe can consider two cases: column Evhen the high
frequency layer is modeled but finally not reconstructguch is more reliable for objective
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evaluation(PSNR comparison with synthetic noise would be irrelevattige gains here are

about 50% (objective quality measurasd over 60% (subjectivguality assessment)

Table20. Average bitrate reductions calculatedBas 3 n t eatesfar tuinance
PSNR [dB] versus original (not preprocessed) sequences.

Average (over bitrates and sequences)2 D&/ (i S 3 I [#6NR
versus HEVC simulcastegative numbers are bitrag savings)
Q A. B. C. D. E. F.
c P (@) O
< S -3 = =} o
= 9] T x5 =z O o =
@ S 3 OB o | >To| =2 =3 o© 8
? > 0 S2c | WIs | 03 S50 - 2
— + 2 T3S o > 502 » TG = < a @©
o S 1589 |55%| 25 S <
2 < 2 3 295 | 23 S
T g [a) 0 < U << a
=) + +
Poznan Hal -19.6 -20.3 -26.1 -14.7 -16.9 -23.7
PoznarStreet -27.2 -55.7 -56.8 -58.0 -62.8 -59.8
UndoDancer -29.1 -57.0 -58.0 -60.9 -61.1 -60.7
GT Fly -23.2 -48.8 -49.4 -54.0 -55.4 -53.7
Average -24.8 -45.4 -47.6 -49.1 -49.1 -49.5

Table21. Average bitrate reductions calculatedBag 3 n t eatesfar Méan Opinion Score
(MOS) versus original (not preprocessed) sequences.

Average (over bitrates and sequences)2 D&/ (i S 3 I [#NR
versus HEVE&imulcast(negative numbers are bitrate savings)
3 A. C. D. E. F.
c
% = (@) £ = o O
o © c o) o 2 o 5}
3 2 £ OB E TEs © 35 B2
= @ > 5 o — o T O o 9
7 O St oo c o3T <€ ® - 8
o Z a0 T Q - S >2 2 o =
= + 83 >85 2 58g = < Qe
O o = e = = S5 = E
°"§ | %@ | g3 | 2% | &%
r ° <L <= o
Poznan HaR -24.5 -65.2 -67.2 -69.4 -70.1
PoznarStreet -35.7 -67.5 -72.2 -72.6 -74.8
UndoDancer -8.0 -52.3 -57.4 -61.4 -62.7
GT Fly -29.6 -62.0 -69.0 -68.8 -67.2
Average -24.5 -61.7 -66.4 -68.1 -68.7
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PSNR [dB] PoznarHall 2 MOS PoznarHall 2
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Fig. 80. Objective (left) and subjective (right) evaluation results for-AlI test sequences.
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