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Abstract 

 

The dissertation deals with the problems of stereoscopic depth estimation and coding in 

multiview video systems, which are vital for development of the next generation  

three-dimensional television.  

The depth estimation algorithms known from literature, along with theoretical foundations 

are discussed. The problem of estimation of depth maps with high quality, expressed by 

means of accuracy, precision and temporal consistency, has been stated. Next, original 

solutions have been proposed.  

Author has proposed a novel, theoretically founded approach to depth estimation which 

employs Maximum A posteriori Probability (MAP) rule for modeling of the cost function 

used in optimization algorithms. The proposal has been presented along with a method for 

estimation of parameters of such model. In order to attain that, an analysis of the noise 

existing in multiview video and a study of inter-view correlation of corresponding samples of 

pictures have been done. 

Also, a novel technique for precision and accuracy enhancement of estimated depth maps 

is proposed. The technique employs an original Mid-Level Hypothesis algorithm which 

refines depth map in post-processing. 

Yet another, independent achievement of the dissertation is a novel technique for 

estimation of temporally consistent depth maps with use of noise removal from video prior to 

the depth estimation itself. 

In the dissertation, also, depth coding techniques are discussed. On a background of 

techniques known from the literature, the problem of depth representation suitable for coding, 

using legacy compression technology is stated. Author of the dissertation has proposed  

a novel method of representation of the depth, which employs non-linear transformation, 

which can be used in order to increase of compression performance in depth map coding.  

The proposed non-linear depth representation has been accepted by international group of 

experts (MPEG) and adopted to new 3D extensions of  ISO/IEC 14496-10 and 

ITU  Rec. H.264 international video coding standards, describing new generation of 3D 

video coding technologies, known under names of ñMVC+Dò and ñAVC-3Dò. 
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All of the proposed algorithms have been implemented and their performance has been 

verified experimentally. The obtained results have been presented in the dissertation. 

 

The following theses have been formulated and proven: 

 

T1) Depth estimation can be improved by usage of modeling of the cost function based on 

maximization of a posteriori probability. 

T2) Precision and accuracy of estimated depth maps can be improved in post-processing with 

iterative insertion of intermediate values, controlled using view synthesis. 

T3) Temporal consistency of estimated depths can be improved using noise removal from 

input multiview video. 

T4) Non-linear representation of depth can be employed in order to improve compression 

efficiency of depth maps in 3D video systems. 

 

Additional achievement not related directly to the theses yet presented in the dissertation is 

authorôs contribution to production of multiview video sequences that are currently broadly 

used for test purposes by international research teams, also in research done in the context of 

standardization in MPEG and JCT-3V expert groups. 

In the dissertation, also shown is authorôs participation in the development of a 3D video 

codec, prepared at Chair of Multimedia Telecommunication and Microelectronics of Poznan 

University of Technology. The codec has been submitted as a proposal for ñCall for Proposals 

for 3D Video Coding Technologyò issued by ISO/IEC MPEG group. The excellent results 

achieved by the proposed codec are shown on the background of exemplary proposals 

resulting from works of competitive research centers in the world. 
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Streszczenie 
 

Rozprawa dotyczy problem·w wyznaczania i kodowania map gğňbi stereoskopowej  

w systemach obrazu wielowidokowego, istotnych dla rozwoju telewizji tr·jwymiarowej 

nowej generacji.  

W pracy om·wiono znane z literatury techniki estymacji gğňbi wraz z niezbňdnymi 

podstawami teoretycznymi. Wykazano istotň znanego problemu estymacji map gğňbi 

charakteryzujŃcych siň wysokŃ jakoŜciŃ, okreŜlonŃ przez duŨŃ dokğadnoŜĺ, precyzjň  

i sp·jnoŜĺ w czasie. Nastňpnie, zaproponowano autorskie rozwiŃzania problematyki. 

 Zaprezentowano nowe, bazujŃce na rozwaŨaniach teoretycznych, podejŜcie do estymacji 

gğňbi, opierajŃce siň na regule maksymalizacji prawdopodobieŒstwa a posteriori (Maximum  

A posteriori Probability) do modelowania funkcji kosztu wykorzystywanej przez algorytmy 

optymalizacyjne. Przedstawiono r·wnieŨ metodň estymacji parametr·w takiego modelu. 

Metoda ta byğa efektem przebadania szumu wystňpujŃcego w wielowidokowych sekwencjach 

wizyjnych oraz analizy zagadnienia miňdzywidokowej korelacji odpowiadajŃcych sobie 

pr·bek w obrazach. 

Zaprezentowano r·wnieŨ nowŃ technikň umoŨliwiajŃcŃ zwiňkszanie precyzji  

i dokğadnoŜci estymowanych map gğňbi, poprzez zastosowanie przetwarzania koŒcowego 

(postprocessing) z pomocŃ autorskiego algorytmu hipotezy wartoŜci poŜredniej (Mid-Level 

Hypothesis).  

Kolejnym, niezaleŨnym osiŃgniňciem pracy jest opracowanie i przedstawienie oryginalnej 

techniki estymacji map gğňbi, sp·jnych w dziedzinie czasu, polegajŃcej na wykorzystaniu 

redukcji szumu w sekwencjach wizyjnych przed dokonaniem samej estymacji. 

W rozprawie, rozwaŨono r·wnieŨ techniki kodowania gğňbi. Na tle metod znanych  

z literatury, wskazano istniejŃcy problem kodowania map gğňbi stereoskopowej  

z wykorzystaniem istniejŃcych rozwiŃzaŒ technologicznych. Nastňpnie, przedstawiono 

rozwiŃzanie tego problemu. Autor rozprawy zaprezentowağ nowŃ metodň reprezentacji gğňbi, 

wykorzystujŃcŃ nieliniowŃ transformacjň, kt·ra umoŨliwia usprawnienie kompresji map 

gğňbi.  

Opracowany przez autora spos·b nieliniowej reprezentacji gğňbi (non-linear depth 

representation) zostağ zaakceptowany przez miňdzynarodowŃ grupň ekspert·w MPEG  

i zaadoptowany do specyfikacji nowych rozszerzeŒ miňdzynarodowych norm  

ISO/IEC 14496-10 oraz rekomendacji ITU H.264, opisujŃcych nowŃ generacjň technologii 
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kodowania ruchomego obrazu  tr·jwymiarowego, znanych pod nazwami ĂMVC+Dò  

i ĂAVC-3Dò. 

Wszystkie zaproponowane algorytmy zostağy zaimplementowane a ich wydajnoŜĺ 

sprawdzona eksperymentalnie. Otrzymane wyniki przedstawiono w niniejszej rozprawie. 

 

Sformuğowano i udowodniono nastňpujŃce tezy pracy: 
 

T1) Estymacja gğňbi moŨe byĺ usprawniona z wykorzystaniem modelowania funkcji kosztu, 

bazujŃcego na regule maksymalizacji prawdopodobieŒstwa a posteriori. 

T2) Precyzja i dokğadnoŜĺ estymowanych map gğňbi moŨe byĺ zwiňkszona w kroku 

przetwarzania koŒczŃcego, poprzez iteracyjne wstawianie wartoŜci poŜrednich gğňbi, 

kontrolowane z pomocŃ syntezy widok·w. 

T3) Sp·jnoŜĺ w dziedzinie czasu estymowanych map gğňbi moŨe byĺ zwiňkszona poprzez 

redukcjň szum·w w wejŜciowych sekwencjach wielowidokowych. 

T4) Nieliniowa reprezentacja gğňbi umoŨliwia zwiňkszenie sprawnoŜci kompresji map gğňbi 

w systemach obrazu tr·jwymiarowego. 

 

Jako dodatkowe osiŃgniňcie w rozprawie, nie bezpoŜrednio zwiŃzane z tezami pracy, 

przedstawiono udziağ autora w przygotowaniu wielowidokowych sekwencji wizyjnych, kt·re 

obecnie sŃ wykorzystywane jako sekwencje testowe przez miňdzynarodowe zespoğy 

badawcze, takŨe w badaniach prowadzonych przez grupy ekspert·w ISO/IEC MPEG  

i JCT-3V. 

W niniejszej rozprawie przedstawiony zostağ r·wnieŨ wkğad autora w przygotowanie 

kodeka tr·jwymiarowych sekwencji wizyjnych, stworzonego w Katedrze Telekomunikacji 

Multimedialnej i Mikroelektroniki Politechniki PoznaŒskiej. Kodek ten zgğoszono do udziağu 

w konkursie ñCall for Proposals for 3D Video Coding Technologyò zorganizowanym przez 

grupň ISO/IEC MPEG. Doskonağe wyniki uzyskane przez kodek, przedstawiono w rozprawie 

na tle przykğadowych rozwiŃzaŒ bňdŃcych wynikiem prac konkurencyjnych oŜrodk·w 

badawczych z cağego Ŝwiata. 
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List of terms, symbols and abbreviations 

2D Two-Dimensional 

3D Three-Dimensional 

3D-ATM AVC based 3D Test Model ï a reference software developed by MPEG implementing 

3D extenstions to AVC (MVC+D and AVC-3D) 

3DTV Three-Dimensional Television  

AVC Advanced Video Coding technology described in ISO/IEC 14496-10:2013 [111] and 

ITU Rec. H.264 international coding standards 

AVC-3D Common name of ñAVC compatible video-plus-depth extensionò, a 3D video coding 

technology [117][118][119] that is expected to be described in Annex J of ISO/IEC 

14496-10:2012 and ITU Rec. H.264 video coding standard  

BJM Bjßntegaard metric [127] of compression  performance 

BP Belief propagation algorithm 

CfP "Call for Proposals on 3D Video Coding Technology" issued by MPEG group [129] 

Ὠ Disparity, distance (in pixels) between positions of given point in distinct views 

Ὠ   Minimal disparity 

Ὠ   Maximal disparity 

Ὠ   Quantization step of given disparity representation (minimal step between each of 

consecutive disparity values), expressed as a multiple of the spatial sampling period in 

matched images 

Normalized disparity, i.e. disparity Ὠ scaled to range πȣ  . 

  Maximal normalized disparity value for given representation ï e.g. 255 for 8-bit 

representation. 

DERS Depth Estimation Reference Software [126], the state-of-the-art reference software 

developed by MPEG  

DIBR Depth-Image-Based Rendering  

DSIS  Double Stimulus Impairment Scale, subjective evaluation method [128] 

ὉϽ Expected value operator 

EHP Extended High Profile, a configuration profile of 3D-ATM software [120] reflecting 

AVC-3D video coding technology  

FTV Free-view Television  

GC Graph cuts algorithm 

ὌϽ Histogram operator 

HMM Hidden Markov Model 

HP High Profile, a configuration profile of 3D-ATM software [120] reflecting MVC+D 

video coding technology  

JCT-3V ITU-T/ISO/IEC Joint Collaborative Team on 3D Video Coding Extension 

Development 

HEVC High Efficiency Video Coding technology described in ISO/IEC 23008-2:2013 

(MPEG-H Part 2) [121] and ITU Rec. H.265 international coding standards  
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MAP Maximum A posteriori Probability 

MCNRR Motion-Compensated Noise Reduction with Refinement technique 

MOS Mean Opinion Score 

MPEG Moving Pictures Experts Group of International Standardization Organization (ISO) 

and International Electrotechnical Commission (IEC) 

MRF Markov Random Field 

MVC Common name of ñMultiview Video Codingò a multiview video coding technology 

[112][113] described in Annex H of ISO/IEC 14496-10:2012 and ITU Rec. H.264 

video coding standard 

MVC+D Common name of ñMVC Extension for Inclusion of Depth Mapsò, a 3D video coding 

technology [114][115][116] described in Annex I ñMultiview and Depth video 

codingò of ISO/IEC 14496-10:2012 and ITU Rec. H.264 video coding standard  

MVD Multiview Video plus Depth 

MV-HEVC Common name of ñMultiview HEVCò, a 3D video coding technology [122] currently 

being under standardization 

NDR Non-linear Depth Representation 

Pixel A fragment of an image, characterized by its coordinates (e.g. ØȟÙ), value (e.g. scalar 

luminance, or vector: red, green and blue) and size, which (in both dimensions) is 

equal to the sampling period of the image in which given pixel is located 

Pixel  

   precision 

Level of the detail in which position in image can be expressed, related to full-pixel 

precision, which corresponds to a single sampling period in the image 

PCC Pearson Correlation Coefficient, also linear correlation coefficient 

PSNR Peak Signal-to-Noise Ratio  

QP Quantization parameter for video 

SAD Sum of Absolute Differences 

SBNR Still Background Noise Reduction technique 

SEI Supplemental Enhancement Information  

Smoothing 

  Coefficient 
A control parameter of Depth Estimation Reference Software (DERS)  

SSD Sum of Squared Differences 

†  Transformed, coded disparity 

†   Maximum transformed, coded disparity 

VCEG Video Coding Experts Group  

VSRS View Synthesis Reference Software, a state-of-the-art reference software developed 

by MPEG [124][125] 

WTA Winner-Takes-All, a brute-force depth estimation technique 

ᾀ Distance (ᾀ -value) from the view plane of the camera system to given point 

ᾀ   The nearest considered distance (ᾀ -value) in the camera system 

ᾀ   The furthest considered distance (ᾀ -value) in the camera system 



Olgierd Stankiewicz άStereoscopic depth map estimation and coding techniques for multiview video systemsέ 

9 of 241 
 

Chapter 1. Introduction  

1.1. The scope of the dissertation 

There-dimensional (3D) video gains a lot of attention nowadays. Constantly there is 

progress in a wide variety of fields related to 3D: from the interest of the customers, through 

the production of content, the availability of 3D-compatible hardware, to the technology that 

lays underneath (coding and transmission solutions and standards). Even though there are 

some skeptic voices about the future of 3D [145], there are strong expectations 

[144][146][147] that the market of 3D video will extend even further in the upcoming years. 

Anyhow, currently merchandised ñ3Dò employs only a pure stereovision ï only two views 

(left and right) are delivered in order to provide depth impression, typically with use of 

special glasses worn by the viewer. 

This work is related to a new generation of 3D video systems which would go beyond 

the currently applied stereoscopic solutions and their limitations.  

The considered features of the next generation of 3D video systems include providing 

better impressions of depth, better reproduction of the 3D scene structure and higher level 

of interaction with the user. 

The exemplary applications of the next generation of 3D video technology are free 

viewpoint navigation and glasses-free 3D. 

In a free viewpoint navigation system (Fig. 1) the viewer can virtually move through the 

scene and interactively choose a point of observation (view). The selected view, as seen by a 

virtual camera, is synthetically generated and provided to the user with a classical monoscopic 

or stereoscopic display. Television systems with such feature are often referred to as Free 

viewpoint TeleVision (FTV). 

 

 

Fig. 1. Free-viewpoint navigation. Depicted ñvirtual cameraò is a camera that does not 

actually exist in the scene but its content is synthesized from the content of existing ones. 
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In a glasses-free 3D video system (Fig. 2) the depth sensation are provided without 

requiring the user to wear a special pair of glasses. The effect of three-dimensional 

impressions is attained by usage of autostereoscopy, where multiple views are displayed 

simultaneously. The user can slightly change the point of view, resulting in seeing different 

pair of views shown on the autostereoscopic display. With the currently used technology, 

change of the position is limited to horizontal parallax only. 

 

 

 

Fig. 2. Glasses-free 3D. Depicted ñvirtual camerasò are cameras that do not actually exist  

in the scene, but their content is synthesized basing on the content from existing ones. 
 

 

The recent works of research laboratories all around the world show that one of the most 

important aspects of the upcoming 3D video technology is a method for representation of 

the 3D scene, suitable for efficient coding and transmission of the 3D video. The current 

generation of video coding technology broadly available [112][113][130][137], that is 

applicable for 3D, employs scene representation by means of multiview video. In such, the 

content of the 3D scene is represented by a number of views, observing the scene from 

different angles and positions. Typically, those views are coded and transmitted in simulcast 

or with use of simple inter-view predictive schemes that unfortunately do not provide 

satisfying efficiency of compression. Recent works [2][7][76][148][149] on compression 

efficiency for delivery of multiview video (e.g. composed of 22 views for an exemplary 

modern autostereoscopic display) report about asymptotical 30% bitrate reduction related to 

simulcast videos. The resultant bitrate for all such views is far too high to be accepted by 

neither the broadcasters nor the market. This stimulates question to arise on how to achieve a 

better compression performance. 
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An alternative 3D scene representation type, which recently has gained a lot of interest 

among the researchers [1][2][11][12][130][131][132][133][134], is Multiview Video plus 

Depth (MVD). In the case of MVD, video streams from multiple camera positions are 

transported along with corresponding information about the depth of the scene in a form of 

depth maps, which carry information about three-dimensional structure of the scene. 

Considered in the dissertation, depth maps are matrices of values reflecting distances 

between the camera and points in the scene. Typically, depth maps are presented as gray-scale 

video (Fig. 3), where the closer objects are marked in high intensity (light) and the far objects 

are marked in low intensity (dark). The depth estimation and coding are the fundamental 

problems in this work. 

 

 
  a)       b) 

Fig. 3. The original view (a) and corresponding depth map (b) of a single frame of  

ñPoznan Carparkò [85] 3D video test sequence. In the depth map, the closer objects are 

marked in high intensity (light) and the far objects are marked in low intensity (dark).  

 
 

Usage of video and depth maps in MVD representation is an idea considered around the 

world, because it provides an ability to generate a synthetic view as seen by a virtual camera. 

Such virtual camera can be placed in an arbitrary position (e.g. impossible in real world) or in 

position of another real camera. The latter case can be used to predict content of a given view, 

basing on content in other views [124][125][138][139]. This feature is a key technique [140] 

for new generation of 3D video framework, where MVD allows significant reduction of 

number of views that are directly transported e.g. instead of 22 videos (required by an 

exemplary modern autostereoscopic display) only 3 videos with corresponding depth maps 

are transported. The content of the remaining (not transported) views can be then 

reconstructed, at the decoder or in the display, basing on compact MVD representation. 

This dissertation is related to transmission (or transport) of video bitstreams. Although, in  

a common sense, these words refer to delivery done through a telecommunication channel 

(e.g. cable-link, WiFi, terrestrial radio link etc.), the results of this work also apply to storage 
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as well (a file on CD, DVD, Blu-ray, hard-drive etc.) and therefore, in such a context these 

words will be used. 

The scientific problems related to Multiview Video plus Depth (MVD) instantiate  

a general scope of the dissertation. Those are as follows: 

 

1. In MVD, additionally to the video, depth maps have to be transmitted in an 

efficient way. Coding of depth maps differs from coding of natural scenes and for 

now it has been found that usage of classical video coding is inefficient in that case. 

This comes mainly from the two facts. First, depth maps are matrices composed of 

scalar values. Although depth maps often are represented as videos, such videos are 

gray-scale and less textured than natural ones. Secondly, depth maps are more 

vulnerable to degradation of the edges than natural images or videos, where 

importance of very sharp edges for quality of subjective sensations is only moderate. 

Therefore, much work on development of depth-specific coding tools is still required, 

which is one of the subjects of the dissertation (see Chapters 4 and 5). 

 

2. High quality
1
 depth maps are needed for production of the content and for creation 

of test sequences. There are many ways to attain depth maps but all have some 

problems. E.g. for natural scenes, depth maps can be acquired with use of a special 

depth-sensing cameras. Unfortunately usability of such depth-sensing cameras is 

handicapped to indoor scenes mostly, due to limited range (often only about 5m) and 

due to the physical phenomena used (e.g. illumination of infra-red light).  

A more general solution is to algorithmically estimate depth maps basing on images 

from multiple views, e.g. from stereoscopic pair. Although many solutions are known, 

still, algorithmic estimation of the depth is a demanding task, both with respect to 

the quality of the estimated depth and computational complexity of the algorithms, 

which constitutes another subject of the dissertation (see Chapters 6 and 7). 
 

3. Temporal consistency of the depth is a subject which relates mainly to depth 

estimation but also negatively impacts performance of the depth coding. Temporal 

inconsistency of the depth manifests typically as annoying flickering in the video 

which is synthesized from the input video and the corresponding depth maps. 

Improvement of temporal consistency of the estimated depth is yet another goal of 

the dissertation (more details on this in Subchapter 2.6). 

                                                      
1 The meaning of óqualityô of a depth map is considered further in Subection 1.5.3. 
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The solutions for the above-mentioned issues will be studied in the dissertation in a context 

of multiview 3D video systems. In this dissertation, by a 3D video system is understood by  

a structure presented in Fig. 4. 

 
 

Fig. 4. The scope of the work (marked in red, dotted frame)  

as a part of the whole 3D video system. 
 

 
 

The first stage of processing (Fig. 4) is acquisition of videos from multiple cameras. In the 

dissertation, no assumptions about the number of cameras is made, but it seems that in 

practical cases, number of cameras may vary around 3 to 10 [146]. The content of the 

acquired videos is preprocessed which incorporates: image distortion removal [150][151] 

rectification [152][154] and color correction [154]. Then, basing on the preprocessed videos, 

depth maps are estimated with use of depth map estimation algorithm. The next step is lossy 

compression of the videos (together with the depth data) and coding into a binary stream 

(bitstream), which is transported to the decoder. The decoder reconstructs the videos along 

with the depths and then feeds them to the view synthesis algorithm, which generates a set of 

views that are displayed on a 3D display.  

The scope of dissertation within such a 3D video system covers depth estimation and 

coding, which is marked in Fig. 4, inside red-dotted frame. 
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1.2. The goals and the theses of the dissertation 

The goal of this work is to cope with the problems related to development of upcoming 

generation of 3D video systems. In particular Multi View plus Depth (MVD) scene 

representation is considered. New proposals for depth map estimation with stress on depth 

quality, disparity precision and accuracy and also temporal consistency will be presented.  

For depth map coding a new proposal for depth representation and compression will be 

presented. 

The theses of the dissertation are as follows: 

 

T1) Depth estimation can be improved by usage of modeling of the cost function based on 

maximization of a posteriori probability. 

 

T2) Precision and accuracy of estimated depth maps can be improved in post-processing 

with iterative insertion of intermediate values, controlled using view synthesis quality. 

 

T3) Temporal consistency of estimated depths can be improved using noise removal from 

input multiview video. 

 

T4) Non-linear representation of depth can be employed in order to improve compression 

efficiency of depth maps in 3D video systems. 

 

The results for theses T1-T3 are shown in Chapter 3. The results for thesis T4 are shown  

in Chapter 5. 
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1.3. The overview of the dissertation 

The dissertation is organized as follows. In Chapter 1, an introduction to the subject of 

multiview and 3D video systems is provided. The methodology that has been used during the 

works on the dissertation is shown. A focus is given to the need of performing experimental 

verification of the proposals. For that purpose, presented is a set of multiview video 

sequences, broadly used around the world as test material. A special highlight is given to the 

authorôs participation in production of some of those broadly used video test sequences. 

Chapter 2 presents current achievements in area of depth estimation with focus on the 

subjects that are important for the dissertation and further considerations. In particular, global 

methods are introduced with particular attention given to optimization functions (Ὀὥὸὥὅέίὸ 

and ὝὶὥὲίὭὸὭέὲὅέίὸ) and their probabilistic inclinations, which are further subject of the 

dissertation. 

Chapter 3 describes research performed by the author in area of depth estimation. First,  

a theoretical model based on Maximum A posteriori Probability is considered. This model is 

then verified empirically with use of the test sequences and the conclusions are drawn. Basing 

on the conclusions a novel approach to depth estimation is proposed. 

Finally, two more novel algorithms for depth estimation are proposed. The first one, Mid-

level Hypothesis algorithm, is aimed at improvement of precision and accuracy of the 

estimated disparity maps. The second one is aimed improvement of depth temporal 

consistency with use of noise reduction techniques.  

Each of these three achievements is concluded with evaluation of their performance and 

the experimental results. 

In Chapter 4, depth coding techniques are discussed with focus on the state of the art 

directly related to the subjects considered in the dissertation. 

Chapter 5 presents research that has been conducted by the author in area of depth 

representation and coding. A novel idea of non-linear depth representation is presented. First 

a proof-of-concept idea with use of a simple non-linear function is presented. Then, an 

original theoretical derivation for non-linear representation of depth is provided.  

The proposed non-linear depth representation is highlighted as a tool for improvement of 

compression performance. Experimental verification and study of compatibility with existing 

coding technology is presented. Finally, adoption of proposed non-linear depth representation 

to international video coding technology standards developed by ISO/IEC MPEG group (and 

recommendations of ITU) is highlighted. 
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Chapter 6 presents achievements of the author that are related to the development of 

technology for 3D video coding with use of the depth. A 3D video codec is presented that has 

been developed by Chair of Multimedia Telecommunication and Microelectronics, Poznan 

University of Technology, as a proposal for ñCall for Proposals for 3D Video Coding 

Technologyò [129] issued by ISO/IEC MPEG. The evaluation of the proposal is shown, along 

with authorôs share in the work. 

In Chapter 7, summary and conclusions of the dissertation are presented. The chapter lists 

the original results of the dissertation.  

 

1.4. The methodology of work 

The goal of the dissertation is to study whether it is possible to improve efficiency in 

coding of depth data and whether is it possible to improve the quality
2
 of algorithmically 

estimated depth maps. 

In both of these problems, theoretical evaluation of the proposals is nearly impossible, 

because, in order to provide a fair evaluation, the proposed tools (for depth estimation of 

depth coding) should be evaluated along with several other advanced tools, known from state-

of-the-art solutions and proposals (for depth estimation of depth coding respectively). 

Therefore, the only reliable way to evaluate advantages and disadvantages of the 

proposals is by performing series of experiments with multiview video test sequences. 

Only such allows empirical measurement of coding efficiency and evaluation of the quality of 

the estimated depth. In order to do that, the author has implemented and integrated the 

proposed techniques for depth estimation and coding into the following software packages. 

For the reasons clearly presented in Chapter 2 the algorithms implemented in ISO/IEC 

MPEG Depth Estimation Reference Software (DERS) and in View Synthesis Reference 

Software (VSRS) have been used as reference for experimentation in area of depth estimation. 

Therefore, authorôs proposals have been implemented and integrated in MPEG reference 

software (DERS version 5.1 [126] and VSRS version 3.0 [124][125] respectively) and the 

results have been compared against the original performance of unmodified versions of DERS 

and VSRS. 

In the second part of the dissertation, related to depth coding, the results are presented on 

the basis of MVC+D [114][115][116] and AVC-3D [117][118][119] video coding 

technologies (not yet described in any standards when the works have been conducted) and 

                                                      
2 The meaning of óqualityô of a depth map is considered further in Subsection 1.5.3. 
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also on the basis of HEVC-based coding technology, co-developed by the author, submitted 

by Poznan University of Technology to the ñCall for Proposals for 3D Video Coding 

Technologyò [129] issued by MPEG. Therefore, the tools proposed by the author have been 

implemented in ISO/IEC MPEG test model software ï 3D-ATM  [120] (for MVC+D and 

AVC-3D) and HTM  [123] (for HEVC-based). 

In both depth estimation and depth coding, the mentioned software packages (in the 

original versions and with integrated authorôs proposals) have been used to perform 

thoughtful experimentation. The results allowed the author to perform examination of the 

performance of the proposals both by objective manners (like with usage of PSNR values or 

Bjßntegaard measures) and subjective manners (subjective test and Mean Opinion Score 

ratings).  

Basing on that, the conclusion have been drawn which provided directions for further 

works. 

 

1.5. Multiview video test sequences 

As mentioned in the previous Section, a reliable way to assess performance of algorithms 

in the two fields related to the dissertation, which are depth estimation and depth coding, is 

performing series of experiments with multiview video sequences. 

It is a general problem, as reliable evaluation of performance is needed in research works 

which relate to algorithms and tools currently known, developed, or e.g. submitted as 

proposals for adoption in international coding standards. There are two sides of this problem: 

- What test data, in form of test sequences or images, should be used to allow common 

ground and reference for comparisons? 

- How to express and assess the quality of algorithmically generated depth maps? 

In the area of evaluation of depth estimation algorithms, an interesting scientific undertaking 

is related with webpage of Middlebury University [142]. The site is a repository for computer 

vision datasets and evaluations of related algorithms. Also, the site present results of multiple 

state-of-the-art depth estimation algorithms evaluated under the same conditions. 

Unfortunately, the methodology proposed by the authors can be found inadequate for 

experimentation with multiview and 3D television: 

First of all, the site evaluates quality of the depth, basing on still images, which disallows 

observation of temporal effects and artifacts, which are very important in case of moving 

pictures, considered in multiview and 3D video system. 
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Secondly, the methodology of evaluation of depth estimation algorithms used in the 

webpage is based on comparison with ground-truth depth maps. Conformance with the real-

depth, although important in case of many research fields (like computer vision, robotics etc.) 

in not the primary goal in the case of 3D video systems, where the depth maps are used 

mainly for the sake of virtual view synthesis. 

Moreover, the datasets in Middlebury webpage do not contain objects with specular 

reflections, glossy surfaces (e.g. mirrors), partially transparent surfaces (windows) etc. Such 

effects occur in real world natural scenes and lack of such examples in Middlebury data set 

belittles its usefulness. 

Therefore, currently the most adequate known methodology of evaluation depth 

estimation algorithms has been developed during the works of ISO/IEC MPEG group . 

The author of the dissertation is an active contributor to this works. In particular, he 

participated in creation of multiview video test sequences adopted to multiview video 

sequences set [129], currently, broadly  used for test purposes in experiments on development 

of 3D-related technologies [137][236][237][238]. This mentioned evaluation method 

developed in works of MPEG, used as main objective assessment method thorough the 

dissertation, will be described further in Subsection 1.5.3. Before that, first, in Subsection 

1.5.1, the production of multiview video sequences at Poznan University of Technology, 

Chair of Multimedia Telecommunications and Microelectronics will be provided, in which 

the author had strong participation. Later, selected multiview video test sequences set will be 

shown in Subsection 1.5.2. 

 

1.5.1. Production of the test material at Poznan University of Technology 

For research purposes and for production of multiview video test material, Chair of 

Multimedia Electronics and Telecommunications, has been built an experimental framework 

for works on future 3D television.  

 
 

 

Fig. 5. A set of 9 Canon XH-G1 cameras used in multiview system, developed at Poznan 

University of Technology, Chair of Multimedia Telecommunications and Microelectronics.  
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The system consists of 9 cinematic Canon XH-G1 cameras (Fig. 5) placed on a mobile 

(wheeled) metal rig (Fig. 6). The rig has been manufactured exclusively to provide special 

mounting pads that allow precise alignment of the cameras. The output video signal is HDTV 

(1920x1080) and is provided via SDI interface. All streams are temporally synchronized with 

use of a GenLock and captured by a PC cluster.  The whole post-processing is done offline. 

 

  

Fig. 6. Multi -camera rig (left) and recording system (right), both developed  

at Poznan University of Technology, Chair of Multimedia Telecommunications  

and Microelectronics, Poland. 
 

 

 

Fig. 7. Electronic board for multi-camera synchronization testing (left) and synchronization 

circuitry connected to the cameras (right), both developed at Poznan University  

of Technology, Chair of Multimedia Telecommunications and Microelectronics, Poland.  
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In order to estimate accuracy of synchronization a special calibration board (Fig. 7) has 

been used. The calibration board, designed at the Chair of Multimedia Telecommunication 

and Microelectronics, contains a control system, which is synchronized with the same signal 

that is propagated to cameras by GenLock and TimeCode inputs. The board presents the 

current time marker, number of frame lines and frame frequency on seven-segment displays. 

Simultaneously, the diodes corresponding to a single image line are lightened. Each diode 

emits light only in a single interval.  

The board is placed in front of the cameras. The view from every camera should show the 

same diodes switched on (number of lighting diodes depends on exposition time). If cameras 

are not synchronized the view is different. The board also allows for observing the camera 

synchronization process. Usually camera adjusts its inner clock to external synchronization 

signal in about 1 second.  

 

 

 

  
  

  
 

Fig. 8. Preparation for production of ñPoznan Hallò and ñPoznan Carparkò  

and ñPoznan Streetò sequences [85] at Poznan University of Technology,  

Chair of Multimedia Telecommunications and Microelectronics, Poland.  
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After development of the system hardware it was possible to start production of multiview 

view sequences.  The goal of such works was to develop a set of professional test sequences 

suitable for research works in the area of future 3D television. However a set of such 

sequences has already been maintained by ISO/IEC MPEG group, but is has turned out to be 

too simple (both in terms of the content and the depth of the scene) to meet the demands of 

research concerning, inter alia, algorithms for determining the depth maps. 

For example, the sequences [240] are characterized by uncomplicated textures and little 

motion. In addition, those sequences [240] present indoor scenes with low dynamic range of 

the depth and uncomplicated 3D structure (such as ñAlt Moabitò) or external scenes with high 

dynamic range of depth, but laminar (planar) structure of the depth. The ñNewspaperò 

sequence [239] in turn, although it contains more motion and has a more complicated depth 

structure, its usefulness is limited due to overexposure. Sequences ñChampagne Towerò and 

ñPantomimeò [242] present interesting motion and are also challenging in terms of transparent 

objects, however, those are indoor sequences, filmed against a black background which 

occupies most of the stage. The ñLovebirdò (1 and 2) [241] are outdoor sequences but they 

lack complex movement therein and do not present complicated structure of the depth in the 

scene. Furthermore, all of the sequences were filmed using a fixed, not-moving, set of CCTV 

cameras. 

Lack of availability of satisfactory test sequences composed of good quality, caused 

MPEG- FTV group to announce a Call [135] to provide new, more advanced three-

dimensional video content. In particular, desirable were multiview video sequences that 

would meet the following demands: 
 

- diversification of the filmed content, 

- high dynamic range of the depth and complexity of its structure, 

- good lighting (overexposure/underexposure), 

- movement of the camera, 

- complex motion in the scene, 

- reflective and transparent surfaces, 

- presentation of both indoor and outdoor natural scenes. 
 

 

Therefore, the goal of production of multiview video sequences at Chair of Multimedia 

Telecommunication and Microelectronics was to meet the above-mentioned requirements.  

Three test sequences have been produced ï ñPoznan Streetò, ñPoznan Carparkò and 

ñPoznan Hallò: 
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The first one, ñPoznan Streetò, presents an outdoor scene moving people and driving cars 

(Fig. 9), produced near the office of Poznan University of Technology, Faculty of Electronics 

and Telecommunications, located at Polanka Street, PoznaŒ, Poland.  

The scene of the second one, ñPoznan Carparkò, is located in the backyard of the 

mentioned office. The sequence also presents moving cars and walking persons. 

The third sequence, ñPoznan Hallò, has been produced in the hall of the mentioned office 

building. It presents an indoor scene with moving camera and complicated motion, including 

walking persons, rotating umbrella etc.  

All of the produced test sequences have been acquired along with all data required for 

calibration of the system. Basing on that, rectification and color calibration of the sequences 

have been performed [81]. 

The sequences have been submitted [85] to MPEG as a response to the Call [135]. During 

the forthcoming considerations and works, depth maps for those sequences have been 

algorithmically estimated [82]. This was crucial because the generated depth maps inclined to 

serve as ground truth data in the future. This task has consumed hundreds of hours of 

experiments with finding the optimal settings and creating manual data for semi-automatic 

depth estimation. The author of the dissertation had one of the biggest shares in this work, 

which has been done also in cooperation with other research centers [136]. 

Two of the sequences produced by Chair of Multimedia Telecommunication and 

Microelectronic have been adopted to the test sequence set used by MPEG, and also 

broadly around the world, for research on technologies related to 3D. Specifically 

ñPoznan Streetò and a part of ñPoznan Hallò sequence (named ñPoznan Hall 2ò) have been 

adopted.  

The author of the dissertation had strong influence on production of these sequences, both 

on the content and on the technical and scientific sides related to them. 

The adoption of these sequences as MPEG test material is a strong indication that the 

requirements of the Call [135] have been met. 

 

1.5.2. Test sequences used in the dissertation 

Along with the sequences produced by Chair of Multimedia Telecommunication and 

Microelectronics, other sequences maintained by ISO/IEC MPEG group as 3D test material 

have been selected for test purposes in this dissertation. All of the sequences can be used for 

research purposes [85][81][82][129][137][236][239][240][241][242][243][244]. 
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ñPoznan Streetò sequence [85] 

 

ñPoznan Hallò sequence [85] 

  
ñPoznan Carparkò sequence [85] ñUndo Dancerò sequence [244] 

 

  
ñBalloonsò sequence [242] 

 

ñKendoò sequence [242] 

  
ñLovebird 1ò sequence [241] ñNewspaperò sequence [239] 

 

Fig. 9. Exemplary frames from multiview video test sequences. 
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Table 1. Multiview video sequences used for test purposes in the dissertation 

and their characteristics. 
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Poznan Carpark 1920 
x 

1088 
25 

Canon XH-G1, 3-CCD 
camera 

250 лΧу 3,4,5 
- 

Poznan Street 3,4,5 

Poznan Hall 200 лΧу 5,6,7 5,6,7 

Lovebird1 

1024 
x 

768 
30 

Point Grey Flea camera 
(CCD), Moritex  
ML-0813 lenses 

240 0..8 3,5,7 3,5,7 

Newspaper 
Point Grey Research 
Flea camera (CCD) with 
1/3-inch Sony lenses 

300 лΧу 2,4,6 2,4,6 

Balloons XGA CMOS, 8-bit 
RGB-Bayer 
camera  

300 лΧс 1,3,5 1,3,5 
Kendo 

GT Fly 1920 
x 

1088 
25 

Computer-generated 
sequences 

250 1,2,3,5,9 1,2,3,5,9 1,5,9 
Undo Dancer 

 

 

There are in total 8 sequences in the test set (Table 1), presenting various scenes, both 

natural and computer-generated (Fig. 9). The test set is provided with ground truth depth data.  

For natural test sequences, the depth has been algorithmically estimated from the video.  

In some cases, additional manual help was needed, and therefore it is said that those depth 

maps have been estimated semi-automatically. For synthetic sequences (GT Fly, Undo 

Dancer sequences) the ground truth depth maps have been computer-generated along with  

the video.  

In this dissertation, the views of the cameras are consequently numbered from 0 (see: 

Table 1). Therefore, in the case of Lovebird1 sequence, the original camera indices (which 

were starting from 1) have been renumbered to range 0..8. 
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1.5.3. Assessment of the quality of depth maps 

As mentioned above, currently the most adequate known methodology of evaluation depth 

estimation algorithms has been developed by ISO/IEC MPEG group. In the dissertation, 

author has decided to employ it as a main objective assessment method. 

MPEG methodology for evaluation of quality of depth maps has been constituted  

as a part of 3D framework [137]. It employs view synthesis for evaluation of quality of depth 

maps, which can be used to evaluate depth estimation algorithm itself. 

During the evaluation, three views are explicitly considered ï A, B and V (Fig. 10). First 

for view A and view B depth maps are estimated. Typically, this is performed with implicit 

use of some side views. Depth estimation may employ many views (e.g. views A-1, A and 

A+1 for depth estimation of view A). The estimated depths of view A and view B, along with 

their original images, are used to synthesize a virtual view in position of middle view V. The 

original image of view V is used for reference and comparison, which provides indirect 

evaluation the depth map estimation algorithm used. Therefore, the quality of the depth is 

assessed indirectly by evaluation of quality of synthesized view. 

 

 

 

Fig. 10. Depth map assessment procedure developed by ISO/IEC MPEG  

and used in the dissertation. 
 

 

 
 

 

 

 

The synthesis of a virtual view, employed in the mentioned methodology, can be 

performed by means of Depth Image Based Rendering (DIBR) [141].  In DIBR, pixels from 

given input views are shifted, with respect to their depth, to different spatial positions in the 

target view. Depending on the structure of the 3D scene, some pixels may become occluded 

by others. On the other hand, some pixels in the target view cannot be rendered because they 

are occluded in the input views. Such pixels are inpainted [124].  
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In methodology developed by ISO/IEC MPEG group, for the sake of synthesis of virtual 

views, usage of View Synthesis Reference Software (VSRS) [124][125] is recommended.  

For the purpose of view synthesis, also in this dissertation VSRS is used. 

 

Table 2. Specification of views selected for evaluation of depth estimation (Fig. 10)  

for multiview test sequences used in the dissertation. 

Sequence 
name 

Resolution 

Ground truth  
disparity maps 

available  
for views 

Views used for 
depth estimation 
(View A and B) 

Synthesized view 
(view V) 

used for quality 
evaluation 

Poznan Carpark 
1920x1088 

3,4,5 3,5 4 
Poznan Street 

Poznan Hall 5,6,7 5,7 6 

Lovebird1 

1024x768 

3,5,7 3,5 4 

Newspaper 2,4,6 4,6 5 

Balloons 
1,3,5 3,5 4 

Kendo 
 

As can be noticed in Table 1, presented on page 24, views of computer-generated 

sequences (Undo Dancer, GT Fly) are placed in irregular spatial positions. Therefore, no fair 

depth estimation can be performed for reasonable comparison with other sequences. 

Moreover, computer-generated ground depth data is available which makes depth estimation 

impractical for such cases. Thus, those computer-generated sequences have not been used in 

experiments with depth estimation and are used mainly for reference purposes. 

The described above virtual  view synthesis-based depth map quality evaluation 

methodology  is used thought the dissertation, both in parts related to depth estimation and 

depth coding. 
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Chapter 2. State of the art in depth map estimation  

This chapter provides an introduction and overview of techniques of stereoscopic depth 

map estimation. Sections 2.1-2.2 provide an introduction to the basics of depth estimation and 

Sections 2.3-2.6 focus on the methods that are directly related to the authorôs proposals in this 

dissertation. 

 

2.1. Depth estimation fundamentals 

Algorithmic estimation of the depth is a long-lasting scientific problem. The first works on 

depth estimation go back to 1950ôs and, although many years of works, the current state of the 

art is still far away from satisfying level in many applications, especially in case of new 

generation of 3D video systems. This regards both to the quality of resultant depth maps and 

complexity of the algorithms. 

 

Fig. 11. Object ὗ projected onto image planes. Different positioning of the cameras leads to 

different projected positions in left and right view. Only objects within viewing frustum  

of given camera are visible. 
 

 

The basic principle in algorithmic depth estimation is usage of two views of the same 3D 

scene. In each of the views, a given object is seen from different angle and position (Fig. 11) 

and therefore its observed position is different. Most of depth estimation algorithms determine 

depth by finding correspondence between pixels across the views. For example, for a given 

projected position ὗ  (Fig. 11) in the left view, the algorithm searches for projected position 

ὗ  in the right view, so that both pixels, at positions ὗ  and ὗ , correspond to the same point 

Left 

camera
Right 

camera

Left view image plane

Right view image plane
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Viewing 
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boundary

Viewing 
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boundary
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of object ὗ. Such potential correspondences are geometrically inclined to lay along so called 

epipolar lines, which can be derived from a pin-hole model of the camera [155][156]. 

Positions and orientations of epipolar lines and indicated by the locations of the cameras, 

their orientations and other parameters, like focal length, angle of view etc. Typically, all of 

those parameters are gathered in a form of intrinsic and extrinsic camera parameter matrices 

[157][158]. In a general case, epipolar lines may lay along arbitrary angles.  

An important case in depth estimation (Fig. 12b) is a setup where the cameras of multiview 

video system are arranged linearly, so that the axes of the viewpoints are all parallel.  

Such setup, considered in the dissertation, is called linear arrangement of the cameras. 

Linear arrangement can be attained both by precise physical positioning of bodies of the 

cameras or by post-processing of images captured by other arbitrary setup of the cameras, e.g. 

angular (Fig. 12a), with use of rectification techniques [152][154] along with distortion 

removal [150][151]. 

 

Fig. 12. Various arrangements of cameras: a) angular camera arrangement,  

b) linear arrangement of the cameras with parallel axes  

of the cameras (considered in the dissertation) 
 

 

 

 

 
 

Fig. 13. Exemplary objects ὗ projected onto image planes of two cameras that are aligned 

horizontally with parallel axes of the cameras. 
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In considered case of linear arrangement of the cameras, the image planes of all views 

coincide (Fig. 13) and the epipolar lines are all aligned with the horizontal axes of the images. 

Therefore, the differences in observed positions of objects become disparities along horizontal 

rows. Due to the projective nature of such video system with linear camera arrangement, the 

further the object is from the camera, the closer is its projection to the center of the image 

plane (Fig. 13). 

Basing on projected positions of objects observed in different views, their 3D position can 

be mathematically determined. The question of the depth can thus be determined by finding 

disparity value for each point. For a stereoscopic pair of cameras, horizontally aligned, distant 

by the length of baseline ὄ, the depth ᾀ of point ὗ of can be calculated as follows: 

 

ᾀ ὪϽὄϽ     , (1) 

 

where: ᾀ - distance of object ὗ from the image plane of the camera system (depth),  

ὄ - baseline distance between optical centers of lenses of the pair of cameras, Ὠ  - disparity of 

point ὗ, which simply is the difference between observed projected positions for given stereo 

pair. For the cases presented in Fig. 13: 

 

Ὠ ὶ ὰ  , (2) 

 

It is important to note that a search range is typically required to be defined as an input  

to the disparity search process. Once the disparity for a pixel is determined, often [159],  

depth ᾀ (or disparity Ὠ) is stored in form of a normalized disparity : 

 

  Ͻ
Ὠ Ὠ

Ὠ Ὠ
ȟ 

(3) 

 

which is often presented in the form of: 

 

  Ͻ
ρ

ᾀ

ρ

ᾀ
Ⱦ

ρ

ᾀ

ρ

ᾀ
ȟ 

(4) 

 

where ᾀ  and ᾀ  are distances to the closest and the farthest object in a scene 

(corresponding to Ὠ  and Ὠ  disparity values) and   is the maximal value for given  

representation of normalized disparity ï e.g. 255 for 8-bit representation. 
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As depth is unambiguously related to disparity by mathematical equations (1), (3) and (4), 

colloquially, the terms depth (ᾀ), disparity (Ὠ) and normalized disparity ( are often used 

interchangeably. I.e. the term depth estimation is used where in fact, disparity estimation is 

considered [124][134][139][142][147][159][218][220][223][224]. 

 

Also, although this dissertation relates to ñdepthò estimation and ñdepthò coding it is 

worth to notice that, in fact, most of the presented considerations relate to disparity ▀ 

and normalized disparity ♯.  

 

With use of equations (1), (3) and (4), the problem of depth map estimation can be 

expressed as problem of disparity estimation of disparities. Yet, even is such stripped form, it 

is still is a complex and challenging task.  

In general, two classes of depth estimation methods can be distinguished ï sparse depth 

estimation (which are also referred to as indirect methods) and dense depth estimation (which 

are also referred to as direct methods).  

 

The scope of this dissertation lays within the latter case of dense depth estimation.  
 

Out of scope of this dissertation, are sparse methods, which search for visual features, such 

as corners or edges, and then match corresponding features between frames/views (e.g. 

[160][161][162][163][164]). It can be noted though that some of indirect methods, although 

yield only with sparse information about the depth, are targeted at providing ultimately  

a complete 3D reconstruction of the scene [165][166]. 

 

In dense depth estimation, considered in the dissertation, the depth is often expressed in 

form of a depth map which is a matrix composed of all depth values in given view. Yet even 

more often, the depth is expressed in a form of normalized disparity map, presented as gray-

scale image (Fig. 3b, Fig. 14c).  

The dissertation focuses on the most efficient and most commonly used methods known 

from literature [142][143], based on block-matching with local or global optimization of the 

generated disparity maps. The goal of the dissertation is improvement of those methods. 

Some of them are discussed below, up to the level which is required for the comprehension  

of the ideas presented in the dissertation, in the following Subchapter 2.2. 

 

 

http://dict.pl/dict?word=unambiguous&lang=EN
http://en.wikipedia.org/wiki/Corner_detection
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2.2. Local estimation methods 

Dense depth estimation methods, known from literature, find depth by means of disparity 

estimation, which can further be converted to depth (1). In order to find disparities between 

corresponding points, those methods employ calculation of similarities between fragments  

of the processed images. Typically used similarity metrics are Sum of Absolute Differences 

(SAD) or Sum of Squared Differences (SSD), between pixels or blocks of pixels,  

or normalized cross-correlation [167]. Some works propose more advanced solutions, like use 

of binary matching cost [168], non-parametric local transforms like "rankò or ñcensusò [173] 

or even approaches that incorporate mixtures of transforms [17]. 

a) 

 

b) 

 

c) 

 

Fig. 14. A single frame of Poznan Carpark multiview test sequence (a) and the corresponding 

disparity maps (b) and (c). In the case of (b) ground truth depth map is presented  

and in the case of (c) depth map estimated with use of Winner-takes-all technique  

(with 1Ĭ1 pixel block size, SAD similarity metric).  
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In the most basic approach, disparity is estimated for all pixels in the image independently. 

As a result, for each pixel, the most similar pixel in the second image is found, yielding  

a resultant disparity. Such approach is called ñwinner-takes-allò (WTA) as other possible 

correspondences, apart from the best ones, are never selected.  

Unfortunately, winner-takes-all approach does not provide satisfactory results [142][143] - 

as it can be seen in Fig. 14c, the depth map produced with WTA method is very noisy and 

often does not reflect the real depth of objects in the scene. This results from the fact that 

often the sought disparity cannot be determined locally on per-pixel basis as there are many 

similar pixels in second images resulting in equally good disparity candidates  

(Fig. 15). Typically, this occurs in case of correspondence search performed in homogenous 

regions (single colored homogenous regions - Fig. 15 black arrow) or glossy regions (e.g. 

reflections on the glass, windows or windscreen - Fig. 15 white arrow) of the images. In such 

cases, the disparity has to be determined basing on not only local features of the images (like 

only pixel to pixel similarity) but also using neighborhood of given pixel. This is based on an 

assumption that some of neighboring pixels contain texture that can be used for reliable 

correspondence search (Fig. 15 gray arrow). In the simplest solution, blocks of pixels are used 

in order to aggregate information from surrounding pixels. In such case, SAD, SSD similarity 

metrics (or more advanced ones), over all pixels that reside inside the given block, are 

calculated. 

 

 
 

Fig. 15. Correspondence of features which is the main idea behind algorithmic depth 

estimation. Examples of regions which are problematic are shown.  
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Another interesting extension of simple stereo matching with SAD, SSD similarity metrics, 

is usage of certainty/reliability maps. Those are matrices composed of values which indicate 

whether corresponding disparity value is certain (has been estimated with high likeness) or 

uncertain (e.g. in cases of untextured regions - Fig. 15). A similar approach is proposed in 

paper [171]. A stereo matching algorithm for disparity estimation is presented as a method for 

retrieving a 3D reconstruction of the observed scene. Along with the implemented estimation 

algorithm itself, a method of its verification is proposed, by means of generating for each 

disparity map, a respective certainty map which holds information about likeliness that the 

respective disparity value was chosen well. In turn, in work [172] a reliability map is used to 

allow fast depth estimation performed on GPU (Graphics Processing Unit) on graphics card in 

PC computer. In the mentioned work ñrankò transform is used [173]. 

In more sophisticated approaches to local depth estimation, so called fuzzy 

segmentation/soft segments [15][86][84][174][175] are used. In such, authors extend block 

matching scheme with a 2-dimensional weighting function which is calculated basing on the 

content of the images. This function defined the weights with which similarity of particular 

pixels is aggregated into the resulting similarity metric. A similar approach is to employ 

guided filters [176] that are variation over content-adaptive filters. In work [177], authors not 

only show very good quality of depth estimation but also claim that their algorithm is capable 

of performing in real-time. Work [178] also presents algorithm which is by the authors, 

described as near-real-time, based on guided filters, showing good performance on 

Middlebury website [142], among other state-of-the-art depth estimation techniques. In [179], 

even more advanced solution is proposed which combines usage of guided filters with 

information about gradients in analyzed images.  

Independently from the usage of exact method, aggregation of information from many 

pixels yields much more coherent results than in case of single pixel-to-pixel matching  

(Fig. 14b). The main disadvantage of such methods, which aggregate the information from the 

neighborhood, is limitation of range of the neighboring pixels that can be considered, due to 

at least two reasons. First, usage of wider neighborhood significantly increases computational 

complexity of such methods and thus they are ineffective respective to other solutions 

[142][143]. Secondly, the size of the neighborhood must not exceed the size of the objects 

that are matched. Therefore, there is a kind of uncertainty principle, because usage of small 

blocks allows for localization of small objects but with limited accuracy, and usage of greater 

size of blocks provides good accuracy in case of large objects but yields with bad results in 

case of small objects. Typically, size of matched regions ranges from 16 to 64 pixels. Also, 
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methods with variable, adaptively selected block size are known [169][170][180][181]. In 

work [206] authors propose depth estimation method which aggregates information from 

neighboring filters, developed basing on probabilistic model with diffusion. Also 

enhancement of the optimization algorithm, with application of Gauss-Seidel method, is 

proposed, so that the convergence of optimization algorithm can be attained faster. 

Usage of motion information for enhancement of depth estimation is also commonly 

considered subject. Authors of [182] have proposed usage of depth refinement technique 

which estimated ego-motion of the camera in order to attain depth maps with sub-pixel 

accuracy. Frame-by-frame prediction of 3D scene is performed by tracking of feature point 

coordinates and thus the proposed method allows depth estimation in a video without the need 

for disparity computations in each single frame. 

In paper [8] usage of motion field estimation is proposed. Calculated motion vectors are 

then used to extend pixel similarity metric, which is originally based on SAD. The authors 

adopt optical flow Classic+NL technique [183], based on classical formulation of optical flow 

by Horn and Schunck. 

Often, usage of more than two views in depth estimation is proposed [184]. Such approach 

allows reduction of problems related with occlusions, texture-less regions or shadows 

[185][186][187][188][189]. Typically in such cases [126][184], instead of similarity metric 

calculated between a single pair of views, similarity metrics are calculated between all 

available views and the processed view, and the minimal (the best) one is used for 

optimization. 

In some works [185][186][206], occlusions are explicitly modeled by marking pixels that 

are believed to be hidden by other pixels, basing on the current stage of computations. 

 

Although local estimation methods are not very often used as stand-alone in state-of-the-art 

depth estimation techniques, their concepts are exploited by more advanced global 

optimization methods, described below. 
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2.3. Global optimization methods 

Another, far more interesting approach that aspires to find a global optimum instead of 

local one (like in case of local methods described in Section 2.2) is to redefine the 

disparity/depth estimation as a problem which can be solved with use of generic optimization 

methods. In order to do so, an energy function ὊὭὸὲὩίί over a depth map is formulated: 

 

ὊὭὸὲὩίίὊὭὸὅέίὸ          ȟ (5) 

 

where ὊὭὸὅέίὸ depicts sub-component of ὊὭὸὲὩίί function for particular pixel ὴ in the 

considered disparity map. Such function is often related to as ñenergyò, ñgoal functionò or 

ñperformance indexò in other optimization applications. 

Because such ὊὭὸὲὩίί function is formulated on per-pixel basis, it can be used in variety of 

generic optimization algorithms. Among many known (like genetic optimization) only a few 

of them have found application in field of depth map estimation, due to the fact that the 

amount of considered disparity values is relatively large (e.g. hundreds).  

The most commonly used optimization algorithms are graphs cuts (GC) and belief 

propagation (BP) [197]. However, the description of those algorithms is out of scope of the 

dissertation, some brief introduction has been provided in Subsection 2.3.3 and 2.3.4 

respectively. 

In the case of both GC and BP algorithm, the function ὊὭὸὅέίὸ is typically modeled as  

a sum of two sub-functions: Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ for each pixel (6): 

 

ὊὭὸὅέίὸὈὥὸὥὅέίὸὨ            ὝὶὥὲίὭὸὭέὲὅέίὸᴼ ὨȟὨ

ᶰ   

ȟ (6) 

where: 

ὴ ï pixel (point) for which ὊὭὸὅέίὸ is evaluated,  

Ὠ ï assumed disparity of pixel ὴ,  

ή ï some pixel (point) in neighborhood of pixel ὴ,  

Ὠ ï assumed disparity of pixel ή.  

 

ὈὥὸὥὅέίὸὨ  - models the direct correspondence between pixels and express how given 

pixel ὴ is similar to those pointed by its disparity Ὠ in other images. This is further 

described in Subsection 2.3.1. 
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ὝὶὥὲίὭὸὭέὲὅέίὸȟ ὨȟὨ  - penalizes disparity maps that are not smooth. If a given pixel ὴ 

has vastly different disparity Ὠ than its neighbors (pixels depicted by ή) it gets high 

ὝὶὥὲίὭὸὭέὲὅέίὸ penalty. This is further described in Subsection 2.3.2. 

 

Of course, more advanced approaches than presented in equation (6) are known 

[190][191][192][195][196][197], where higher order ὊὭὸὅέίὸ function is defined, but their 

application is not very common [142][143]. 

The usage of Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ is a common idea of all global optimization 

methods like belief propagation or graph cuts. Depending on the approach those are defined 

as probabilities [202][203][204][205] or in terms of energy [193][197][198]. Some works 

[215] use mathematic concept of partition function, related to Boltzmann probability 

distribution, in order to exchange energy formulation into probability, and vice versa. 

Unfortunately, there is lack of empirical verification of whether such operations are justified. 

The problem of definition and formulation of ╓╪◄╪╒▫▼◄ and ╣►╪▪▼░◄░▫▪╒▫▼◄ 

functions is one of the main subjects of the dissertation for which results are shown in 

Chapter 3, Sections 3.1 to 3.6. 

Below, in Subsections 2.3.1 and 2.3.2, an introduction to typical formulations of  

Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ functions will be provided. 

 

2.3.1. Data Cost function 

The Ὀὥὸὥὅέίὸ function models the direct correspondence between pixels and express how 

given pixel ὴ is similar to those pointed by its disparity Ὠ in other images. The higher the 

difference between those pixels is, the higher is the value of ὈὥὸὥὅέίὸὨ .  

The most commonly Ὀὥὸὥὅέίὸ is defined in terms of energy related to similarity metrics 

between fragments of images, calculated in pixels or blocks. Typically, Sum of Absolute 

Differences (SAD) [180] or Sum of Squared Differences (SSD) [181][204] metrics are used. 

Some state-of-the-art works which relate to Ὀὥὸὥὅέίὸ function propose usage of ñrankò or 

ñcensusò [173] for calculation of better similarity metric. Work [17] proposes a more 

advanced approach, where mixture of various similarity metrics is incorporated in order to 

attain better quality in depth estimation, but theoretical foundations are missing.  

In paper [204], which in the most related to the dissertation in area of depth estimation, 

authors provide a similar derivation of ὊὭὸὅέίὸ function based on MAP assumptions. 

Unfortunately, the authors have omitted the consequences of this derivation related to 
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Ὀὥὸὥὅέίὸ and have limited their work to consideration of Gaussian model (corresponding to 

Sum of Squared differences energy formulation). The authors do not provide any verification 

of whether such assumptions are correct. 

Similarly, work [205] employs posteriori probability for modeling of ὊὭὸὅέίὸ function. 

Authors consider a more advanced model for Ὀὥὸὥὅέίὸ which incorporates Generalized 

Gaussian model with arbitrary power exponent. Therefore, in for value of 2 Gaussian model is 

considered and for value of 1, Laplace model is considered. Also here, any verification of 

whether such assumptions are correct is not provided, apart from theoretical considerations. 

In work [216] authors have proposed usage of truncated-linear Ὀὥὸὥὅέίὸ function which 

actually responds to Absolute Difference similarity metric, with is limited so that is does not 

exceed some given maximal level. Apart from the concept being very scientifically interesting 

and giving promising results, the authors have not supported their proposal with empirical 

data verifying their assumptions. Moreover, no analysis of noise nor cross-correlation 

between matched images have is performed. 

In work [217] authors thoughtfully analyze probabilistic model of correspondence in 3D 

space. Instead of Maximum A posteriori rule, a different approach for evaluating entropy and 

mutual information, called EMMA, is proposed. Authors claim, that one of advantages of 

EMMA is that it does not require a prior model for the functional form of the distribution of 

the data, and that the entropy can be maximized (or minimized) efficiently using stochastic 

approximation. Unfortunately, the method is presented in context of 3D modeling and not 

depth map estimation itself which disallows comparison with other state-of-the-art methods in 

the field of the dissertation.  

 

2.3.2. Transition Cost function 

The ὝὶὥὲίὭὸὭέὲὅέίὸ is a term of ὊὭὸὅέίὸ function which penalizes disparity maps that are 

not smooth. Its role is regularization of the resultant depth/disparity map. The higher are the 

differences between disparity Ὠ of pixel ὴ and disparity values Ὠ of all neighboring pixels 

Ὠ, the higher is the value of ὝὶὥὲίὭὸὭέὲὅέίὸᴼ ὨȟὨ . 

Typically, ὝὶὥὲίὭὸὭέὲὅέίὸᴼ ὨȟὨ  is defined independently from pixel positions ὴ 

and ή and thus it can be simplified to ὝὶὥὲίὭὸὭέὲὅέίὸὨȟὨ Ȣ Also, very often, 

ὝὶὥὲίὭὸὭέὲὅέίὸ is not defined as function of Ὠ and Ὠ independently, but as a function of 

Ὠ Ὠ  only: ὝὶὥὲίὭὸὭέὲὅέίὸὨ Ὠ .  
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Among the most commonly known are three models for ὝὶὥὲίὭὸὭέὲὅέίὸ function ï Potts 

model, linear model and truncated-linear model: 
 

a) Potts model [198] 

ὝὶὥὲίὭὸὭέὲὅέίὸὨ Ὠ  
π         ὭὪ Ὠ Ὠ π

 έὸὬὩὶύὭίὩ
        . (7) 

 

b) Linear model [126][190]  
 

ὝὶὥὲίὭὸὭέὲὅέίὸὨ Ὠ ϽὨ Ὠ      . (8) 

 

c) Truncated-linear model [216] 
 

ὝὶὥὲίὭὸὭέὲὅέίὸὨ Ὠ ÍÉÎ ϽὨ Ὠ  ȟ    . (9) 

Used notation: 

ὴ ï pixel for which ὊὭὸὅέίὸ function is evaluated,  

Ὠ ï assumed disparity of pixel ὴ,  

ή ï some pixel in neighborhood of pixel ὴ,  

Ὠ ï assumed disparity of pixel ή, 

ȟ ï constant parameters.  

 

In general, 4ÒÁÎÓÉÔÉÏÎ#ÏÓÔ functions incorporate some sort of constant parameters, like  

ɾ or ɻ coefficients. The main purpose of such constant parameters is to provide weighting to 

the relation with $ÁÔÁ#ÏÓÔ function, to which it is added to formulate &ÉÔ#ÏÓÔ function (6).  

The most commonly used parameter ɾ of linear and truncated-linear models, is widely called 

ñSmoothing Coefficientò as its value sets how much depth maps that are not smooth are 

penalized by &ÉÔ#ÏÓÔ function. Usage of small values of Smoothing Coefficient results in 

sharp depth maps which are similar to those attained with local depth estimation methods. 

Usage of large values of Smoothing Coefficient results in generation of very smooth, even 

blurred depth maps. The selection of Smoothing Coefficient is typically done manually (the 

depth estimation is thus supervised) which is an important problem in practical usage of 

depth estimation methods based on belief propagation or graph cuts in applications, where 

unsupervised operation is expected. 

All of the mentioned models (Potts, linear and truncated-linear) are typically used because 

they are simple and provide some additional advantage in the case of belief-propagation 

algorithm, because they allow reduction of computational complexity of execute of particular 
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steps from /$  polynomial to /$ linear time, where $ is the number of disparity 

considered values. As typically Ὀ ranges from 40 to 100, this provides vast reduction of real 

computational complexity. 

In work [216], authors have proposed usage of truncated-linear-shaped ὝὶὥὲίὭὸὭέὲὅέίὸ 

function for depth estimation and have compared it against other state-of-the-art techniques. 

Although the results are promising, the foundations of the proposal are not given. 

In papers [204][205] authors consider derivation of ὝὶὥὲίὭὸὭέὲὅέίὸ function based on 

Maximum a Posteriori rule, similar to the approach in this dissertation. Basing on this, 

Markov Random Field model for stereoscopic depth estimation is formulated by means of 

belief-propagation algorithm. Unfortunately, the work proposes only an approximation of 

ὝὶὥὲίὭὸὭέὲὅέίὸ function. 

The lack of works, which provide theoretical analysis of application of Maximum  

A posteriori Probability  (MAP) optimization rule to formulation of ╓╪◄╪╒▫▼◄ and 

╣►╪▪▼░◄░▫▪╒▫▼◄ for depth estimation, along with empirical experimentation which would 

support formulation of such theoretical models, is one of the motivations of the dissertation.  

In Subsections 2.3.3 and 2.3.4 below, graph cuts and belief propagation algorithms are 

presented. Those are used in the dissertation solely as tools for optimization of depth maps 

with regards to ὊὭὸὅέίὸ function (and thus Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ functions). 

Therefore, as the dissertation does not relate directly to those algorithms and thus in-depth 

knowledge about them is not needed, the presented introduction will be very short. A more 

comprehensive and detailed description can be found in the references. 

 

2.3.3. Graph Cuts 

In this Subsection a brief introduction to graph cuts (GC) algorithm is provided.  

The dissertation is not related to the GC algorithm itself. Rather than that, the graph cuts 

algorithm is used as a reference technique in the experiments related to depth estimation. 

Therefore, as in-depth understanding of graph cuts is not needed for reading of the 

dissertation, only a short description and survey of state-of-the-art techniques is shown. 

Further details and detailed description of GC algorithm can be found in literature mentioned 

below. 

In general, graph cuts is an algorithm which solves energy minimization problems by 

reducing them to instances of the maximum flow problem [190][195][198] in a graph. In such 

cases, max-flow/min-cut theorem [193][194][195][196] can be used in order to efficiently 
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find a minimal cut of the graph which corresponds to finding an optimal solution of a problem 

represented in the considered graph.  

One of the applications of graphs cuts algorithm is solving the problem of labeling of an 

image. In  depth estimation it relates to assigning disparity values (labels) to particular 

pixels (points) of the input image. It has been proven [190][193][194] that in binary cases 

(where only two different labels are defined) can be solved optimally by the GC algorithm.  

If there are more than two labels (which is the case in depth estimation) the produced 

solutions usually lay near the global optimum [191][192], targeted by ὊὭὸὅέίὸ energy 

function. 

 

 

Fig. 16. An exemplary graph used in graph cuts algorithm for depth estimation.  
 

 

In depth estimation based on graph-cuts algorithm [190][192][195][198][199][200]  

a graph is defined (example in Fig. 16), whose nodes model pixels and whose edges model 

ὊὭὸὅέίὸ components associated with them. Thus, the structure of the graph reflects the 

definition of Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ function. There are many graph structures 

known from the literature [190][192][195][198] with different complexity and performance.  

Although the discussion of details of specific graph-cuts methods is above the scope of the 

dissertation, it is worth to notice that the most commonly used variant of graph-cuts solver is 

so called alpha-expansion [195]. In such, multi-labeling problem is solved iteratively, where, 

in each iteration only a binary labeling problem is solved. In particular, two alternative 

disparity maps are considered, the current one and a hypothetical one (filled with a single 

disparity value) proposed at the current iteration. A graph is created, whose edges represent 

ὊὭὸὅέίὸ function compounds related to both of the alternative disparity maps. Then, an 

optimal cut between the current and the alternative disparity map is sought in this graph 

(basing on max-flow min-cut theorem) which yields a better fitted (energy minimal) disparity 

s

t

Layer of nodes 

corresponding 

to pixels

Terminal node

Terminal node

Connections between 

nodes on the layer of pixels

Connections to 

s terminal node

Connections to 

t terminal node



Olgierd Stankiewicz άStereoscopic depth map estimation and coding techniques for multiview video systemsέ 

41 of 241 
 

map, composed of fragments of the current and the alternative disparity map. This is repeated 

with different alternative disparity maps (typically for all possible disparity values) until the 

current disparity map is optimized to the point of convergence. 

 

2.3.4. Belief Propagation 

In this Subsection a brief introduction to belief propagation (BP) algorithm is provided. 

Although the dissertation is not related to the BP algorithm itself, a short description and 

survey of techniques is shown for the reference of the state-of-the-art. Further details can be 

found in the literature, although in-depth knowledge about belief propagation algorithm is not 

needed for understanding of the dissertation. 

The belief propagation (BP) algorithm [201][202][203][204][205] can be seen as an 

extension and generalization of the well-known Viterbi algorithm (dynamic programming). 

The Viterbi algorithm operates on graph describing a lattice of observations with one-

directional connections which constitute a 1-dimensional field of nodes (Fig. 17a).  

Specifically, belief propagation applied in depth estimation, extends this scheme to  

a 2-dimensional field of nodes, where the nodes typically correspond to structural elements of 

the image, like pixels (Fig. 17b). The most often, bidirectional connections between the  

nodes in BP are considered and such variant of the algorithm is called  

loopy-belief-propagation [207]. 

 

 
Fig. 17. Illustration of Viterbi algorithm (a) and belief propagation (BP) algorithm (b). 

In the depicted BP example, considered is Markov Random Field with 4-way (left, right,  

top and bottom) neighborhood of nodes and bidirectional connections between the nodes. 
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Those nodes communicate with their neighbors by sending messages. Each such message 

is composed of beliefs of the source node about probabilities of disparities that are considered 

(and are possible) in the target node. 

Therefore, BP algorithm iteratively estimates probabilities associated with considered 

disparity values and basing on that to choose the most probable disparity for each node.  

Although it is not a strict requirement, it is often assumed that in BP algorithm the sought 

disparity map is modeled by a 2-dimensional Markov Random Field (MRF) [208].  

In MRF defined for the problem of depth estimation, each node of the field is defined by all 

possible disparities and corresponding probabilities. By analogy to the nomenclature known 

in Hidden Markov Models (HMMs) the possible disparities correspond to hidden states, the 

ὝὶὥὲίὭὸὭέὲὅέίὸ corresponds to transition probability and the Ὀὥὸὥὅέίὸ corresponds to the 

output probability. In such MRF-based belief propagation formulation ὊὭὸὅέίὸ optimization 

function (and thus also Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ) are expressed as log-probabilities (in 

logarithmic scale). Belief propagation can optimize marginal probability [209][210] or 

maximum a posteriori probability [211] of optimal selection of disparities, both which are 

defined by ὊὭὸὅέίὸ function. The latter case is analogous to graph cuts algorithm [197]. 

 

2.5. Accuracy and precision of disparity values 

An important aspect of dense depth estimation algorithms, considered in the dissertation, is 

the degree of accuracy of estimated disparity values, which is limited by the employed 

disparity representation precision.  

Apart from the techniques that are based on optical flow [18][218], where practically 

continuous range of disparities is outputted, both local and global methods (mentioned in 

Section 2.2 and 2.3 respectively) assume a discrete set of disparities. This can be defined by 

three parameters: Ὠ  and Ὠ  which correspond to minimum and maximum possible 

disparities between the views (disparity range) and Ὠ  which is a minimal step between 

each of consecutive disparity values, expressed as a multiple of the spatial sampling period in 

images (quantization step of disparity representation). 

For example (Fig. 18a - Kendo sequence), if we consider a set of disparity values in range 

from Ὠ ρ and Ὠ ςυ with Ὠ ρ (all expressed as multiples of the spatial 

sampling period in images, thus disparity representation is ñfull-pixelò precise), generated are 

25 discrete disparity values which are mapped with equation (3) to normalized disparities. 
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Histogram of such normalized disparity map is sparse (Fig. 18a) as only 25 discrete disparity 

values exist.  

In example depicted in Fig. 18b (Poznan Carpark sequence), Ὠ ρ to Ὠ ψπ with 

Ὠ πȢυ (thus representation of disparity is ñhalf-pixelò precise), the histogram is more 

dense as total of 
Ȣ
ρφπ discrete disparities values are considered. In computer-generated 

examples of Undo Dancer and GT Fly and sequences (Fig. 18cd) Ὠ  has been set to a such 

value, so after mapping to normalized disparity exactly all values are possible in the 

histogram (Fig. 18cd). 

 
 

a) Kendo sequence, camera 5 b) Poznan Carpark sequence, camera 3 

  
 

 

c) Undo Dancer sequence, camera 5 

 

 

d) GT Fly sequence, camera 3 

 
  

Fig. 18. Histograms of normalized disparity  values in ground truth disparity maps.  

The graphs have been vertically normalized to range [0;1].  
 

 

 

Usage of a small Ὠ  (e.g. ñhalf-pixelò precision or ñquarter-pixelò precision) leads to 

higher precision of the estimated depth map (and likely, higher accuracy)  but increase the 

computational complexity of the depth estimation algorithm as the number of total considered 

disparity labels is increased. 
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Usage of a large Ὠ  (e.g. òevery-two-pixelò precision) leads to lower precision of the 

estimated disparity map (and likely, lower accuracy) but allow computational complexity 

savings. 

The dependency on computational complexity, especially in the case of belief-propagation 

or graph-cuts algorithms (Section 2.3), typically enforces usage of only full -pixel precision 

[142][143] corresponding to Ὠ ρ. 

 

There are a few papers that consider sub-pixel precise depth maps.  

In [182] depth map is refined for sub-pixel accuracy with use of ego-motion of the camera. 

Motion parameters of the cameras system are estimated by tracking of feature points. The 

paper brings an additional benefit, because the depth in the video can be estimated without the 

need for disparity computations in each single frame. Unfortunately, as the method 

stereoscopic video sequence with motion of the camera, it is not suitable for generic cases of 

processing. 

Other authors [219] have proposed an algorithm for depth map improvement by 

anisotropic diffusion. This method provides smooth, high-precision disparity maps, but 

unfortunately it does not preserve depth discontinuities over the edges of the objects. 

Authors of [18] propose an additional precision refinement step, analogic to the idea 

proposed in the dissertation. Usage of optical flow algorithm on the top of belief-propagation 

is proposed, so that the finally outputted disparity range is continuous.  

The idea of evaluation-by-hypothesis, similar to proposed in dissertation, is employed in 

paper [220]. A variational segmentation model which intends to decompose an image into 

distinct regions, using piecewise smooth functions, is employed to compute a smooth depth 

map, basing on multiple depth hypotheses obtained from different matching algorithms. The 

certainty of the depth is not considered though, which is a drawback of that proposal.  

Regardless of the works mentioned above, currently, there is lack of fast post-processing 

techniques that could improve the precision of a disparity map and well preserve spatial 

edges. This observation is one of motivations of this dissertation. The author proposes 

a post-processing algorithm that increases precision of generated disparity maps, 

preserves spatial edges and is not computationally expensive. The original results for such are 

presented in Section 3.7. 
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2.6. Temporal consistency of the depth 

The straight-forward method for depth estimation in video sequences is to estimate depth 

map for each frame independently. Such an approach is simple and also allows for parallel 

generation of depth map in in consecutive frames [126]. Unfortunately, estimation of depth 

independently for each of consecutive frames in the video yields with depth maps which are 

not temporally consistent due to noise. This manifests as random fluctuation of depth values, 

even of objects that are still. Such fluctuations are adverse, because they lead to occurrence of 

artificial movement in 3D representation. Desired depth map temporal consistency means that 

changes of the depth of objects in time are correlated with actual motion of the objects and do 

not vary from frame to frame in a random way. Therefore, one of the biggest of challenges in 

this research area is how to provide depth maps that are consistent in time. 

Typically, depth data for video is estimated independently for each frame of the sequence. 

Majority of state-of-the-art techniques that tackle temporal consistency, in various ways 

expand depth estimation algorithms into time domain. For example, in [221] authors propose 

to extend standard 4-neighborhood belief propagation depth map estimation scheme [222] to 

6-neighborhood scheme by addition of temporal neighbors: from previous and from next 

frame. These neighbors are obtained by motion estimation. Therefore, depth value is 

optimized with respect to depth value in subsequent frames. In turn, authors of [223] propose 

segment-based approach. In order to provide temporally consistent depth value, apart from 

traditionally used spatial matching of segments, also temporal segment matching is 

performed. Such approach increase complexity of the whole depth estimation process, which 

already is computationally expensive. 

In work [224] a method for estimating temporally and spatially consistent dense depth 

maps in multiple camera setups is presented. Authors propose that for this purpose, initially, 

depth estimation is performed for each camera with the piece-wise planarity assumption and 

Markov Random Field (MRF) based relaxation at each time instant independently. Then, 

moving pixels are identified and MRF formulation is updated by the additional information 

from the depth maps of the consequent frames through motion compensation. For the solution 

of the MRF formulation for both spatial and temporal consistency, Belief Propagation 

approach is utilized. The results presented by the authors indicate that the proposed method 

provide reliable dense depth map estimates both in spatial and temporal domains. 

Unfortunately, the method comprises substantial modification of belief propagation 

algorithm, which lowers its usability. 
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Although the works related to matter of temporal consistency, including the mentioned 

above, describe a huge variety of techniques, still, generating maps that are consistent in time 

is still a scientific problem that requires further investigation. This is one of the authorôs goals 

of the dissertation. In particular, the goal is to further  study and develop proposal given 

the author in [3] and [20], where problem of temporal inconsistency is tackled by 

elimination of its cause which is existence of noise in video sequences. Therefore, noise 

removal techniques are employed. 

Noise reduction is a well-known and widely recognized technical field. Wide variety of 

examples of noise reduction techniques can be found e.g. in [225][226][227] 

[228][229][230][231][232][233][234][235]. Classical noise reduction techniques aim to 

provide a denoised image directly to the audience. In the case of depth estimation, more 

artifacts are allowed, because denoised version of the image is only to be used for depth 

estimation. Thus, wider range of techniques can be considered. Though, the problem of the 

noise reduction itself is not a subject of the dissertation. 

The authorôs results and developments related to estimation of temporally consistent depth 

by noise reduction are presented in Chapter 3.8. 
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Chapter 3. Proposed methods for depth map estimation  

In this chapter, novel tools for depth estimation are proposed. First, a theoretical 

formulation for depth map estimation based on Maximum A posteriori Probability  (MAP) 

optimization rule is presented. It is shown what assumptions are required in order to attain 

classically used Absolute Differences [180] or Squared Differences [181][204] pixel 

similarity metrics in formulation of Ὀὥὸὥὅέίὸ function. Those assumptions are then verified 

and on the basis of attained results, a more general solution and a formulation of ╓╪◄╪╒▫▼◄ 

is proposed. The parameters of the proposed probabilistic model are measured empirically  

with use of the test sequence set. 

Then, similarly, a formulation of ╣►╪▪▼░◄░▫▪╒▫▼◄ function is proposed on the basis of  

a probabilistic model. Also for this model, parameters are measured empirically  with use of 

the test sequence set. 

Next, assessment of the proposed depth estimation technique with use of proposed 

Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ function is performed. The attained gains are highlighted. 

In Section 3.7 a novel tool for refinement of depth map with Mid-Level Hypothesis 

algorithm is presented which increase the precision and accuracy of the generated disparity 

map. The gains in terms of PSNR and computational complexity are shown. 

Finally, a tool for improvement of temporal consistency of estimated depth maps with use 

of noise reduction is presented along with its evaluation. 

The following Section 3.1 starts with derivation of Ὀὥὸὥὅέίὸ function, based on 

Maximum A posteriori Probability (MAP) optimization rule which will used for formulation 

of proposed depth estimation algorithm, 

 

3.1. Proposed Data Cost derivation based on MAP 

This Section starts with derivation of Ὀὥὸὥὅέίὸ function, based on Maximum A posteriori 

Probability (MAP) optimization rule. Attainments of this Section will further be used for 

formulation of proposed depth estimation algorithm. 

As mentioned in the introduction, one of the most crucial aspects in depth estimation is 

usage of pixel correspondences in the views. Basing on similarity metrics between pixels, the 

best matching pixel pairs are chosen and used to derive disparity/depth. 

In most of the works related to block/image matching (and depth estimation in particular) 

no theoretical foundation is provided to the problem of optimal selection of the best match 
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[15][17][126][180][181][204]. Surprisingly, often simple Sums of Absolute or Squared 

Differences (SAD or SSD in blocks) similarity metrics are considered [180][181][204] 

without in-depth studies or consideration.  

Such empirical approach, without theoretical formulation, is easy, but has disadvantages: 

- It does not provide scientific foundation for the considerations, 

- As there is no mathematical model, the probability that the chosen match is the best is 

unknown. 

- Thus it is difficult to incorporate empirical proposals as a part of broader framework, 

like optimization algorithms, where apart from pixel similarity metric (referred to 

as Ὀὥὸὥὅέίὸ), also other terms are used (ὝὶὥὲίὭὸὭέὲὅέίὸ). 
 

Therefore, in this dissertation a theoretical formulation, based on Maximum  

A posteriori Probability  (MAP) is derived.  
 

Let us consider disparity estimation in a case of two cameras which are perfectly 

horizontally aligned with parallel optical axes. The views are rectified [152][154] and the 

distortions [152][154] are assumed to be removed. Therefore epipolar lines are aligned with 

horizontal rows in the images. 

Images from the left view ὒȟ  and from the right view Ὑȟ have the same widths W and 

the same heights H. 

For given row of pixels with coordinate Ù in both views, observed are pixel luminance 

values in the left view and in the right view: 
 

ὒȟȟὒȟȟȣȟὒ ȟ ï luminance values in the left view,  

ὙȟȟὙȟȟȣȟὙ ȟ ï luminance values in the right view (both indexed from 1 to W). 

 

All of those are random variables, considered to have been observed and thus these variables 

constitute our a posteriori observation set. 

We search for disparity value Ὠȟ for each pixel at coordinates ὼȟώ (in the right view) 

which would maximize probability of ὴὨȟ  under the condition of a posteriori 

observations of luminance values in both views. This probability will be demarked as ὴȟȟ:  

 

ὴȟȟḳὴὨȟ ὒȟȟὒȟȟȣȟὒ ȟȟὙȟȟὙȟȟȣȟὙ ȟ  ȟ (10) 

 

where ὒȟȟὒȟȟȣȟὒ ȟȟὙȟȟὙȟȟȣȟὙ ȟ  is overall conditional expression of observation 

of luminance values. 
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Therefore MAP rule for selecting optimal disparity value Äȟ
ᶻ
 can be formulated as 

follows: 

Ὠȟ
ᶻ ÍÁØ

  
ὴȟȟ Ȣ (11) 

 

In order to allow the depth estimation algorithm to use the MAP rule (11), the term ὴȟȟ has 

to be modeled basing solely on values that are known after the observation (a posteriori), e.g. 

luminance values in the left view ὒȟȟὒȟȟȣȟὒ ȟ and in the right view ὙȟȟὙȟȟȣȟὙ ȟ. 

We will transform equation (10) with use of Bayes rule: 
 

ὴὃȟὄ ὴὃϽὴὄȿὃ ὴὄ Ͻὴὃȿὄ ,   (12) 

expressed in the form below: 

ὴὄȿὃ
ὴὄ Ͻὴὃȿὄ

ὴὃ
Ȣ 

(13) 

Thus we get: 

ὴȟȟ
ὴ ὒȟȟὒȟȟȣȟὒ ȟȟὙȟȟὙȟȟȣȟὙ ȟ ȿὨȟ ϽὴὨȟ

ὴὒȟȟὒȟȟȣȟὒ ȟȟὙȟȟὙȟȟȣȟὙ ȟ
ȟ (14) 

 

which, by rearrangement of ȣ ȿὨȟ term for each luminance separately, can be written as: 

 

ὴȟȟ
ὴὒȟȿὨȟȟὒȟȿὨȟȟȣȟὒ ȟȿὨȟȟὙȟȿὨȟȟὙȟȿὨȟȣȟὙ ȟȿὨȟ ϽὴὨȟ

ὴὒȟȟὒȟȟȣȟὒ ȟȟὙȟȟὙȟȟȣȟὙ ȟ

Ȣ (15) 

 

Assumed is presence of noise which has independent realizations in each of the views. 

Therefore, each of pixel luminance values in the left view ὒȟ (at coordinates ὰȟώ) is 

independent from each of pixel luminance values in the right view Ὑȟ (at coordinates ὶȟώ).  

Moreover, when considering the denominator of (15), it can be assumed that also pixel 

luminance values in the left view ὒȟȟὒȟȟȣȟὒ ȟ are independent from each other, as do 

pixel luminance values in the right view ὙȟȟὙȟȟȣȟὙ ȟ. Specifically, this also holds true 

for the sought pair of pixels matched by disparity Ὠȟ, as denominator of equation (15) does 

not consider any specific matching or correspondence of pixels, as those probabilities are not 

conditional with respect to Ὠȟ. Therefore, we can simplify the denominator of (15) as: 

 

ὴὒȟȟὒȟȟȣȟὒ ȟȟὙȟȟὙȟȟȣȟὙ ȟ  ὴὒὰȟώ
ὰρȢȢὡ

   Ͻ   ὴὙȟ
ȢȢ

Ȣ (16) 

 

A similar simplification could be done in the case of the nominator of (15), but here, on the 

contrary, probabilities of ὒȟȿὨȟ and ὙȟȿὨȟ are conditional, because are considered under 

the condition of occurrence of Ὠȟ.  
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Such condition of Ὠȟ means that in the given pixel with with coordinates ὼȟώ, for which 

we calculate ὴȟȟ, a disparity value Ὠȟ is assumed, so that two pixels, in the left and in the 

right view, correspond to each other. Such pair of pixels is not independent, and therefore 

probabilities of their luminance values Ð,ȟȟ and Ð2ȟȟ cannot be simplified as in (16). 

Such exception occurs, when coordinate ὰ in the left view correspond to the same pixel in the 

right view with coordinate ὶ, which is true when  ὰ and ὶ are linked by disparity Ὠȟ: 

 

  ὶ ὼ      (x expresses the coordinate in the right view for which Ὠȟ is considered), 

  ὰ ὼ ὨȟȢ 
 

(17) 

For other pairs of pixels (not corresponding to each other), random variables describing their 

luminance values are independent, like in the case of (16). Therefore, we can express ὴȟȟ 

from (15) as: 

 

ὴȟȟ  

ὴὒὰȟώȿὨὼȟώ

ȢȢȟὼὨὼȟώ

Ͻ ὴὙὶȟώȿὨὼȟώ

ȢȢȟ ὼ

 

Ͻ ὴ ὒ ὨὼȟώȟȟὙȟ ȿὨȟ ϽὴὨȟ Ȣ (18) 

ὴὒὰȟώ

ȢȢ

Ͻ ὴὙὶȟώ

ȢȢ

 

 

Also, with the exception for the mentioned case (17), the probability distributions related 

to ὴὒȟȿὨȟ  and ὴὙȟȿὨȟ  are independent from Ὠȟ (because those random variables 

represent pixels that are not connected by disparity Ὠȟ ) thus: 

 

ὴȟȟ  

ὴὒὰȟώ

ȢȢȟὼὨὼȟώ

Ͻ ὴὙὶȟώ

ȢȢȟ ὼ

 

Ͻ ὴ ὒ ὨὼȟώȟȟὙȟ ȿὨȟ ϽὴὨȟ Ȣ (19) 

ὴὒὰȟώ

ȢȢ

Ͻ ὴὙὶȟώ

ȢȢ

 

 

It can be noticed, that all Бȣ  terms in the nominator can be simplified with Бȣ  terms 

in the denominator of (19). This applies to all ὰ and ὶ, with except for the case (17): 

 

ὴȟȟ
ȟȟ    Ͻ   ȟ

Ͻ ὴ ὒ
ȟȟȟὙȟ ȿὨȟ ϽὴὨȟ    . 

 

(20) 

 

It can be further seen, that term ὴὒ
ȟȟ  is probability distribution of luminance values 

in the left view, which is independent from the corresponding disparity value Ὠȟ and 

therefore can be expressed as ὴὒȟ . We finally get: 
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ὴȟȟ
ȟ    Ͻ   ȟ

Ͻ ὴ ὒ
ȟȟȟὙȟ ȿὨȟ ϽὴὨȟ    . 

 

(21) 

 

The derivation of formula (21) is one of the key achievements of the dissertation.  

It describes probability ὴȟȟ that given pixel with coordinates ὼȟώ has disparity Ὠȟ under 

the condition of a posteriori observations of luminance values in both views.  

 Therefore, selection of Ὠȟ which maximizes ὴȟȟ fulfills  Maximum A posteriori 

Probability (MAP) rule (11). In Section 3.4 it will be used in order to propose a novel depth 

estimation method. In the meanwhile, in Section 3.2, it will be shown how the mentioned 

equation (21) can be simplified in order to attain classical Squared Differences (and thus Sum 

of Squared Differences for blocks ï SSD) and Absolute Differences (and thus Sum of 

Absolute Differences for blocks ï SAD) pixel similarity metrics that are commonly used in 

depth estimation algorithms. 

 

3.2. Simplification of Data Cost to classical SSD and SAD similarity 

metrics 

Letôs now analyze the equation (21), derived in the previous Section, expressing 

probability ὴȟȟ that given pixel with coordinates ὼȟώ has disparity Ὠȟ, basing on 

Maximum A posteriori Probability (MAP) rule. In this Section, a simplification of (21) is 

shown, which can be used to attain classical pixel similarity metrics: Squared Differences 

(and thus Sum of Squared Differences for blocks ï SSD) and Absolute Differences (and thus 

Sum of Absolute Differences for blocks ï SAD). The presented simplification is interesting as 

it shows the set of conditions (resulting from assumptions) which, if are met in a practical 

case, indicate that usage of SAD or SSD is optimal from Maximum A posteriori Probability 

optimization point of view. Therefore, it will be shown in what cases, usage of SAD or SSD is 

optimal. It can be noted though, that the presented reasoning does not limit the application of 

SAD or SSD pixel similarity metrics to the presented cases only.  

Terms ὴὒȟ  and ὴὙȟ  are probability distributions of luminance values in the left and 

right view respectively. They can simply be measured as histograms of the left and the right 

view. The interpretation of these terms is that correspondence between pixels with luminance 

values that occur more often is more probable. The mentioned terms are omitted by the state-
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of-the-art pixel similarity metrics proposals. Such corresponds to a situation, where 

histograms of the compared images are flat. 

Similarly, ὴὨȟ , probability distribution of disparity values Ὠȟ can be estimated as 

histogram. It can be imagined, that this brings some quality to the distinction between depth 

planes (e.g. foreground vs. background). This also is omitted by the state-of-the-art pixel 

similarity metrics proposals, which corresponds to a situation, where all disparities are equally 

probable. 

The term ὴ ὒ
ȟȟȟὙȟ ȿὨȟ  is a probability that luminance value ,

ȟȟ of pixel in 

the left view and luminance value Ὑȟ of pixel in the right view will occur, on the condition 

that those pixels are corresponding to each other and the occurred disparity is Ὠȟ. 

Again, according to Bayes rule in form (13), the term ὴὒ
ȟȟȟὙȟὨȟ  can be 

expressed alternatively as either: 
 

                  ὴὒ
ȟȟȟὙȟὨȟ ὴὒ

ȟȟ ϽὴὙȟὒ ȟȟȟὨȟ        or as (22) 

                  ὴὒ
ȟȟȟὙȟὨȟ ὴὙȟ Ͻὴὒ ȟȟὙȟȟὨȟ     . (23) 

 

Those forms are equivalent and lead to similar formulation, so the work will focus on the 

latter (23) only. Term ὴὙȟ  simplifies with the term in the denominator of (21) shown on 

page 51 : 

ὴȟȟ
ȟ

ȟ    
Ͻ ὴὒ

ȟȟὙȟȟὨȟ      . (24) 

 

In order to understand the interpretation of usage of SAD or SSD similarity metric as a 

model for ὴὒ
ȟȟὙȟȟὨȟ , we have to do the following assumptions: 

 

- The presence of additive noise, the same in both of the views (in particular, with equal 

standard deviation „). 

- Lambertian model of reflectance in the scene, which means that the observed light 

intensity of given point in the scene is independent from the angle of viewing, and thus 

is equal amongst the views. 

- Compatible color profiles of the cameras, so that given light intensity is represented 

as the same luminance value ὣ among the views (in the consideration, for given pair of 

corresponding pixels ὒȟ in the left view and Ὑȟ in the right view). 
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Gaussian distribution of the noise 

Let us first consider the presence of Gaussian noise. For such, the conditions mentioned 

above can be mathematically expressed as: 
 

     ὒȟ ͯ ὋὥόίίὭὥὲȟ    , (25) 

     Ὑȟ ͯ ὋὥόίίὭὥὲȟ    . (26) 

 

where ὋὥόίίὭὥὲȟ  is normal probability distribution, with mean value ὣ and standard 

deviation „. 

The term ὴὒ
ȟȟὙȟȟὨȟ  is considered and thus random variable Ὑȟ is assumed 

to be a posteriori observation with given, concrete value (also as Ὠȟ is considered 

conditionally too), thus ὣ Ὑȟ. Therefore, the pixels are assumed to correspond to each 

other and thus both random variables have the same expected value ὣȟ. Moreover, the 

difference in luminance between ὒ
ȟȟ and Ὑȟ results only from the probability 

distribution ὋὥόίίὭὥὲ
ȟȟ

ὒ
ȟȟ  of the noise, where both  Ὑȟ and ὒ

ȟȟ are our a 

posteriori observations: 

 

ὴὒ
ȟȟὙȟȟὨȟ Ѝ

ϽÅØÐ ȟȟ ȟ
    , (27) 

therefore we get: 

ὴȟȟ
ȟ

ȟ  
Ͻ
Ѝ
ϽÅØÐ ȟȟ ȟ

   . (28) 

 

 

We are looking for Maximum A posteriori Probability and thus we search for the best 

matching disparity Ὠ which has the highest (maximal) probability ὴȟȟ. It is equivalent to 

finding Ὠ with maximal ὰέὫὴȟȟ . After natural logarithm on both sides of the equation is 

taken: 
 

ὰέὫὴȟȟ ὰέὫὴὨȟ ὰέὫὴὒȟ ὰέὫ„Ѝς“
ȟȟ ȟ

   . 
(29) 

 

It can be noticed that if all terms except the last one (on the right) are omitted, the equation 

(29) simplifies to SSD formula for pixel similarity metric: 

 

ὰέὫὴȟȟ ὒ ȟ Ὑȟ . (30) 
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The terms omitted in such way, ὴὨȟ  and ὴὒȟ  and ὰέὫ„Ѝς“ correspond to: 

probability distribution of disparity values, probability distribution of luminance values in the 

left view and constant offset, respectively. Such omission could be justified if all of those 

terms were constants which would be true if both of the mentioned probability distributions 

were uniform. 

We can thus conclude, that usage of SSD (Sum of Squared Differences) metric is 

optimal (from Maximum A posteriori Probability point of view) for the case of presence of 

additive Gaussian noise, independent between the views, uniformity of distributions of 

disparities and luminance values and Lambertian model of reflectance. 

 

Laplace distribution of the noise 

Now, let us consider the presence of Laplace distribution of the noise. If such is assumed, 

similarly as in the case of Gaussian, we can define the following: 
 

ὒȟ ͯ ὒὥὴὰὥὧὩȟ    , (31) 

Ὑȟ ͯ ὒὥὴὰὥὧὩȟ     , (32) 

  

where ὒὥὴὰὥὧὩȟ  is Laplace probability distribution with mean value ὣ and  

the attenuation parameter ὦ. 

Analogously to the case of Gaussian distribution above, we can come to conclusion that if 

the probability distribution is in form of Laplace function: 
 

ὴȟȟ
ȟ

ȟ    
Ͻ
Ͻ
ϽὩὼὴ ȟȟ ȟ

     ȟ  (33) 

 

and with use the same trick (as in the case of Gaussian noise) with taking logarithm of both 

sides of (33): 
 

ὰέὫὴȟȟ ὰέὫὴὨȟ ὰέὫὴὒȟ ὰέὫςϽὦ ȟȟ ȟ
   . (34) 

 

Here, we can see that if all terms except the last one (on the right) are omitted, the equation 

(34) simplifies to SAD formula for pixel similarity metric: 

 

ὰέὫὴȟȟ ὒ
ȟȟ Ὑȟ    . (35) 

 

Again, the omitted terms, ὴὨȟ  and ὴὒȟ  and ὰέὫςϽὦ correspond to: probability 

distribution of disparity values, probability distribution of luminance values in the left view 
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and constant offset, respectively. Such omission could be justified if all of those terms were 

constants which would be true if both of the mentioned probability distributions were 

uniform. 
 

 

The abovementioned theoretical derivations are novel, mainly because they show a set 

of conditions, which if are met in a practical case, indicate that usage of SAD or SSD is 

optimal from Maximum A posteriori Probability optimization point of view. Of course, the 

presented reasoning does not limit the application of SAD or SSD pixel similarity metrics to 

the presented cases only and thus usage of SAD or SSD can be found to be optimal in other 

cases and under optimization on different basis than Maximum A posteriori Probability. 

The question arises, whether those conditions (resulting from the assumptions made 

during the derivation of SSD-based and SAD-based (equations (30) and (35) ) pixel similarity 

metrics for Ὀὥὸὥὅέίὸ) are met in practical cases. This will be verified in Section 3.3 below. 

 

3.3. Verification of the assumptions 

In Section 3.1, equation (21) has been derived (see page 51), expressing probability ὴȟȟ 

that given pixel with coordinates ὼȟώ has disparity Ὠȟ, basing on Maximum A posteriori 

Probability rule. In Section 3.2, under some assumptions, this equation (21) has been 

simplified to forms related to SSD and SAD (equations (30) and (35) on page 53 and 54) 

similarity metrics, respectively. In this Section a verification of those assumptions presented 

in Section 3.2 will be presented, on basis of multiview video test sequence set (Fig. 9 on 

page 23, Table 1 on page 24). 

Letôs remind what assumptions have been made in Section 3.2: 

- Independence of the noise in the frames (in time domain and in inter-view domain). 

- Gaussian (or Laplace) distribution of the noise, the same among all of the views. 

- Uniform distributions of luminance values in the views. 

- Uniform distributions of disparity values in the views. 

- Lambertian model of reflectance in the scene. 

- Color profile compatibility among the views. 

We can thus conclude, that usage of SAD (Sum of Absolute Differences) metric is 

optimal (from Maximum A posteriori Probability point of view) for the case of presence of 

additive Laplace noise, independent between the views, uniformity of distributions of 

possible disparities and luminance values and Lambertian model of reflectance. 
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The assumptions will be verified in the mentioned order. First independence of noise in the 

frames will be checked, then the shape of the noise distributions (Gaussian or Laplace).  

In order to perform the analysis of the noise existing in a practical cases, the noise from the 

multiview video test sequences will been extracted with use of some proposed method. The 

description of this noise extraction method in presented in the following subsection. 

Then, basing on the extracted noise, its characteristics will be evaluated and presented. 

Finally, a model for the noise will been developed, which is then used in the further part  

of the dissertation. 

 

3.3.1. Noise extraction technique used for the analysis 

The goal of Section 3.3 is to verify whether the conditions assumed in Section 3.2 are met 

in a practical case of multiview video sequences set, developed by ISO/IEC MPEG and used 

in the dissertation (Fig. 9 on page 23, Table 1 on page 24). This requires that the noise which 

is present in the video sequences has to be extracted for analysis.  

The noise existing in a video sequence can be simply attained as a difference between the 

original and a denoised version of the given sequence. There are many methods for noise 

reduction in video sequences e.g. [228][229][230][231][232][233][234][235], all of which can 

be used for noise extraction. The most advanced ones include spatial filtering, temporal 

filtering, Kalman filtering, motion estimation and background extraction techniques. In this 

chapter though, the purpose of noise reduction is in fact solely noise extraction for further 

analysis. Therefore, there is no need for use of advanced techniques, and thus the simplest 

and the most straight-forward one is used. 

For the noise analysis in this chapter, a very straight-forward technique is exploited, in 

which fragments of sequences representing only still scenes (without any movement) are 

used. It is assumed that each frame of each sequence represents the same image altered only 

with different noise. Therefore, the image without noise can be easily retrieved, as an average 

of the frames.  

Denoised image ὈὩὲέὭίὩὨὼȟώ can thus be interpreted as expected value estimator 

ὉὊὶὥάὩὼȟώ  of many different realizations of random process ὊὶὥάὩὼȟώ: 

 

ὈὩὲέὭίὩὨὼȟώ
ρ

ὔ
ὊὶὥάὩὼȟώ (36) 

 

where ὊὶὥάὩὼȟώ would express luminance value at coordinates ὼȟώ in frame with index Ὥ. 
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The sought noise value ὔέὭίὩὼȟώ, can be thus simply calculated as: 

 

ὔέὭίὩὼȟώ ὊὶὥάὩὼȟώ ὈὩὲέὭίὩὨὼȟώ   . (37) 

 

In a case, when frames ὊὶὥάὩὼȟώ are independent from each other, estimator (36) is 

unweighted. Otherwise, estimator (36) is weighted but it can be noted that the error of the 

estimation decreases with ὔ. Therefore, even for moderate values of ὔ (like the length of the 

considered sequences), the error is negligible.  

It can be noticed that the noise values ὔέὭίὩὼȟώ that result from such operation (37) are 

real numbers. Therefore, they cannot be represented as integers in a classical 8-bit data format 

without loss. To avoid that, the resulting noise values have been used in their original form 

(real numbers, stored with single floating-point precision). However, at some part of the 

presented considerations below, the noise values are analyzed with use of histograms. In such 

experiments, the probability distributions of noise values ὔέὭίὩὼȟώ are measured by 

counting in bins, with bin size equal to ρρφ of quantization step of the luminance values  

(e.g. in ὊὶὥάὩὼȟώ, where luminance values are stored in 8-bit data format).  

Therefore, given value of the noise ὔέὭίὩὼȟώ is counted in histogram in bin identified 

by index ὔέὭίὩὄὭὲὍὨὼὼȟώ identified as follows: 

 

ὔέὭίὩὄὭὲὍὨὼὼȟώ ỗὔέὭίὩὼȟώϽρφỘ , (38) 

 

where ỗϽỘ depicts the floor rounding operator. 

The presented noise extraction method has been applied on the sequences selected for the 

test set in the dissertation (Fig. 9 on page 23, Table 1 on page 24). Those are mostly moving 

sequences, which would disallow usage of the presented algorithm. Therefore, only regions 

and frame ranges that are still for a considerable amount of time (Table 3) have been 

considered. It is worth to notice, that Poznan Street, Poznan Hall and Poznan Carpark 

multiview video test sequences have been used in their original, full-length (uncut) version 

(versions included in ISO/IEC MPEG multiview video test are cut to frame range where there 

was some movement). 

In all of the used sequences, range of frames and spatial regions, in which the scene is still, 

have been extracted manually. The selection of used regions is summarized in Fig. 19 (spatial 

positions of selected regions) and in Table 3 (frame ranges and the area of the marked 

regions).  
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òPoznan Streetò sequence 

 

òPoznan Carparkò sequence 

  
òPoznan Hallò sequence òLovebird1ò sequence 

 

  
òBalloonsò sequence òNewspaperò sequence 

 

Fig. 19. Regions in the multiview video sequence set that has been manually marked as still 

for the sake of estimation of the noise. Unused regions have been marked in gray. 
 

 

 

In column E in Table 3, number of pixels that have been marked as still (Fig. 18) for each 

of the sequences is shown. In general, sequences with lower resolution (Column B) have 

lower number of pixels per view and per frame than sequences with higher resolution. On the 

other hand, Column F in Table 3 summarizes the total number of pixels in regions marked as 

still (Fig. 19) per view, but in the whole analyzed range of frames (Table 3 column D). 

Those numbers are provided here in Table 3, because they mentioned during verification 

of statistical hypotheses, presented further in Subsections 3.3.2 to 3.3.5. 

Computer-generated sequences ï GT Fly and Undo Dancer ï have not been used for the 

analysis of noise, clearly because there is no noise in those sequences. 
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Table 3. Multiview video sequences used for analysis of the noise. 

A. B. C. D. E. F. 

Sequence 
name 

Resolution Camera 
Frames 
used 

Area of regions 
marked as still 

(number of pixels 
/ view / frame) 

Total  
number of 

pixels  
marked as 

still per view 

Poznan Street 1920 
x  

1088 

Canon XH-G1, 3-CCD 
camera 

32 563 047 18 017 504 

Poznan Carpark 64 587 030 37 569 920 

Poznan Hall 32 1 384 287 44 297 184 

Lovebird1 

1024 
x    

768 

Point Grey Flea camera 
(CCD), Moritex  
ML-0813 lenses 

64 105 984 6 782 976 

Newspaper 
Point Grey Research 
Flea camera with  
1/3-inch Sony lenses 

32 71680 2 293 760 

Balloons XGA CMOS, 8-bit 
RGB-Bayer camera 

48 27 648 1 327 104 

Kendo Moving seq. ς no still regions 

GT Fly 1920 
x 1088 

Computer-generated sequences ς no noise 
Undo Dancer 

 

For Kendo sequence it was impossible to estimate the noise with use of the technique 

described in 3.3.1, as the whole scene is moving. Instead of that, a sequence recorded with the 

same camera system (Table 3) has been used ï the Balloons sequence. 

After the noise has been extracted with the method described above, the verification of the 

assumptions made in Section 3.2 could be started. Starting with verification of the assumption 

about independence of the noise in subsequent frames in the multiview video test sequences, 

the results are presented below. 

 

3.3.2. Independence of the noise in the subsequent frames 

This Subsection presents verification of the assumption of independence of noise in time 

domain, particularly in subsequent frames in analyzed video sequences. First, the noise has 

been extracted from the original test sequences (Table 1 on page 24) with technique 

mentioned in Subsection 3.2.1.  

In order to verify the hypothesis of noise independence, the following metrics have been 

used: 

- Pearson-correlation (linear) calculated for each pair of subsequent frames, 

- 2-dimensional histograms of noise values for each pair of subsequent frames, 

- ὧὬὭ 
independence test of noise values for each pair of subsequent frames. 
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As a first check, linear correlation coefficient has been evaluated for each pair of 

subsequent frames in each of considered (Table 3) test sequences: 

ὖὅὅȟ ὼȟώ  

ὔέὭίὩὼȟώ ὔέ ίὩϽὔέὭίὩὼȟώ ὔέ ίὩ 

. (39) 

ὔέὭίὩὼȟώ ὔέ ίὩϽ ὔέὭίὩὼȟώ ὔέ ίὩ 

 

 

The results for all pairs of frames in form of graphs are attached in Appendix, in Fig. 81 to 

Fig. 86. It can be noticed, that for some pairs of frames, the linear correlation coefficient is 

higher and reaches even level of about 0.1295 (Balloons) ï e.g. in Fig. 20. Apart from the 

value itself, it can be noticed that all of the graphs are quite random, fluctuating on both 

positive and negative values, which indicate that there is no linear correlation between noise 

in subsequent frames.  

 

 
Fig. 20. Linear correlation coefficient measured for two subsequent frames,  

index Ὥ ρ and index Ὥ, for Balloons sequence.  

 

 

Fig. 21. Results from Fig. 20 sorted in ascending order (ίέὶὸὩὨ ὭὨὼ). Linear correlation 

coefficient measured for two subsequent frames for Balloons sequence.  

 

 

As the results in Fig. 20 are difficult to interpret, the values of correlation coefficient have 

been sorted in ascending order (from the lowest ὖὅὅ value to the hightest) and again, in that 
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new form, presented in Fig. 21. It can be seen, that high levels of ὖὅὅ values occur rarely and 

that in the most of frames, ὖὅὅ ranges from -0.05 to 0.05 which is negligible. 

Moreover, even higher values (like 0.1295 for Balloons sequence or about 0.0569 for some 

Poznan sequences) do not provide evidence that the random variables are linearly correlated. 

Also levels of the measured correlation coefficient for other sequences (Table 4) indicate that 

the noise in subsequent frames is not linearly correlated. In average the linear correlation 

coefficient is about Ñ(0.01-0.03), which is negligible.  

 

Table 4. Linear correlation coefficient calculated over pairs of frames in test sequence set. 

Sequence 
name 

ἵἩὀ
░
ȿ╟╒╒░ȟ░ ȿ ἩἾἭἺἩἯἭ

░
ȿ╟╒╒░ȟ░ ȿ ἵἱἶ

░
╟╒╒░ȟ░  ἵἩὀ

░
╟╒╒░ȟ░  

Poznan Street 0.0569 0.0142 -0.0569 0.0344 

Poznan Carpark 0.0561 0.0158 -0.0561 0.0533 

Poznan Hall 0.0211 0.0084 -0.0211 0.0138 

Lovebird1 0.0396 0.0117 -0.0396 0.0339 

Newspaper 0.0360 0.0113 -0.0360 0.0293 

Balloons 0.1295 0.0325 -0.1163 0.1295 
 

As mentioned above, the performed experiments indicate that the noise in subsequent 

frames is not linearly correlated. Of course linear correlation is not the only existing form of 

dependence between random linear variables. 

A simple and robust method of verifying whether there is any dependence between two 

random variables, e.g.  and  is the usage of formula: 

 

ὴȟ ὴϽὴ    ȟ (40) 

 

which is true only if such two variables  and  are independent. 

In order to perform such verification, the two-dimensional histograms of ὔέὭίὩὼȟώ vs. 

ὔέὭίὩὼȟώ have been measured. An exemplary histogram has been presented in Fig. 22. 

One axis of the histograms relates to the values of noise in the frame Ὥ, and the other axis 

relates to the values of noise in frame Ὥ ρ. The analogous histograms for other sequences, 

averaged over all frames have been gathered in Fig. 23 (in the same presentation form  

as in Fig. 22). 

If there would be any dependence between those two random variables (modeling noise in 

frame Ὥ and Ὥ ρ), there would be an asymmetry in the graph, related to the fact that (40) is 

not meet. 
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Fig. 22. Exemplary plot of two-dimensional histogram of ὔέὭίὩὼȟώ vs. ὔέὭίὩὼȟώ for 

Poznan Street test sequence, camera 0, frame 0. One axis of each histogram relates to the 

values of noise in the frame Ὥ, and the other axis relates to the values of noise  

in frame Ὥ ρ. The same visualization method has been used in Fig. 23. 
 

 

\ 

 

Fig. 23. Plots of two-dimensional histogram of ὔέὭίὩὼȟώ vs. ὔέὭίὩὼȟώ for various 

test sequences and cameras, averaged over frames. The plots are presented in the same way as 

in Fig. 22 but for the sake of brevity, visualization of axes has been omitted. 
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As can be noticed (Fig. 23), the graphs are separable (40) in both dimensions which 

indicates that the random variables are independent and thus that the noise in subsequent 

frames is independent.  

Apart from such visual verification, the independence has been tested mathematically. 

Given normalized 2-dimensional histogram (depicted by ὌϽ operator, with bins described in 

(38) on page 57) of noise values in subsequent pair of frames Ὥ and Ὥ ρ: 
 

 ὌὔέὭίὩὼȟώȟὔέὭίὩὼȟώ  ȟ Ὤȟ ȟ, (41) 

 

histogram of noise values in frame É:  
 

ὌὔέὭίὩὼȟώ  ȟ Ὤ (42) 

 

and histogram of noise values in frame Ὥ ρ: 
 

ὌὔέὭίὩὼȟώ   Ὤ , (43) 

 

we assume that those normalized histograms correspond to probability distributions of noise 

in the corresponding cases. If the noise distribution are independent between the frames, then 

according to (40), the expected distribution of Èȟ ᴂɻȟɼ will be: 

 

Ὤȟ ᴂȟ ὬϽὬ     . (44) 

 

The energy of difference, between the expected distribution Ὤȟ ᴂȟ and the observed one 

Ὤȟ ȟ has been used in order to perform ╬▐░ independence test. 

 

… Ȣ

Ὤȟ ᴂȟ Ὤȟ ȟ
ς

Ὤȟ ᴂȟ
ɴ ɴ 

    Ȣ (45) 

 

ɮ is a set of possible noise values. Range [-8é8] has been selected in order to cover the 

whole usable range on noise values Fig. 22 and at the same time, to avoid small number of 

sampels in histogram bins, which is desired in case of ὧὬὭ test. Therefore, ψ ȟ ψ, 

which results in total • ρχ of values.  

The working null hypothesis is that the observed distributions are dependent. 

The working alternative hypothesis is that the observed distributions are 

independent. 

Now, number of degrees of freedom will be calculated, which is equal to the number of 

cells •Ͻ•, minus the reduction in degrees of freedom ὨὪ . As the expected distribution has 
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been estimated (it is not known from a theoretical model), the number of degrees of freedom 

have to be reduced by ὨὪ • • ρ (the number of rows and cols in (45) is equal to ʒ). 

Finally, the number of degrees of freedom is: 

 

ὨὪȢ •Ͻ• • • ρ ςυφ. (46) 

 

The confidence level has been assumed to be 0.05 and thus the corresponding … Ȣ  

value, calculated from left-tailed … distribution, is: 

 

… Ȣ ςωτȢσςπφχȢ (47) 

 

For each of the sequences and each of views … Ȣ statistic has been calculated and 

compared to … Ȣ  value: 

 

… Ȣ

… Ȣ

… Ȣ
Ȣ (48) 

 

As left-tailed ʔ distribution is used, value of … Ȣ  which is greater or equal than ρ 

(measured … Ȣ statistic is greater/equal than … Ȣ ) means that the null hypothesis 

cannot be rejected and thus the observed distributions of the noise values may be dependent. 

Value of … Ȣ  which is smaller than ρ (measured … Ȣ statistic is lesser than 

… Ȣ ) means that the null hypothesis must be rejected and thus the observed 

distributions of the noise values are independent (at the given confidence level). 

From the results presented in Table 5, it can be seen that … Ȣ  is definitely below 1 

(ranges from 0.0145 to 0.0387 which is negligible). This leads to a conclusion that the null 

hypothesis has to be rejected. Finally, this provides evidence that the noise in subsequent 

frames is independent. 

 

Table 5. Results of ὧὬὭ 
independence test, for pairs of succesive frames of  

the test sequences. The results have been averages over time and over cameras. 

Sequence name Ⱶ░▪▀Ȣ►╪◄░▫ 

Poznan Street 0.0145 

Poznan Carpark 0.0249 

Poznan Hall 0.0194 

Lovebird1 0.0387 

Newspaper 0.0269 

Balloons 0.0307 
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In Fig. 23 it can be noticed that in the case of Lovebird 1 sequence, camera 2 of has 

slightly different graph than other cameras. It can be supposed that this particular view has 

been acquired with different camera settings. Similar phenomenon can be observed in results 

presented in the next Subsection. 

Now, it has been proven that the noise in succesive frames of tested multiview video test 

sequences is independent. This gives positive verification of the first of the assumption made 

in Section 3.2. Next, verified will be the second condition which consists in assumption about 

Gaussian or Laplace distribution of the noise in the video sequences. The results are provided 

below. 

 

3.3.3. Probability distri butions of the noise  

In Section3.2 it has been shown that, from Maximum A posteriori Probability point of 

view, apart from other conditions, usage of SSD metric is optimal when condition of presence 

of additive Gaussian noise is meet and that usage of SAD metric is optimal when condition of 

presence of additive Laplace noise is meet. Here, those conditions will be verified on practical 

example of multiview test sequences. From those sequences, noise has been extracted with 

use of the technique mentioned in Subsection 3.3.1. In the previous Subsection it has been 

proven that the realizations of noise in subsequent frames of the tested sequences are 

independent. Therefore the sought probability distributions of the noise can be estimated with 

use of histograms calculated over all frames of each sequence. If the noise was not 

independent between the frames, averaging over the frames would be statistically incorrect. 

For the reasons stated in Subsection 3.3.1, the histogram analysis of the noise is performed 

with use of bins ὔέὭίὩὄὭὲὍὨὼὼȟώ defined in (38) on page 57, with bin size of ρρφ of the 

normal quantization step of the luminance values (the smallest representable luminance value 

difference). 

The results have been presented in Fig. 24 - Fig. 30 in form of average (over all cameras) 

for visualization. The source data can be found in Appendix in Fig. 87 - Fig. 102. 

As can be noticed, none of measured distribution of the noise, extracted from the test 

sequence set, represents a Laplace distribution. This means that usage of formula (35) 

(presented on page 54), which connects Laplace noise distribution with SAD pixel similarity 

metric cannot be justified basing on Maximum A posteriori Probability (MAP) rule. This is 

a very important result, because most of the state-of-the-art depth estimation algorithms 
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[15][126][142][143][185][192][188][201][204] use some form of SAD pixel similarity 

metric. 

In general, it can be said, that the measured noise distributions are visually very similar to 

Gaussian (normal) distribution. For the visual comparison, in Fig. 24 - Fig. 30 (and in Fig. 87 

- Fig. 102 in the Appendix), apart from the measured data (marked in continuous blue line), 

on the same figures, also Gaussian (normal) distribution has been depicted (marked in dotted-

red line). The visualized Normal distribution has the same parameters: ‘ and „ (Table 6). 

There are some exceptions for this mentioned ñsimilarityò to Gaussian distribution though, 

described below. 

In the case of Poznan Street, Poznan Carpark and Poznan Hall  sequences, the 

measured distribution is slightly skewed in such a way, that the maximum of the distribution 

is at position of about 0.4. This may be a results of internal noise reduction algorithm 

implemented in the Canon XH-G1 camera or a results of internal non-linear processing of 

data from the camera sensor. Standard deviations are very similar among the views (Table 6), 

but there are little differences among the sequences. Those are 2.45 (Poznan Street,), 2.28 

(Poznan Carpark) and 2.01 (Poznan Hall). 

In the case of Lovebird1 sequence, standard deviations are the lowest in the whole test set 

and are very similar across all of the cameras ï at level of about 0.66. The only exception is 

camera 2, where the standard deviation is about 2.5 times higher ï it has been measured to be 

about 1.65. This might be evidence that this particular view has been acquainted with 

different parameters ï e.g. the exposure time has been shorter, which has been corrected with 

higher amplification gain, which also amplified the noise. Apart from that anomaly, the 

Gaussians are well-symmetric and centered at value of 0. This means that the distribution of 

the noise in such example is well-centered. 

The probability distribution of the noise in Newspaper sequence is very similar to 

Gaussian distribution in all of the cameras. The standard deviations are very similar among 

the views at a level of about 1.23. 

The distributions of Balloons sequence strictly follow Gaussian ñbellò shape. Also here, 

standard deviations are very similar among the views, at level of about 1.01. 

For Kendo sequence it was impossible to estimate the noise with use of the technique 

described in 3.3.1, as the whole scene is moving. Instead of that, a sequence recorded with the 

same camera system has been used ï the Balloons sequence. 
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Fig. 24. Measured probability distribution of noise values in Poznan Street sequence 

(averaged over all views), estimated with histogram bin size of ρ
ρφ.  

See (38) on page 57 for more details. 

 

 

 
Fig. 25. Measured probability distribution of noise values in Poznan Carpark sequence 

(averaged over all views), estimated with histogram bin size of ρ
ρφ.  

See (38) on page 57 for more details. 
 

 

Fig. 26. Measured probability distribution of noise values in Poznan Hall  

sequence (averaged over all views), estimated with histogram bin size of ρ
ρφ.  

See (38) on page 57 for more details. 
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Fig. 27. Measured probability distribution of noise values in Lovebird 1 sequence  

(averaged over all views), estimated with histogram bin size of ρ
ρφ.  

See (38) on page 57 for more details. 

 

 

 

Fig. 28. Measured probability distribution of noise values in Lovebird 1 sequence (camera 2), 

estimated with histogram bin size of ρ
ρφ(See (38) on page 57 for more details).  

In the case of this camera, the standard deviation is about 2.5 times higher than in  

other cameras of Lovebird 1 sequence..  

 

 

Fig. 29. Measured probability distribution of noise values in Newspaper sequence  

(averaged over all views), estimated with histogram bin size of ρ
ρφ.  

See (38) on page 57 for more details. 
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Fig. 30. Measured probability distribution of noise values in Balloons sequence  

(averaged over all views), estimated with histogram bin size of ρ
ρφ.  

See (38) on page 57 for more details. 
 
 

 

 

Table 6. Summary of the Gaussian model -  

parameters of the noise distributions in the test sequences. 

Sequence 
Name 

Standard 
deviation 

Maximum point 
of distribution, 
related to EX 

Notes 

Poznan Street 2.45 0.41 

Measured distribution is skewed Poznan Carpark 2.28 0.42 

Poznan Hall 2.01 0.51 

Lovebird1, w.o. cam.2 0.66 0.02 Camera 2 of Lovebird1 sequence has 
vastly different noise profile Lovebird1, camera 2 1.65 0.01 

Newspaper 1.11 -0.02  

Kendo 
1.01 0.01 

Kendo is a moving sequence ς values 
taken basing on Balloons sequence only Balloons 

Undo Dancer 
Computer-generated sequences ς no noise 

GT Fly 
 

 

In this Subsection, probability distributions of the noise measured in the test sequences has 

been presented. Visually, it was noticed that undoubtedly those distributions are not Laplace 

distributions which violates one of the possible assumptions made in Section 3.2.  

Although it was also noticed that the measured distributions are visually very similar to 

shape of Gaussian function, the statistical proof for that was not provided. This will be the 

goal of the next Subsection, where assumption about Gaussian shape of the measured 

probability distributions will be verified statistically with use of ÃÈÉ goodness-of-fit 

statistical test. 
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3.3.4. Chi-square test for Gaussian probability distribution of the noise 

In previous Subsection it has been shown that the distributions presented in Fig. 24 - Fig. 

30 (and also in detail in Appendix in Fig. 87 - Fig. 102) undoubtedly are not Laplace 

distributions, but in general follow the shape of Gaussian function. Yet it has not been proven 

whether those distributions are indeed Gaussians or not. First at all, the shape of noise 

distribution slightly varies among the views. Also, in some of the sequences (Poznan Street, 

Poznan Carpark, Poznan Hall) the distribution is skewed, such that its maximum point is 

displaced in relation to the expected value (Table 6). 

Therefore, to provide a proof, a statistical test has to be performed. As measured 

histograms of the considered distributions are available, statistical ὧὬὭ goodness-of-fit 

statistical test …  has been used.  

In fact, the following reasoning will show that, in spite of the visual similarity, the 

measured distributions are not Gaussians: 

The working null hypothesis is that the observed distribution is normal  (Gaussian). 

The working alternative hypothesis is that the observed distribution is not normal 

(Gaussian). 

As stated in Subsection 3.3.1, the histogram analysis of the noise is performed with use of 

bins .ÏÉÓÅ"ÉÎ)ÄØØȟÙ defined in (38) on page 57, with bin size of ρρφ of the normal 

quantization step of the luminance value (which correspond to ρ
ρφ of the smallest 

representable luminance value difference)). For the practical reasons, each of the distributions 

(for all sequences and all views) has been observed with use 256 bins. As the dynamic range 

of noise values is [-255é255] (extreme values), the observed range of noise values in 

measured histograms is [-8;8], because  ψ. 

In the analyzed case of ὧὬὭ goodness-of-fit, the observed distribution thus will be 

histogram of noise in given view/sequence and the expected distribution is Gaussian. The 

standard deviation and the mean of expected distribution has been estimated (are not known 

from a theoretical model) the number of degrees of freedom is: 
 

ὨὪ ςυφρ ς ςυσ  . (49) 

 

The confidence level has been assumed to be 0.05 and thus the corresponding …  

value, calculated from right-tailed … distribution, is: 

 

… ςωρȢρπρχτ    . (50) 
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For each of the sequences and each of views …   statistic has been calculated and 

compared to …  value.  

 

…
…ὫέὪ

ς

      . (51) 

 

As right-tailed … distribution is used, value of …  which is smaller than ρ 

(measured …  statistic is lesser than … ) means that the null hypothesis cannot be 

rejected and thus the observed distribution may be Gaussian. Value of …   which is 

greater or equal than ρ (measured …   statistic is greater/equal than … ) means 

that the null hypothesis must be rejected and thus the observed distribution is not Gaussian. 

The results of equation (51) calculated for the test sequences are gathered in Table 7. It can 

be noticed that for the most of the cases, the ratio between …  and …  is of 

magnitude of about ρπ ï ρπ proving that the distributions are not Gaussians. The only 

exception is the Balloons sequence, where …  fluctuates around 1 (the presented 

multiplied showing the level of magnitude of ρπ). Thus, depending on a particular camera of 

the Balloons, the hypothesis that the distributions are Gaussians must be rejected (marked in 

white in Table 7) in or may not be rejected (marked in gray in Table 7). 

Therefore, in spite of the visual impression that the observed probability distributions are 

Gaussian-like, generally it can be concluded that for most of the sequences, the null-

hypothesis must be rejected and almost none of them is Gaussian (at given confidence 

level).  

 

 

Table 7. …ὶὥὸὭέ results for all views of the tested sequences. Values that are less than 1.0 

(marked in gray) indicate that given cases pass the ʔ test. 

 

Camera index  
Sequence 

0 1 2 3 4 5 6 7 8 

Name Multiplier  Ⱶ►╪◄░▫, scaled by the multiplier 

Poznan Street (cameras 0..8) 101 Ҏ 7.93 7.65 6.71 6.82 7.00 4.90 5.54 5.51 5.11 

Poznan Carpark (cameras 0..8) 102 Ҏ 3.89 3.56 3.03 3.18 3.03 3.33 3.31 2.02 1.89 

Poznan Hall (cameras 0..8) 103 Ҏ 2.12 1.66 1.84 1.75 1.64 2.08 1.76 1.55 1.28 

Lovebird1 (cameras 0..8) 102 Ҏ 0.50 1.49 0.46 1.84 1.95 1.56 1.08 0.86 1.33 

Newspaper (cameras 0..8) 101 Ҏ 1.30 1.38 1.03 2.07 1.92 1.24 2.03 1.84 2.65 

Balloons (cameras 0..6) 100 Ҏ 1.03 1.42 1.16 0.88 0.94 1.90 0.69 - 
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Both the graphs presented in Fig. 24 - Fig. 30 (and in Fig. 87 - Fig. 102 in the Appendix) 

and Table 7, refer to the question, whether the probability distributions of the noise in tested 

multiview video sequences are Gaussians. A comparison of the visual impressions that can 

done, basing on the mentioned figures (that the distributions are similar to Gaussians), and the 

results of statistical analysis (that almost none of the distributions are Gaussian) show that 

there is discrepancy between those two methods.  

This discrepancy (between the visual impressions and results of … ὸὩίὸ) can be 

explained on the basis of number of observed samples. As number of samples increase, the  

… test becomes more discriminating. With a large number of observed samples (millions in 

the experiment - Table 3 column G, on page 59), the measured distribution should be almost 

exactly Gaussian in order to pass through the ὧὬὭ test, while the measured distributions still 

have slight variations (Table 6 on page 69, Fig. 24 - Fig. 30 and also in Appendix in Fig. 87 - 

Fig. 102).  

As almost none of the test sequences have passed the performed ὧὬὭ test and the null-

hypothesis (that their noise distributions are Gaussian) have been rejected, a conclusion about 

formula (30), presented on page 53 in Section 3.2, which connects Gaussian noise distribution 

with SSD pixel similarity metric can be drawn. Basing on Maximum A posteriori Probability 

(MAP) rule, the usage of this formula cannot be justified. This is an important result,  

because many state-of-the-art depth estimation algorithms [191][192][195][194] use some 

form of SSD pixel similarity metric. 

The results described above conclude the part of the dissertation aimed at verification of 

the assumptions about the noise in the multiview video sequences. In the following 

Subsections, other assumptions will be tested. First, verification of the assumption about the 

uniformity of distributions of luminance values will be provided. 

 

3.3.5. Uniformity of probability distr ibutions of luminance value 

In this Subsection a short verification of uniformity of distribution of luminance values is 

provided. This was one of the assumptions made during the derivations in Section 3.2. 

The desired distributions have been measured as simple histograms of luminance, averaged 

over all frames of the tested sequences in each view separately ï a total number of 256 bins 

have been used. 
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The examples are presented in Fig. 31 while the detailed results can be found in Appendix 

(Fig. 113 to Fig. 120). The graphs have been normalized to range [0;1] for the sake of 

visualization. 

 

 
 

Poznan Street sequence, camera 4 Poznan Carpark sequence, camera 4 

  
Lovebird1 sequence, camera 5 Newspaper sequence, camera 4 

  
Kendo sequence, camera 3 Undo Dancer sequence, camera 3 

  
 

Fig. 31. Histograms of luminance values of pixels in exemplary views of the test sequences. 

The graphs have been normalized to range [0;1]. 
 

 

 

 

 

 

Even a short visual verification shows that the luminance distributions are not uniform 

and that more detailed analysis would be redundant. In fact, the figures are brought into the 

dissertation, only because they will be used further in the work. 

It can be concluded that yet another of assumptions is violated, from the ones made in 

Section 3.2 (uniformity of luminance distributions) while performing simplification of the 

formula (21) (page 51) to forms connected with SSD (30) and SAD (35) (pages 53 and 54). 
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This confirms that the usage of the mentioned formulas cannot be justified basing on 

Maximum A posteriori Probability (MAP) rule. 

In the next Subsection, similarly to this Subsection, verification of another assumption, 

about uniformity of distributions of disparity values, is performed. 

 

3.3.6. Uniformity of probability distr ibutions of disparity  value 

In this Subsection a verification of uniformity of distribution of disparity value is provided. 

This was one of the assumptions made during the derivations in Section 3.2. 

The estimation of parameters related to depth values for depth estimation is a chicken-egg 

problem. Therefore apart from performing the depth estimation, the sought distributions have 

been measured with use of ground truth depth maps provided with the multiview test 

sequence set (see: Section 1.5). The depth value distributions have been calculated as simple 

histograms. Those have been averaged over all frames of the tested sequences in each view 

separately ï a total number of 256 bins have been used, as histograms of depth (normalized 

disparity) have been used. 

As it can be seen, the histograms of ground truth depth maps for natural sequences are 

sparse - only some of the disparity values are present in the depth maps. It results from a fact 

that those ground truth depth maps have been estimated with use of a predefined limited set of 

disparities ï e.g. only pixel-precise disparities were considered. As those limited set of 

disparities is scaled into normalized-disparities (depth) as mentioned in Chapter 2, with use of 

equations (3) or (4), the resultant depth distribution is sparse. 

In case of the computer-generated sequences (Undo Dancer and GT Fly), the histograms 

are dense, because all of the disparities in normalized range 0..255 are present. 

Similarly to the previous Subsection, even a short visual verification shows that the depth 

distributions are not uniform  and that more detailed analysis would be also redundant. 

Again, the figures are brought into the dissertation, only because they will be used further in 

the dissertation. 

This Subsection can be concluded that once again one of the conditions made in Section 

3.2 is not meet. Again, it confirms that the usage of the formulas mentioned on page 53  

and page 54 (related to SSD-related formula (30) and SAD-related formula (35), respectively) 

cannot be justified basing on Maximum A posteriori Probability (MAP) rule. 
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Poznan Street sequence, camera 4 Poznan Carpark sequence, camera 4 

  
 

Poznan Hall 2 sequence, camera 6 

 

Lovebird1 sequence, camera 5 

  
 

Newspaper sequence, camera 4 

 

Balloons sequence, camera 3 

  
 

Kendo sequence, camera 3 

 

Undo Dancer sequence, camera 3 

  
  

 

Fig. 32. Histograms of normalized disparity values of pixels in depth maps. The graphs have 

been normalized to range [0;1].  
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3.3.7. Lambertian model of reflectance and color profile compatibility  

among the cameras  

In this subsection, the last two of assumptions from Chapter 3.1 that have been made, will 

be verified. Those are assumption about Lambertian model of reflectance in the scene and 

assumption about the compatibility of the color profiles among the views. Verification of 

those two assumptions is provided together, because it will be performed on the same basis. 

The most important consequence of Lambertian model of reflectance in the scene, for 

the considerations in the dissertation, is that the observed light intensity of a given point in the 

scene is independent from the angle and the position from which it is observed by some 

camera. Thus, the observed light intensity is equal amongst the views. 

On the other hand, color profile compatibility  means that given light intensity is 

represented as the same luminance value 9 among the views. To met that, all parameters and 

elements used in the cameras (lenses, exposure time, sensor, post-processing) during the 

acquisition must be calibrated. 

Both of those assumptions, if are met, sum to a condition where given point of scene is 

observed with the same light intensity (Lambertian model of reflectance) which then is 

represented as the same luminance (color profile compatibility). Therefore, both of those 

issues can be verified by a test whether the luminance of given pixel is the same in all of the 

views (which differentiate by position, settings and sensor characteristics) and whether the 

small differences can be explained purely by the existence of noise (which as has been shown 

in Subsection 3.2.2 - is independent among the views). 

In order to test that an experiment has been performed (Fig. 33), in which values of 

luminance of corresponding pixels in two views have been compared in a 2-dimensional 

histogram in which one of the axes is related to pixel value in picture from one camera (called 

view X) and the other axis is related to pixel value in picture from second camera  

(called view Y).  

 
 

Fig. 33. Scheme of the experiment for verification of Lambertian model of reflectance and 

color profile compatibility assumptions. 
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Poznan Street sequence.  

View X is camera 4, View Y is camera 3 

Poznan Carpark sequence.  

View X is camera 4, View Y is camera 3 

 

 
 

Lovebird1 sequence.  

View X is camera 5, View Y is camera 4 

Newspaper sequence. 

View X is camera 4, View Y is camera 3 

  

 
Kendo sequence.  

View X is camera 3, View Y is camera 2 

Computer-generated Undo Dancer sequence.  

View X is camera 3, View Y is camera 2 

  
 

Fig. 34. Graphs of 2-dimensional histograms of luminance values (in logarithmic gray-level 

scale) of corresponding pixels in the views X and Y for some of the tested sequences. 
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Poznan Street sequence.  

View X is camera 4, View Y is camera 3 

Poznan Carpark sequence.  

View X is camera 4, View Y is camera 3 

 

 
 

Lovebird1 sequence.  

View X is camera 5, View Y is camera 4 

 Newspaper sequence.  

View X is camera 4, View Y is camera 3 

 

 
 

Kendo sequence.  

View X is camera 3, View Y is camera 2 

Synthetic Undo Dancer sequence.  

View X is camera 3, View Y is camera 2 

  
 

Fig. 35. Graphs of 2-dimensional histograms of luminance values (in logarithmic gray-level 

scale) of corresponding pixels in the views X and Y for some of the tested sequences. 
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In the experiment, the correspondence between the pixels in views has been based on 

ground truth depth maps available for the tested sequence (see: Subsection 1.5.2, Table 1 on 

page 24). Pixels that have no correspondence in the second view (e.g. are occluded) have been 

omitted. The test sequences and views required by the settings described in Table 2 on page 

26 have been used.  

Fig. 34 presents exemplary results of measured 2-dimensional histograms of luminance 

values of corresponding pixels in views X and Y. The rest of attained graphs can be found in 

Appendix ï Fig. 103 - Fig. 111. It can be noted that in case of natural sequences, luminance 

values do not lay strictly on the diagonal of the graph. The curve is slightly distorted which 

suggests that the color profiles in the considered cameras are not strictly compatible and thus 

that the color calibration and correction have not been done perfectly. Moreover, the width of 

the curve is changing over the luminance values, which suggests that the relation between the 

luminance values in the considered views is not strictly resulting from Lambertian model of 

reflectance in the scene or that the amplitude of the noise varies with the luminance level. 

It can be seen that some of the regions of plots Fig. 34 and Fig. 103 - Fig. 111 that do not 

occur often are invisible due to normalization. Therefore for presentation purposes, the graphs 

have been normalized with respect to the probability of given luminance to occur ï by 

luminance histograms of view X. Those histograms used as normalization factor have already 

been presented in Fig. 24 - Fig. 30 (on page 67) and also in Appendix in Fig. 87 - Fig. 102. 

The 2-dimensional histograms of luminance values of corresponding pixels in view X and 

view Y, normalized in the way mentioned before, are presented in Fig. 35 (examples) and in 

detail in Appendix - Fig. 121 - Fig. 129. 

It is worth to notice, that in case of computer-generated sequences (e.g. Fig. 35 ï Undo 

Dancer or GT Fly) the graphs of presented normalized 2-dimensional histograms are straight 

lines with unitary width. This confirms that: 

- there is no noise for computer-generated sequences, 

- the color profiles are compatible among the views of computer-generated sequences,  

- the Lambertian model of reflectance has been used for rendering of those for computer-

generated sequences. 

 

These abovementioned statements are not true for the natural sequences. The curves 

for natural sequences are not straight lines (they are curved), they have width (there is noise in 

the sequences) and the overall shape of the histogram is randomly distorted (which may 

indicate that the Lambertian model of reflectance is at least not strictly valid). 
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This is an important result,  because it shows that two more of the assumptions made in 

Chapter 3.1 are not true. Therefore it can be concluded, that for the natural sequences, the 

usage Ὀὥὸὥὅέίὸ model, simplified to the form of SSD (30) or SAD (35) pixel similarity 

metrics, cannot be justified basing on Maximum A posteriori Probability (MAP) rule. 

As practically most of the state-of-art depth estimation techniques use some form of SSD 

or SAD pixel similarity metric [126][142][143][191][192][195], question arise whether their 

performance could be improved if the knowledge about the distributions measured in this 

Chapter was known. Answer to this question will be provided in the following Section 3.4. 

 

3.4. The proposed probability model for Data Cost function 

In previous Section 3.3 a verification has been provided for the assumption made in 

Section 3.2, during the simplification of formula (21) (see page 51) to classical Squared 

Differences (and thus SSD - Sum of Squared Differences, formula (30), page 53, for blocks) 

and Absolute Differences (and thus SAD - Sum of Absolute Differences, formula (35), page 

54, for blocks) pixel similarity metrics. It has been shown that at least some of the required 

conditions are not meet. Therefore it was concluded that the usage of such simplifications 

cannot be justified basing on Maximum A posteriori Probability (MAP) rule. 

In this Section, a novel depth estimation method will be proposed.  

The main idea of the proposal is that instead of performing the mentioned over-

simplification, the derived formula (21) will be used directly as formulation for Ὀὥὸὥὅέίὸ 

function.  

To remind, the formula (21) describes Maximum A posteriori Probability that for given 

pixel with coordinates ὼȟώ disparity Ὥ has occurred: 

ὴȟȟ
ȟȟȟ ȟ ȿ ȟȟ Ͻ ȟ

ȟ    Ͻ   ȟ
   . (52) 

 

In order to use this formula directly, all of the terms of probability in eq. (52) have to be 

modeled. Fortunately, all of the required terms have already been measured during the 

verification of the mentioned assumptions in Section 3.3. In particular: 

Probability distribution of luminance values in the left view ὴὒȟ  and in the right view 

ὴὙȟ  have been seamlessly calculated as histograms of the input pictures, as those terms do 

not depend on pixel correspondence related to disparity Ὠȟ. The results for that have already 

been shown in Fig. 31 (on page 73) and in Appendix: Fig. 113 to Fig. 120. 
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On the other hand, probability distribution of disparity ὴὨȟ , and probability of 

corresponding luminance values in the left and the right view ὴ ὒ
ȟȟȟὙȟ ȿὨȟ  depend 

on disparity Ὠȟ. Having a ground truth disparity map for given scene, both of those terms 

can be directly modeled: 

 

- ὴὨȟ , which is probability distribution of disparity Äȟ, has been estimated  

as a histogram of the given ground truth disparity map (see: Fig. 32 and in Appendix: 

Fig. 130 - Fig. 134). 

- ὴ ὒ
ȟȟȟὙȟ ȿὨȟ  is a 2-dimensional probability distribution that has been 

estimated as a 2-dimensional histogram of luminance values ὒ
ȟȟ and Ὑȟ of pixel 

pairs, which are known to correspond to each other, basing on given disparity value 

Ὠȟ from the ground truth disparity map. These also have already been shown in Fig. 

34 and in Fig. 103 - Fig. 111 in the Appendix. 

 

Finally, having all of the terms measured, we can express Ὀὥὸὥὅέίὸ for pixel ὴ (with 

coordinates ὼȟώ) to be equal to the expression presented in equation (52) in logarithmic scale. 

Usage of logarithmic scale is a common trick used in formulation of energy and probability 

functions for optimization algorithms [191][197] (see Subsections 2.3.3 and 2.3.4).  

We retrieve Ὀὥὸὥὅέίὸ to be as follows: 
 

Ὀὥὸὥὅέίὸȟ Ὠȟ  ρπϽÌÏÇ ὴȟȟ    (53) 

which can be simplified as: 
 

          Ὀὥὸὥὅέίὸȟ Ὠȟ  ρπϽÌÏÇὴ ὒ
ȟȟȟὙȟ Ὠȟ  

 

(54) 

ρπϽÌÏÇὴὨȟ ρπϽÌÏÇ ὴὒȟ ρπϽÌÏÇ ὴὙȟ Ȣ 
 

The final formulation of $ÁÔÁ#ÏÓÔ defined in equation (54) is expressed is logarithmic 

scale, because state-of-the-art depth estimation algorithm use it for calculations [142][143]. 

Therefore, such formulation has allowed for direct application of the proposal in graph cuts 

algorithm implements in MPEG Depth Estimation Reference Software [126].  

The results of the proposed depth estimation method, attained with use of the estimated 

model are presented further. Before that, a formulation for ὝὶὥὲίὭὸὭέὲὅέίὸ function will be 

proposed in Section 3.5, so that the results will be reported jointly in in Section 3.6. 
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3.5. The proposed probability model for Transition Cost function 

In Chapter 2.2 it has been mentioned, that in the state-of-the-art depth estimation 

techniques, ὝὶὥὲίὭὸὭέὲὅέίὸ function between disparities Ὠ and Ὠ of neighboring pixels ὴ 

and ή is denoted as ὝὶὥὲίὭὸὭέὲὅέίὸᴼ ὨȟὨ . In most of the state-of-the-art depth 

estimation techniques, ὝὶὥὲίὭὸὭέὲὅέίὸ typically simplified as a function of a single 

argument: Ὠ Ὠ . Examples are (see page 35): Potts model [198] in eq. (7), linear model 

[126][190] in eq. (8) or truncated-linear model [216] in eq. (9).  

Such usage of those models is arbitrarily, due to at least two reasons: 

 

1. The relation between probability of disparities between neighboring nodes is typically 

not measured empirically and therefore, assumption about the correctness of given 

ὝὶὥὲίὭὸὭέὲὅέίὸ model can be verified only by performing the depth estimation. 

2. All of the mentioned ὝὶὥὲίὭὸὭέὲὅέίὸ models incorporate constant parameters (e.g.  

and  in equations (7), (8) and (9) on page 35). Those constant are typically chosen 

experimentally which is done with limited precision (for example, only four different 

values of  are tested).  

 
 

In this dissertation a probabilistic model for ╣►╪▪▼░◄░▫▪╒▫▼◄ is proposed. Similarly as 

in Chapter 3.1, a theoretical formulation will be shown, which then will be verified with use 

of empirical estimation basing on the ground truth data. 

The proposal employs assumption that ὝὶὥὲίὭὸὭέὲὅέίὸᴼ ὨȟὨ  can be modeled 

basing on probability that given two neighboring pixels ὴ and ή have disparities Ὠ and Ὠ 

respectively. This will be denoted as 2-dimensional probability distribution ὴ ὨȟὨ , for 

the sake of brevity and distinction between pixel ὴ and 1-dimensional probability distribution 

ὴ Ͻ that will be introduced later. 

It is assumed that considered probability distribution ὴ ὨȟὨ  is independent from 

position of pixels ὴ and ή in the image and the only constraint is that pixels ὴ and ή are 

directly neighboring. 

Therefore, as in Section 3.4, we can express ὝὶὥὲίὭὸὭέὲὅέίὸ in logarithmic scale, so that 

it could be used directly inside of state-of-the-art depth estimation algorithms [126]: 

 

ὝὶὥὲίὭὸὭέὲὅέίὸᴼ ὨȟὨ ρπϽÌÏÇ ὴ ὨȟὨ   . (55) 
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The main idea of the proposal, similarly as in Section 3.4, is that instead of making 

assumptions about the shape of ὝὶὥὲίὭὸὭέὲὅέίὸ function, it will be measured empirically, 

basing on the ground-truth data available for the test sequences. 

The formulation of ὝὶὥὲίὭὸὭέὲὅέίὸ defined in equation (55) depends on probability 

distribution ὴ ὨȟὨ Ȣ For real data it can be measured as 2-dimensional histogram of 

disparity value pairs Ὠ and Ὠ of neighboring pixels ὴ and ή. In the dissertation, this has 

been performed over all frames of all used test sequences and all views for which ground truth 

depth data is available (sequences listed in Table 1 on page 24). 

Some of the results (exemplary histogram per sequence) are presented in Fig. 37 (left 

column) and Fig. 38 (left column). The rest of the gathered data is provided in Attachment - 

Fig. 135 to Fig. 143 (left columns). The results are presented in a form described in Fig. 36.  

As the distribution of normalized disparity ɿ is sparse (E.g. in Fig. 32), for the sake of 

visualization, the plots have been done in domain of disparity Ä. Therefore, the attained 

2-dimensional distribution is dense and monotonic. It can be noticed that the maximum of the 

curves lay approximately along the diagonal but also there are strong bands on both sides. 

Such strong band in the histogram means that for given pixel ὴ with disparity Ὠ, in any 

neighboring pixel ή, a value of disparity Ὠ is probable to occur if it lays within the 

probability band of disparity Ὠ. 

 

 

Distribution of probability 

ὴ ὨȟὨ  that neighboring pixels:  

ὴ and ή, in the ground truth disparity 

map have disparity values Ὠ  and Ὠ , 

as plot of 2-dimensional histogram. 

 Distribution of probability ὴ Ὠ Ὠ  that neighboring 

pixels: ὴ and ή, in the ground truth disparity map have 

difference of disparities Ὠ Ὠ, as plot of 1-dimensional 

histogram, calculated with use of (56). Exemplary calculation for  

ὴ Ὠ Ὠ σς has been shown in red. 
   

Fig. 36. Explanation of plots Fig. 37 - Fig. 38 and Fig. 135 - Fig. 143, showing probability 

distributions of disparity values Ὠ and Ὠ of neighboring pixels ὴ and ή. The both histograms 

are presented in logarithmic scale and in the same shading, where black reflects the maximum 

probability value, and white reflects 40dB of attenuation of the probability.  
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Poznan Street, camera 4 
 

  
 

Poznan Carpark, camera 4 
 

  
 

Poznan Hall 2, camera 6 
 

  
 

Lovebird1, camera 5 
 

  
Fig. 37. Histogram of neighboring disparity values: Ὠ and Ὠ in ground truth disparity maps  

for some of the test sequences. The histograms have been visualized as 2D plots (left) and 

histograms in domain of Ὠ Ὠ disparity difference (right). All  plots are presented  

in logarithmic scale and in the same shading. See Fig. 36 for explanation. 
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Newspaper, camera 4 
 

  
 

Balloons, camera 3 
 

  
 

Kendo, camera 3 
 

  
 

 

Undo Dancer, camera 3 
 

  
Fig. 38. Histogram of neighboring disparity values Ὠ and Ὠ in ground truth disparity maps  

for some of the test sequences. The histograms have been visualized as 2D plots (left) and 

histograms in domain of Ὠ Ὠdisparity difference (right). All  plots are presented  

in logarithmic scale. See Fig. 36 for explanation. 
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Because often, ὝὶὥὲίὭὸὭέὲὅέίὸ is expressed as a function of a single argument  

Ὠ Ὠ , instead of two independent arguments ὨȟὨ - e.g. see page 35: eq. (7) [198] or eq. 

(8) and  eq. (9) [126][190][216], it is interesting to also see whether such formulation is 

justified. In order to do that, apart from figures presenting ὴ ὨȟὨ  as 2-dimensional plots 

(e.g. in Fig. 37 on the left), also 1-dimensional plots of ὴ Ὠ Ὠ  probability of given 

disparity difference Ὠ Ὠ have been visualized such that (also, see Fig. 37): 
 

 

ὴ Ὠ Ὠ     ὴ ὭȟὮ

ȟ  ȡ 

    Ȣ (56) 

 

The results are shown on the right sides of the mentioned figures (Fig. 37 - Fig. 38 and Fig. 

135 - Fig. 143 in the Appendix). Having a look on these presented 1-dimensional distributions 

of Ὠ Ὠ (expressed in logarithmic scale) one can notice that the plots are firstly falling 

approximately linearly and then they reach plateau until the limits of the histogram plot. Such 

plots resemble the shapes (examples presented in Fig. 39) of linear model (8)-page 38 and 

truncated-linear model (9) for ὝὶὥὲίὭὸὭέὲὅέίὸ. 
 

 

Linear   Truncated-linear 

   
 

Fig. 39. Exemplary graphs of classical ὝὶὥὲίὭὸὭέὲὅέίὸ functions:  linear (left) and truncated-

linear (right). Figure supplied for comparison with graphs presented in the right columns  

of Fig. 37 and Fig. 38 (detailed results: Fig. 135 - Fig. 143 in the Appendix). 

 
 

Therefore we can conclude that those classical models (linear and truncated-linear) may be 

adequate for the case, when the ὝὶὥὲίὭὸὭέὲὅέίὸ express probability in a logarithmic scale (in 

which ὝὶὥὲίὭὸὭέὲὅέίὸ has been depictd in figures). What is important ï in case of each 

sequence, ὝὶὥὲίὭὸὭέὲὅέίὸ has different scale. Without the knowledge coming from 

empirical analysis of the ὝὶὥὲίὭὸὭέὲὅέίὸ, performed likewise as in the dissertation, this scale 

would have to be calibrated manually of experimentally (e.g. with use of Smoothing 

Coefficient in DERS). This is an important advantage of the proposal presented in the 

dissertation. 
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3.6. Experimental results for the depth estimation with the proposed 

FitCost model 

In the previous Sections 3.4 and 3.5 probabilistic models has been proposed, for Ὀὥὸὥὅέίὸ  

abd ὝὶὥὲίὭὸὭέὲὅέίὸ respectively. The functional advantages of the proposals has been 

presented, which include lack of need for manual calibration of parameters. 

In this Section an experimental assessment for those models will be provided. Those two 

proposals together a complete model for ὊὭὸὅέίὸ function, which, as mentioned in equation 

(6) on page 35, is a sum of Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ functions. Such ὊὭὸὅέίὸ function 

model will be used in the experimental assessment described below.  

The proposed Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ models has been implemented into MPEG 

Depth Estimation Reference Software (DERS), version 5.1 [126]. The tests have been 

performed, following the evaluation methodology described in Subsection 1.5.3. The used test 

sequences and view settings have been described in Table 2 on page 26. The model 

parameters for Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ, which has been estimated in Section 3.4 and 

in Section 3.5, have been used. 

The original (unmodified) DERS algorithm is a supervised algorithm in a sense, that 

special control parameter ï Smoothing Coefficient ï has to be given. Therefore, a wide range 

of Smoothing Coefficient has been tested. For the sake of brevity, the best and the worst 

performing settings for each sequence has been identified. 

The overall results are presented in Table 8. The more detailed plots can be found in 

Appendix ï Fig. 144 and Fig. 145. It can be seen that the results of DERS with the proposed 

probabilistic model are very similar to the best case of the original (unmodified) DERS in 

most of the cases and are very little better in some cases.  

In average over the tested sequences, the proposed method provides about 0.08dB gain 

over the best identified case generated by the original (unmodified) DERS (with manually 

crafted Smoothing Coefficient per sequence) and about 2.79dB gain over the worst case 

generated by DERS. 

The most important thing to notice is that the proposed depth estimation technique does not 

require any manual settings (usage of such depth estimation is thus unsupervised). The 

employed fit-cost function model, based on Maximum A Posteriori rule is inhered from the 

knowledge coming from analysis of the ὝὶὥὲίὭὸὭέὲὅέίὸ.  Therefore, the proposed depth map 

estimation method has been tested only once in one configuration. 

\ 
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Table 8. Gains attained with joint usage of the proposed Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ 

models, related to the best and the worst results attained by the original (unmodified) DERS, 

depending on Smoothing Coefficient parameter setting. 

Sequence 
Name 

PSNR [dB] ς virtual view versus the original view.  
Virtual view was synthesized with use of  

disparity maps with άŦǳƭƭ-ǇƛȄŜƭέ precision, estimated with use of: 
Original  

(unmodified) DERS - 

the worst setting of 
Smoothing Coefficient 

Original 
(unmodified) DERS  

the best setting of 
Smoothing Coefficient 

Proposed 
probabilistic model 
implemented in DERS 

Poznan Street 27.56 31.98 32.02 

Poznan Carpark 29.05 30.71 30.95 

Poznan Hall 2 32.17 32.85 32.81 

Lovebird1 27.09 29.80 29.83 

Newspaper 27.86 31.91 31.95 

Balloons 29.95 32.94 32.98 

Kendo 33.02 35.46 35.69 

Average 29.53 32.24 32.32 
Average gain of the 
proposed method 
related to given case 

+2.79 +0.08 - 

 

In Sections 3.1 to 3.6 a complete probabilistic model for ὊὭὸὅέίὸ (Ὀὥὸὥὅέίὸ and 

ὝὶὥὲίὭὸὭέὲὅέίὸ) has been proposed. The part of the dissertation first started with general 

theoretical derivation of Ὀὥὸὥὅέίὸ based on Maximum a Posteriori Probability rule 

(Section 3.1). Then, the derived formula (21) from page 51 has been thoughtfully analyzed 

with respect to simplification (Section 3.2) to classical forms related with to SSD or SAD  

(equations (30) and (35) on pages 53 and 54) along with verification of the conditions that 

have to be met for such simplification. It has been shown that at least some of the conditions 

are not meet in a practical case of multiview test sequences (Section 3.3) and basing on that 

another formulation for Ὀὥὸὥὅέίὸ model has been proposed (Section 3.4). A method for 

estimation of parameters of this model has been shown on an example of the test sequences. 

Next, a probabilistic model for ὝὶὥὲίὭὸὭέὲὅέίὸ has been proposed (in Section 3.5) also with 

a method for estimation of parameters of this model. This Section concludes these 

considerations with results presented above. 

In the following Sections 3.7 and 3.8 other subjects of the dissertation, related to depth 

estimation, will be studied. First, the subject of disparity precision and accuracy refinement 

and then the subject of temporal consistency will be shown. Each of Sections will self-

contain the achieved results. 
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3.7. Depth refinement by Mid-Level Hypothesis 

This Section shows the authors achievements in area of depth estimation related to 

precision and accuracy refinement of depth maps. First, the problem is stated, then, an 

original proposal of algorithm is presented. Finally, the results conclude this Section. 

As mentioned in the Chapter 2, modern state-of-the-art disparity estimation techniques 

comprise optimization using iterative algorithms like Belief Propagation or Graph 

Cuts[190][191][201]. These algorithms are robust, but their complexity increases vastly with 

requested size of the outputted disparity map. In particular, the complexity of disparity map 

estimation increases with: 

- The resolution of matched images - e.g. estimation of Full-HD depth frame takes about 

4-times the same time as of XGA frame. 

- The disparity search range Ὠ  to Ὠ  (the computational complexity increases 

approximately with linear proportion to the width of the selected range). 

- The expected precision Ὠ  of disparity values - e.g. estimation of disparity map with 

ñhalf-pixelò precision (Ὠ =0.5) takes approximately twice the time of needed for 

estimation of ñfull -pixelñ precision (Ὠ =1.0) disparity map. 

 

  
a) ▀▼◄▄▬ b) ▀▼◄▄▬ 

 

Fig. 40. Quality (a)   and computation complexity (b)  

of disparity estimation vs. precision of the disparity map, as a function of Ὠ   

(Ὠ  is expressed as a multiple of the spatial sampling period in images). 
 
 

 

 

Unfortunately, complexity of depth estimation increases faster than the growth of 

benefits from attained higher precision. As research done by the author (Fig. 40) has 

revealed, increasing the number of disparity levels vastly increases the complexity of 

disparity estimation, but the fidelity of 3D scene model tends to saturate. Results shown in 

Fig. 40, have been generated with use of ISO/IEC MPEG test sequences [85][240] for which 

disparity maps have been estimated with algorithm implemented in Depth Estimation 
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Reference Software (DERS) [126]. Various disparity precision settings of Ὠ  have been 

used - from quarter-pixel precision (Ὠ πȢςυ) to four-pixel precision (Ὠ τ). With 

use of the methodology mentioned in Section 1.5, the quality of estimated disparity maps has 

been measured indirectly (Fig. 10 on page 25) by assessment of quality of a synthesized view, 

by PSNR related to the original view (PSNR values are depicted in Fig. 40).  

The results of the abovementioned experiments are rationale of the statement, that  

it is not efficient to estimate high-precision depth maps in a regular single-step process, 

because the costs such higher-precision estimation do not provide proportional, desired gains. 

In spite of the mentioned saturation effect of fidelity of 3D scene model, accuracy and 

precision of disparity estimation is an important issue for 3D video representations.  

Such applications require that disparity is estimated with accuracy to fractions of the spatial 

sampling periods in images, which in turn means that the precision of the estimated disparity 

should be sub-pixel. Due to computational complexity, sub-pixel disparity estimation could 

be difficult in the context of future real-time applications. Therefore, in typical scenario, 

disparities are estimated with only full-pixel precision [142][143] corresponding to Ὠ ρ. 

Unfortunately, full -pixel precision is insufficient for most applications related to 3D video. 

Such lack of precision (and thus also lack of accuracy) is especially noticeable in the case of 

continuous flat surfaces that are nearly (not exactly) perpendicular to the optical axis of the 

camera (Fig. 41). In the corresponding disparity map, there exists a false contour as a result of 

only full -pixel precision of disparity. Such a false contour may be observed as a unit-step 

edge (Fig. 41a) that results in severe artifacts by reconstruction of a 3D scene. These artifacts 

could be substantially reduced by refining the disparity map to sub-pixel precision. In the case 

of half-pixel refinement, a unit-step false edge would be replaced by two half-step edges (Fig. 

41b). This would yield significantly reduced artifacts in the reconstructed 3D scene. 

 

 

Fig. 41. False contours in disparity maps for a surface nearly perpendicular to the camera 

axis: a) full-pixel precision (Ὠ ρ ,    b) half-pixel precision (Ὠ πȢυ. 
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In order to avoid the above mentioned problems, the author proposed usage of two-step 

disparity estimation (Fig. 42) with original refinement technique called Mid-Level Hypothesis 

(MLH) technique. In the first step, disparity is roughly estimated - usually with precision to 

the sampling period (full -pixel precision). In the second step the disparity map is refined in 

order to attain sub-pixel precision and accuracy.  
 

 

 

 

 

Fig. 42. The idea of Mid-Level Hypothesis depth refinement technique. 
 

 

 

This MLH technique identifies the false edges in a rough disparity map. Then, at individual 

pixels, the technique introduces mid-level (the intermediate level) values of disparity in order 

to reduce the false contours of disparity maps. In that way the quantization step of the 

disparity values is halved and thus the precision is doubled. Of course, this technique may be 

used iteratively. After ὲ iterations, the disparity quantization step is reduced by factor of ς 

and thus the precision of disparity representation in also enhanced by factor of ς. 

 

3.7.1. Idea of depth refinement by Mid-Level Hypothesis algorithm 

At the input, there is a disparity map with limited precision. Such may come from any 

disparity estimation technique, but in the experiments DERS algorithm has been used. 

Moreover, at the input of the algorithm, there is a set of input views. The basic view is the 

view that corresponds to the disparity map being processed. The other views will be called 

side views. Those side views are used to refine disparity map of the base view. 

From the basic view and the rough disparity map, a synthetic side views are obtained. The 

more accurate is the disparity map, the more similar are the synthetic side views to the actual 

side views. Therefore, increasing similarity of the two versions of each of the side views may 

be used as an indicator of the increasing accuracy of the depth map. 

At the beginning of the process, the edges that correspond to the disparity quantization step 

are identified. For full-pixel disparity map, these are unit-step edges. For the sake of 

simplicity this name will be used. The disparity map is processed only locally along those 

potentially false contours (Fig. 43). The potential improvement may be done by introduction 

of the mid-level values into the disparity map.  
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Fig. 43. Disparity map (left) and the same disparity map with marked unit-step edges (right) 

for exemplary ñVenusò image [142]. The image has been selected for illustration, because it is 

composed from simple objects and the depth edges can be easily noticed. 
 

 

False edges occur when an inaccurate rough estimation is forced to quantize disparity 

levels. The unit-step edges may be false contours or may also represent actual depth 

differences. Therefore there is an uncertainty to be resolved. In our refinement algorithm it is 

done by verification of the mid-level hypothesis. At first, the algorithm assumes that each 

pixels neighboring to unit-step edges (Fig. 44) in the disparity map, should have the 

intermediate disparity level. Then this hypothesis is verified for each pixel. 

 

 

 

Fig. 44. Spreading of mid-level hypothesis  

starting from a unit-step edge. 

 

Therefore, along those potentially false edges, a question arises that has to be answered at 

each individual pixel:   Should the algorithm change the disparity value to a mid-level value 

or not? Hypothesis that this question can be answered positively is verified by comparison of 

the two alternatives. For those two alternatives, local synthesis of side views is performed 

twice (Fig. 45) ï once with the unmodified disparity value and once with assumed change to 

the hypothesized mid-level value. The synthesized contents of the side-views are compared to 

the real contents of the side views. The hypothesis which provides higher level of similarity is 

assumed to be true.  
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Thus, the hypothesis of the disparity mid-level value is verified positively if the newly 

synthesized contents in the side views are more similar to the real side views as compared to 

the contents in the side views synthesized using the input rough disparity map. 

 

 

 

 
 

Fig. 45. Scheme of the proposed disparity refinement algorithm. For the sake of brevity,  

the case of only a single side view is presented. 
 

 

So, in principle, ñmid-level hypothesisò is assumed to be true at each edge pixel, i.e. set the 

pixel value to intermediate value. Then, the hypothesis is verified by checking if the synthetic 

size view is more similar to the original side view. 

Then, iteratively, mid-level hypothesis is spread from each unit-step edge. Spreading stops 

when no point passes the verification test (Fig. 45).  

Therefore, the precision of the disparity map is improved by insertion of intermediate 

disparity levels in-between of existing levels. The proposed technique never degrades the 

processed disparity map, because the verification mechanism does not allow that to happen. 

Thus, also the accuracy of the processed disparity map is enhanced. 

Below, implementation of the MLH algorithm is shown, with particular steps that are 

performed, highlighted. 

 

3.7.2. Implementation of the algorithm 

Steps of the depth refinement by Mid-Level Hypothesis algorithm are presented below. 

The algorithm continues until loop-exit condition is reached, which has been formulated in 

Step 5. If the loop-exit condition is not meet, the algorithm goes back to Step 1. 
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Step 1. Detection of unit-step edges 

The proposed technique detects unit-step edges in the disparity map by simple comparison of 

disparity values in the neighboring pixels. Pixels, whose disparity labels differ by 1 (and thus 

at the current precision their disparity values differ by Ὠ ) from neighboring pixels are 

classified as belonging to a unit-step edge. Those pixels are marked for further processing 

(Fig. 46). They potentially belong to a false contour in the disparity map. 

  

Fig. 46. Detection of unit-step edges.  Fig. 47. Intermediate level hypothesis. 

 

 

Step 2. Introduction of  intermediate disparity levels 

It is supposed that the marked pixels (Fig. 47) should have intermediate values of disparity. 

So, pixels on both sides of a unit-step edge are processed. 

 

Step 3. Verification of intermediate level hypothesis 

Unit-step edges may occur in two distinct cases: they may represent actual edges in the scene 

but they also may result from rough disparity quantization. That decision ambiguity is 

resolved by verification of hypothesis of intermediate level (Fig. 48).  

 

 

 

Fig. 48. Scheme of the verification step. For the sake of brevity, the case of only single side 

view is presented. 
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Assumed disparity value is verified by comparison of the quality of the two synthesis variants 

of the side view: one obtained from the input disparity values and the second one obtained 

with the assumed intermediate disparity value. The disparity value that provides better 

synthesis of the side view (measured by Sum of Absolute Differences - SAD) is selected as  

a resultant disparity value.  

 

Step 4. Spreading of the hypothesis 

The pixels, that have passed the verification, retain their intermediate disparity values. Then, 

the mid-level hypothesis is assumed for the neighboring pixels. Thus, the hypothesis is spread 

to all neighboring pixels within 8-connectivity neighborhoods. These pixels are also marked 

for further processing (Fig. 49). The mid-level hypothesis is tested for all those pixels. 

 

  

Fig. 49. Spreading direction of intermediate 

level hypothesis. 

Fig. 50. A disparity map refined with MLH 

algorithm. 

 

 

Step 5. Loop-exit condition 

If there are still marked pixels, algorithm loops to step 2. The algorithm stops when there is 

no pixel marked for processing. The result of the algorithm is an improved disparity map with 

new intermediate disparity levels (Fig. 50). Note that usually only a portion of all pixels is 

processed, i.e. the mid-level hypothesis is verified in the selected pixels only. This 

observation is closely related to the low complexity of the technique. 

 

3.7.3. Experimental results for depth refinement 

For the evaluation of the proposed depth refinement by Mid-Level-Hypothesis algorithm, 

first, the reference data has been generated. Pixel-precise and quarter-pixel precise disparity 

maps have been estimated for the test sequences and view settings described in Section 1.5  

disparity level d

intermediate disparity level

disparity level d+1

marked points

disparity level d

intermediate disparity level

disparity level d+1
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(Table 2 on page 26) with use of original (unmodified) DERS algorithm. A wide range of 

Smoothing Coefficient has been tested and the best and the worst performing settings for each 

sequence have been identified. 

After that, the pixel-precise disparity maps have been refined with use of MLH algorithm 

in order to generate quarter-pixel precise disparity maps. Therefore ï two versions of quarter-

pixel precise disparity maps were available ï generated directly by original (unmodified) 

DERS and generated by MLH algorithm on the base of input pixel-precise disparity maps. 

All of the resultant disparity maps have been used to synthesize virtual views which have 

been then compared to the original views (according to the methodology described  

in Subsection 1.5.3). 

The results are gathered in Table 9. In average over the tested sequences, the proposed 

method provides even better results than pure quarter-pixel precision for about 0.28dB. This 

extra gain comes from the fact that MLH algorithm not only provides enhanced precision 

(from full-pixel to quarter pixel) but also refines the disparity values with usage of 

information from the neighboring side views. Comparing to pixel-precise disparity maps, the 

gains are even higher and are about 2.01dB in average over the test set. 

For illustration purposes, the MLH algorithm has also been launched on a ñVenusò image 

set [142], where the improvement can be seen by unarmed eye (Fig. 51). 

 

 
 

  
a) before refinement: full- 

pixel precise disparity map 

b) after refinement: quarter-pixel precise 

disparity map 
 

Fig. 51. Results of proposed Mid-Level Hypothesis precision refinement  

algorithm used on exemplary ñVenusò image [142], composed from  

simple objects, thanks to what the disparity edges can be easily noticed. 
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Table 9. Averaged virtual view synthesis quality of the proposed MLH refinement technique 

compared to original (unmodified) DERS technique, for the test sequences, evaluated 

according to methodology described in Subsection 1.5.3. 

Sequence 
name 

PSNR [dB] (vs. the original view) of the virtual view 
synthesized with use of depth maps estimated with: 

DERS  
(quarter-pixel 

precision) 

DERS  
(full-pixel 
precision) 

DERS (full-pixel)  
+ Proposed MLH  

(result is quarter-pixel 
precise) 

Poznan Street 35.53  31.98  35.49  

Poznan Carpark 31.22  30.71  31.84  

Poznan Hall 2 35.21  32.85  35.39  

Lovebird1 31.13  29.75  31.26  

Newspaper 33.07  31.91  33.25  

Balloons 34.28  32.94  34.87  

Kendo 37.27  35.46  37.57  

Average 33.96  32.23  34.24  

Avg. ɲt{bw gain of the proposal 
related to given reference 

+ 0.28  + 2.01 
   

 

 

 

 

Table 10. Average frame computation time of the proposed MLH refinement technique 

compared to original (unmodified) DERS technique, for the test sequences, evaluated 

according to methodology described in Section 2.5. 

Sequence 
name 

Average frame computation time [s] 

DERS  
(quarter-pixel 

precision) 

DERS  
(full-pixel 
precision) 

Proposed MLH  
+ DERS (full-pixel)  

(result is quarter-pixel precise) 

Poznan Street 18235  4538  4538  + 424  = 4962 

Poznan Carpark 17983  4325  4325  + 384  = 4709 

Poznan Hall 2 18129  4363  4363  + 413  = 4776 

Lovebird1 932  237  237  + 33  = 270 

Newspaper 955  246  246  + 72  = 318 

Balloons 912  239  239  + 84  = 323 

Kendo 976  254  254  + 87  = 341 

Average (rounded) 8303  2029  2029 + 214 = 2243 
Avg. speed-up of the proposal 
related to given reference 

3.7 Ҏ  0.9 Ҏ 
    

 

 

What is worth to notice is the fact that the mentioned average gain of 2.01dB is attained at 

much lower computational cost that the direct quartet-pixel precise disparity estimation. 

Computational complexity of the proposed MLH refinement technique was compared against 
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the direct usage of DERS technique with use of PC computer (3,6GHz processor). The results 

prove that in the tested conditions, the direct full-pixel estimation and quarter-pixel 

refinement is about factor of 3.4Ĭ to 3.8Ĭ (about 3.7Ĭ in average) faster than direct quarter-

pixel estimation using the original (unmodified) DERS technique. Of course, MLH algorithm 

used with prior full -pixel precise depth estimation, works at speed of about 0.9Ĭ (is about 

10% slower) than pure usage of sole full -pixel precise depth estimation.  

Therefore it can be said, that advantages of MLH algorithm can be seen from two 

alternative points of view. Firstly, it can be seen as precision and accuracy refinement 

technique that brings average gain of about 2dB related to input pixel-precise depth maps and 

0.28dB related to input quarter-pixel precise depth maps. Secondly, it can be seen as speed 

optimization technique which allows for about factor of 3.7Ĭ computational cost reduction, 

related to application of direct quarter-pixel precise depth map estimation. 

In the Section above, a novel algorithm for precision refinement of disparity maps has been 

proposed. In the next section, another subject of the work will be analyzed, related to the 

temporal consistency of the estimated depth.  

 

3.8. Temporal consistency improvement of the depth by noise 

reduction 

This Section shows the developments of the author in area of depth estimation related to 

enhancement of the temporal consistency of stereoscopic depth maps. The problem has been 

already stated in the introduction (Section 2.6). Here, an original proposal for estimation of 

temporally consistent depth maps is presented. 

The main idea of the proposed approach is that the estimated depth can be more temporally 

consistent if a noise reduction technique is applied to the input video a priori to the depth 

estimation. The presented approach extends the previous authors works [3][20]. 

Although, as it has been mentioned, there are many methods for noise reduction in video 

sequences, all of which could be used, during the author works, two methods have been 

developed. First one is Still Background Noise Reduction (SBNR) and the second one is 

Motion-Compensated Noise Reduction with Refinement (MCNRR).  

Both of those methods are presented below in Subsections 3.8.1 and 3.8.2. The 

considerations are summarized in Subsection 3.8.3 by experimental results. 
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3.8.1. Still Background Noise Reduction (SBNR) technique 

This technique us based on early works of the author [3][20] in which noise is reduced by 

filtration of regions that are still, and presumably belong to the background. The filtration is 

performed in time and independently for each view of test sequences. 

The first version of the algorithm [20] was working in rectangular blocks. Each block has 

been classified as moving or still, with respect to differences between consecutive frames and 

processed reference frame. Moving blocks were left unchanged during processing and would 

be ignored in the course of noise analysis. Blocks classified as still were linearly filtered with 

respect to previous frames and would be used for the further analysis of noise. Such a nature 

of the processing was resulting in blocky-effect similar to the one known from compression.  

Therefore, a second version of the algorithm [3] working with single pixels has been 

proposed and has been used in this dissertation. It originally consists of three main steps: 

¶ Motion detection, where pixels are classified as moving or steady. 

¶ Noise filtering, where steady pixels are filtered in time. 

¶ Artifact removal, where errors of motion detection stage are repaired. 

Because the purpose for application of this noise reduction technique in works related to 

this dissertation is not to achieve a subjectively pleasant denoised video sequence, but to 

extract and analyze the noise, the third step from the original proposal has been omitted. It 

would be useless, as only pixels classified as steady are used in noise analysis. 

 

Stage 1. Motion detection 

The role of motion detection (Fig. 52) is to classify pixels from input frame as moving or as 

steady. Result of this classification is combined into a binary map, called motion map. 

 

 
\ 

Fig. 52. Block scheme of motion detector in Still Background Noise Reduction  

(SBNR) algorithm. 
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Each pixel of input frame is compared with corresponding pixels of N previous frames by 

means of absolute differences. These absolute differences are then maximized between frames 

and over RGB color components. Resulting maximum absolute differences are feed to two 

parallel paths (Fig. 52) which provide (for each pixel) different cues about motion that occur 

in neighboring pixels ï one provides cues about maximal motion, and the other one provides 

cues about distributed motion: 

- Maximal motion cue map (top path in Fig. 52) is obtained with use of dilation filter. 

Dilation is performed with square mask. 

- Distributed motion cue map (bottom path in Fig. 52) is obtained by counting of pixels 

that exceed certain level (binarization/thresholding) in window surrounding each pixel.  

 

 
 

 

Fig. 53. Motion map (bottom) obtained for exemplary frame (top)  

of Poznan Carpark sequence (white pixels ï moving, black pixels ï steady). 
 

 

Output of the motion detection - binary motion map (Fig. 53) - is produced by combining 

of motion cue maps from top and bottom path. Pixel is marked as moving (demarked in white 
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in Fig. 53) if any of motion cues indicates movement (exceeds certain level). Otherwise, pixel 

is marked as steady (demarked in black in Fig. 53).  

 

Stage 2. Noise filtering 

Pixels classified as moving are left unchanged (are not modified by the algorithm) and are 

ignored in the course of noise analysis.  

Pixels classified as steady are assumed to be stationary in time and thus all changes in the 

signal are considered as noise. As shown in Section 3.2.2, the noise is independent in the 

subsequent frames and thus filtration can be used in order to attain statistically unweighted 

estimation of the expected real value. From the signal processing point of view, only the DC 

component should pass thought the filtering process. Therefore, the cut-off frequencies were 

set as low as possible for given filter structure, practically at level of about 2 Hz. 

The tested filters were: 

- FIR (Finite Impulse Resp.) filters (Parks-McClellan, equiripple) of order: 5, 10, 50, 100, 

- IIR (Infinite Impulse Response) Butterworth filters of order: 1, 3, 

- IIR (Infinite Impulse Response) elliptic filters of order: 1, 3. 

All of the tested filters yielded with very similar results and thus the simplest, the most 

computationally efficient has been used - first order Butterworth IIR filter. 

Arbitrary parameters used in the noise reduction process, like window sizes and threshold 

levels depend on image resolution and camera system. These were optimized for experiments 

empirically. The values that have been userd are gathered in Table 11. 

 

 

Table 11. Thresholds used in SBNR algorithm for the test sequences. 

Sequence 
name 

FPS 
Window 

size 
IIR filter cut-
off frequency 

║◄▐►▄▼▐▫■▀ ╓◄▐►▄▼▐▫■▀ ╜◄▐►▄▼▐▫■▀ 

Poznan Street 25 9³9 2.5 Hz 8 20 15 

Poznan Carpark 25 9³9 2.5 Hz 8 20 15 

Poznan Hall 25 9³9 2.5 Hz 8 20 15 

Lovebird 30 9³9 3.0 Hz 8 20 15 

Newspaper 30 9³9 3.0 Hz 8 20 15 

Balloons 30 9³9 3.0 Hz 8 20 15 

Kendo 30 9³9 3.0 Hz 8 20 15 

GT Fly 25 
Computer-generated sequences ς no noise 

Undo Dancer 25 
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Stage 3. Artifact removal  

Noise removal scheme in SBNR technique, consisting in motion detection and noise filtering 

steps is simple and computationally efficient. Unfortunately, it may be a cause of artifacts 

resulting from hard-decisive classification of pixels as steady or moving. 

Fig. 55 shows three trajectories of exemplary pixel: original value (a), filtered value (b) 

and value after artifact removal (c). At the beginning (segment I), the pixel is classified as 

steady. It varies due to noise, which is filtered (filtered (b) is the same as (c)). Then (II), pixel 

value starts to change significantly and is classified as moving. As a result of that, the filtering 

phase is omitted: (a), (b) and (c) are the same. Up to this moment, there are no artifacts. 

 In segment III, pixel is classified as steady, because its value changes very slowly. Filtered 

pixel trajectory changes even slower, resulting in discrepancy between trajectories (Fig. 55), 

which is lesser than threshold of motion detector. After a while, the discrepancy rise beyond 

threshold and pixel is instantaneously classified as moving in segment IV. Filtering switches 

off, and thus trajectories are updated to original, which causes another steady segment V. 

Rapid switching causes visual artifact in the output image. 

 

 

Fig. 54. Artifact removal in Still Background Noise Reduction (SBNR) technique  

on example of trajectories of exemplary pixel values. 
 

 

Therefore, an additional step of artifact removal is proposed, where errors of motion 

detection stage are repaired. First, rapid changes of pixel classification (steady or moving) are 
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predicted. If such rapid change is predicted, pixel value is linearly interpolated (Fig. 55) 

between original (a) and filtered (b) trajectories before the change occurs. 

The results for SBNR are provided further  in Subsection 3.8.3. In the meanwhile, 

another noise reduction technique developed by the author will presented below. 

 

3.8.2. Motion-Compensated Noise Reduction with Refinement (MCNRR) 

technique 

The technique described above (Still Background Noise Reduction) performs well over 

not-moving background regions. Unfortunately, it omits moving regions which disallows 

noise analysis over the whole scene. In order to overcome this drawback, a motion 

compensated noise reduction technique has been used. 

This technique consists in two main stages. The first one is Motion-Compensated Noise 

Reduction and the second one is Refinement. Both constitute MCNRR noise reduction 

method, described below. 

 

Stage 1. Motion-Compensated Noise Reduction 

For the sake of work savings, author has decided to use an already developed motion 

compensation package called ñmv-toolsò [245], which is a plug-in for VirtualDub/AviSynth 

video scripting framework [246]. As this package is designed for single-view processing, each 

view of a multiview sequence is processed separately ï no inter-view correspondences are 

used.  

 

Fig. 55. Noise reduction scheme used in Motion-Compensated Noise Reduction (MCNRR) 

algorithm. The MCP block depicts motion compensated prediction  

presented in Fig. 56 in detail. 
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The proposed algorithm is as follows. Each frame of each view is processed independently. 

Block-based motion estimation (Fig. 55) is performed in order to find motion vectors pointing 

to frames neighboring in time (3 previous and 3 following ones). Then, low-pass filtering is 

performed on matched blocks under the form of simple average which is estimation for 

expected value (see Subsection 3.1.1). 

It can be noticed, that not all blocks from motion estimation are used in the average. The 

compensated block is firstly compared with the original contents of the current frame (Fig. 

56). Only if the best candidate found by motion estimation is similar enough (basing on Sum 

of Squared Differences criterion) it is feed to the average block. Otherwise it is omitted. 

Therefore, average may be performed on various numbers of blocks, from 1 (only the current 

frame) to 7 (the current frame, 3 previous and 3 next frames). 

 

 

Fig. 56. Motion compensated prediction used in MCNRR algorithm. 
 

 

Stage 2. Refinement 

The result of noise reduction depicted in Fig. 55 are filtered frames ὊὭὰὸὩὶὩὨὼȟώ. Although 

subjectively the results are satisfying, the analysis of suppressed noise shows that this process 

is vulnerable to errors and produces artifacts in form of edges which are not perfectly matched 

at the motion estimation stage. Moreover, blocks with those edges are not discarded in the 

similarity validation stage (Fig. 57). As a result of that, the edges of fast moving objects are 

slightly blurred. 

Therefore, the author of this dissertation proposes a refinement stage in which those 

artifacts are reduced (Fig. 58).  
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a) 

 
 

b) 

 
 

Fig. 57. Exemplary artifacts generated in extracted noise, generated by mv-tools motion-

compensated noise reduction technique: a) the original frame ὊὶὥάὩὼȟώ of Poznan Street 

sequence and b) difference between the denoised frame ὊὭὰὸὩὶὩὨὼȟώ and the original 

ὊὶὥάὩὼȟώ, denoted ὛόάὙὋὄØȟÙ in Fig. 58, showing artifacts on the edges of fast-

moving objects. Gray level represents zero noise value (no difference). 
 

 

 

 

First, the filtered frames ὊὭὰὸὩὶὩὨὼȟώ are compared with the original (not processed) 

frames ὊὶὥάὩὼȟώ with respect to Absolute difference measure, performed on each RGB 

channel independently, giving ὃὦίὈὭὪØȟÙ. Then, sum of those differences ὛόάὙὋὄØȟÙ 

is calculated and feed to a noise gate, where values lesser than with threshold Ὃ  are 

zeroed. The result is processed with a 2-dimensional dilation filter, which leads to the spatial 

extension of regions which are non-zero in the processed images. Then, each value is 
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normalized, relatively to standard deviation „  calculated in parallel, basing on 

ὛόάὙὋὄØȟÙ signal. After that, the normalized values are feed to another noise gate, where 

values lesser than with threshold ὔ  are zeroed. Then, directly neighboring pixels, that 

are non-zero, are gathered into segments. Segments, which have relatively small area, lesser 

than Ὓ  pixels, are deleted (zeroed). 

 

 

Fig. 58. Scheme of the refinement stage in MCNRR algorithm. 
 

 

 

 

In the experiments, the thresholds values were set to Ὃ ρ, ὔ ρ,  

Ὓ ρ, uniformly for all sequences and views. 

The idea behind calculation of ὡὩὭὫὬὸØȟÙ signal is to detect the regions that suffer from 

artifacts introduced by application of motion-compensated noise reduction algorithm  

(Fig. 57).  

In regions where the artifacts occur, high values (up to 1.0) of ὡὩὭὫὬὸØȟÙ  

are generated. On the other hand, in regions, where there are no artifacts, low values  

(around 0) of ὡὩὭὫὬὸØȟÙ are generated. 
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The finally attained signal ὡὩὭὫὬὸØȟÙ used for linear interpolation between the filtered 

frames ὊὭὰὸὩὶὩὨὼȟώ and the original (not processed) frames ὊὶὥάὩὼȟώ. Thanks to that, 

the resultant, refined denoised frame ὈὩὲέὭίὩὨØȟÙ is practically free from artifacts. 

For now, two algorithms for noise reduction, developed by the authors for works on 

estimation of temporally consistent depth maps, have been presented. In the Subsection 

below, experimental results of depth estimation for those two methods are presented. 

 

3.8.3. Experimental results for temporal consistency improvement 

In order to experimentally asses the proposed approach, the two noise reduction 

algorithms, developed by the author, have been used (Fig. 59) on the multiview video test 

sequences set (Table 1 on page 24). This includes usage of Still Background Noise Reduction 

(SBNR) and Motion-Compensated Noise Reduction with Refinement (MCNRR). 

 
 

 

Fig. 59. Scheme of the experiments for assessment of the techniques related to improvement 

of temporal consistency by noise reduction. 
 

 

 

In Fig. 60, exemplary visual results attained with and without use of the proposed noise 

reduction techniques. As can be noticed on Fig. 60a,b, moving objects (people) are left 

unchanged while background (wall and cars) is significantly denoised. It is worth to notice 

that denoised images are not blurred, because only temporal filtering is employed. Although 

quality of depth maps (Fig. 60c,d) has not changed, temporal consistency expressed as 

difference between frames (Fig. 60e) is vastly improved. As shown, background remains 

static (black means no changes) and thus is consistent is time. Of course, there is no 

improvement over moving objects, because they are not filtered.  
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After the visual examination of the results of noise removal, application of SBNR 

technique for depth estimation has been tested [3]. Basing on the denoised view, depth maps 

have been generated, which have been evaluated with respect to their quality (Fig. 59).  

In particular, it has been done indirectly (Fig. 10 on page 25) through assessment of quality of 

virtual views, synthesized with use of depth maps, generated basing of the denoised videos.  
 

 

 Original Denoised (SBNR) Denoised (MCNRR) 

a) 

   

b) 

   

c) 

   

d) 

   

e) 

   
 

Fig. 60. Exemplary results of proposed technique: original (left), denoised with use of SBNR 

technique (center) and denoised with MCNRR technique (right). 

The images has been intensified for better reproduction of the differences: 

  a,b) original image,     c,d) depth maps for two consecutive frames,    

e) difference between depth maps. 
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Fig. 61. Subjective evaluation results for SBNR technique, quoted from [3].  

Please note that the used sequence set is different from the set used in the dissertation.  

Also in work [3] quarter-pixel precise depth estimation has been used which  

is the source of discrepancy between PSNR values in the Table 12, whereas PSNR 

gains/losses are quite similar in both cases. 
 

 

Table 12. Averaged virtual view synthesis quality of the proposed depth estimation with noise 

reduction in the input video, compared to original (unmodified) DERS technique, for the test 

sequences, evaluated according to methodology described in Subsection 1.5.3. 

Sequence 
Name 

PSNR [dB] (vs. the original view ) of the virtual view 
synthesized with use of depth maps estimated  

with pixel-precision basing on: 

Views denoised with: Reference 
(original 
views) 

Proposed SBNR 
technique 

Proposed MCNRR 
technique 

Poznan Street 31.93  31.92  31.98  

Poznan Carpark 30.74  30.79  30.71  

Poznan Hall 2 32.78  32.83  32.85  

Lovebird1 29.79  29.78  29.80  

Newspaper 31.90  31.91  31.91  

Balloons 32.91  32.93  32.94  

Kendo 35.41  35.39  35.46  

Average 32.21  32.22  32.24  

!ǾŜǊŀƎŜ ɲt{bw Ǝŀƛƴ 
related to the reference 

- 0.03  - 0.02  - 
 

 

 

Both objective and subjective evaluation have been performed with use of four test 

sequences [85][240] ï Poznan Street, Poznan Carpark, Book Arrival and Alt Moabit. This 

limited set of sequences has been chosen, because only a small number of subjects available 

for subjective testing were available (15 persons). The results are shown: objective PSNR 
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(Fig. 61 as values on vertical bars) and subjective Mean Opinion Score (MOS) (Fig. 61), both 

in comparison to the original views. In the study, MOS is expressed by a 10-point continuous 

scale. Rating of the quality was in range from 1 (ñvery bad with annoying 

impairments/artifactsò) to 10 (ñexcellent, artifacts are imperceptibleò).  

It can be seen that application of SBNR technique for noise removal from the tested 

videos, used then for depth estimation, provides gain of about 0.7 to 1.2 MOS point. It can 

also be noticed that PSNR levels have not changed. The latter is not surprising, because 

PSNR measure is not designed to assess quality of temporal consistency. 

After such initial assessment of SBNR technique (described in more detail in [3]) on 

limited set of sequences, both proposed noise reduction techniques (SBNR and MCNRR) 

have been assessed in a similar way (Fig. 10 on page 25), but with usage of all of the test 

sequences selected in the dissertation. View synthesis settings described in Table 2 on page 

26, have been used. The results are presented in Table 12. 

It can be noted, that there is discrepancy between PSNR values in the Table 12 and the 

ones presented previously in Fig. 61 as values on vertical bars. This discrepancy comes from 

a fact that in [3] quarter-pixel precise depth estimation has been used and in the newly 

presented case (Table 12) full-pixel precision has been used. Apart from that, PSNR 

gains/losses are quite similar in both cases and fluctuate around zero - in average, there are 

practically no gains or losses of PSNR. Again, this is not surprising, because PSNR measure 

is not designed to assess quality of temporal consistency. 

 

Table 13. Averaged linear correlation coefficient between depth values in subsequent frames. 

Sequence 
name 

Linear correlation coefficient averaged over each sequence 

A. 
Ground 
truth  
depth 
maps 

Depth maps estimated from:  

B.  
Original 
views 

C. Views 

denoised 
with SBNR 
technique 

╒

║
Ϸ 

D. Views 

denoised  
with 

MCNRR 
technique 

╓

║
Ϸ 

Poznan Street 0.9496 0.9552 0.9558 100.06% 0.9562 100.10% 

Poznan Carpark 0.9607 0.9393 0.9486 100.99% 0.9547 101.64% 

Poznan Hall 2 0.9264 0.9225 0.9257 100.35% 0.9319 101.02% 

Lovebird1 0.9911 0.9608 0.9751 101.49% 0.9799 101.99% 

Newspaper 0.9972 0.9941 0.9964 100.23% 0.9967 100.26% 

Balloons 0.9960 0.9622 0.9789 101.74% 0.9796 101.81% 

Kendo 0.9651 0.9544 0.9651 101.12% 0.9560 100.17% 

Average 0.9694 0.9555 0.9637 100.85% 0.9650 100.99% 
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The results presented in Table 13 show that application of the proposed noise removal 

techniques for depth estimation provide gains in a form of increase of correlation between 

subsequent depth frames in given view. Column A presents linear correlation coefficient, 

averaged over all frames and views, calculated between subsequent frames of ground truth 

depth maps of given sequence. Columns B, C and D present similar results but calculated for 

depth estimated with use of the original views, views denoised with SBNR technique and 

views denoised with MCNRR technique, respectively. It can be seen that although the gains 

in linear correlation coefficient increase are small (up to 1,81%, about 0.06% - 1.99% in 

average, related to column B) it must be taken into perspective that the improved regions are 

mostly edges of the objects that cover only a small portion of the whole scene (see Fig. 60) 

and sometimes, differences even between the ground truth (column A) are very small ï e.g. 

Newspaper sequence which is already highly correlated (the most the scene is not moving 

background). 

 

Table 14. Bjßntegaard gains in bitrate (negative numbers are bitrate savings) and PSNR 

(positive numbers denote quality increase) - results of MVC compression of depth maps 

estimated with use of DERS basing on denoised test sequences, related to compression of 

depth maps estimated with use of DERS basing on the original test sequences (anchor). 

Sequence name 
Proposed SBNR technique Proposed MCNRR technique 

dBR, % dPSNR,dB dBR, % dPSNR,dB 
Poznan Street -31.47  1.34  -35.14  1.53  

Poznan Carpark -46.57  2.01  -45.19  1.85  

Poznan Hall 2 -26.44  1.54  -29.01  1.70  

Lovebird1 -34.12  1.10  -34.91  1.17  

Newspaper -33.64  1.34  -33.42  1.33  

Balloons -23.96  0.93  -21.99  0.86  

Kendo -0.02  0.00  -5.26  0.24  

Average -28.03  1.18  -29.28  1.24  

 

 

Finnaly, another test has been performed. The estimated depth maps, resulting from 

conderations above, have been coded with use of MVC [112][113] video codec. The 

compression performance has been measured and depicted in form of Bjßntegaard metric. The 

results are shown in Table 14 below. It can be seen, that application of the proposed noise 

reduction techniques on the input video, have seriously influenced the estimated depth maps, 

because their compression performance has vastly changes. 
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The coding performance of such (compared to the original depth maps estimated with 

modified  DERS basing on the original multiview video) is about 28.03% higher in the case 

of SBNR (which relates to increase of PSNR of about 1.18dB) or about 29.28% higher in the 

case of MCNRR (which relates to increase of PSNR of about 1.24dB).  

In general it can be said, that the average compression performance gain over the tested set 

is about 30% of bitrate reduction, while providing the same quality of synthesized views 

(the bitrate reduction has been measured with Bjßntegaard metric over PSNR of synthesized 

views). This provides as strong indication that the temporal consistency of the estimated 

depth has been vastly improved, as one one the main compression tools in coding 

technology implemented in MVC is temporal prediction. The more the subsequent frames are 

correlated, the higher compression performance can be attained. 

 

3.9. Summary of the achievements in the area of depth estimation 

In this Chapter, authorôs achievement and results related to the area of depth estimation 

have been presented, related to theses T1-T3 of the dissertation. The main covered topics are 

proposal of probabilistic model based on Maximum A posteriori Probability optimization in 

depth estimation, proposal of accuracy refinement technique based on Mid-Level Hypothesis 

and improvement of temporal consistency in the estimated depth maps. 

In Sections 3.1 to 3.6 a complete probabilistic model for ὊὭὸὅέίὸ function (composed of 

Ὀὥὸὥὅέίὸ and ὝὶὥὲίὭὸὭέὲὅέίὸ) has been proposed. This part of the dissertation has been 

started with general theoretical derivation of ╓╪◄╪╒▫▼◄ based on Maximum a Posteriori 

Probability  rule (Section 3.1). Then, the derived formula (21) from page 51, has been 

thoughtfully analyzed with respect to simplification (Section 3.2) to classical forms related 

with to SSD or SAD  (equations (30) and (35) on pages 53 and 54) along with verification of 

the conditions that have to be meet for such simplification. It has been shown that at least 

some of the conditions are not meet in a practical case of multiview test sequences (Section 

3.3) and basing on that a novel formulation for Ὀὥὸὥὅέίὸ model has been proposed  

(Section 3.4). A method for estimation of parameters of this model has been shown on an 

example of the test sequences. Next, a probabilistic model for ╣►╪▪▼░◄░▫▪╒▫▼◄ has been 

proposed (in Section 3.5) also with a method for estimation of parameters of this model. In 

the end of the considerations, the results have been shown. 

The attained results show average gain of about 0.08dB to 2.8dB in average over tested 

sequence set, calculated with respect to PSNR of virtual views, synthesized with use of depth 
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maps generated with the proposed method, over the reference. As reference, the original 

unmodified Depth Estimation Reference Software (DERS) has been used with manual 

calibration of Smoothing Coefficient per sequence. For the case of selection of the worst 

checked (yet rational) Smoothing Coefficient value for the original DERS, the average gain is 

about 2.79dB. For the case of selection of the best found Smoothing Coefficient, the average 

gain is only about 0.08dB, but it can be noted that the proposed technique attained that 

without manual of such coefficient. 

This constitutes one of the biggest advantages of the proposed depth estimation method ï 

it does not require arbitrary manual calibration of coefficients. All required model parameters 

can be algorithmically estimated like it was shown on example of the tested sequences in 

Section 3.5. 

In Section 3.7 authorôs achievements in area of depth estimation related to accuracy 

refinement of depth maps have been shown. A novel depth refinement by Mid-level 

Hypothesis technique has been shown. The proposed method provides an alternative solution 

for generating sub-pixel precise depth maps, without necessity to increase complexity of the 

core depth estimation algorithm - in the proposal, the depth in refined in a post-processing 

step.  

The presented results show that the quarter-pixel-precise depth maps, generated with use of 

the proposed technique, provide gains of about 0.3dB of PSNR in average (over the tested 

sequences), related to the quarter-pixel-precise depth maps generated with the original 

unmodified Depth Estimation Reference Software (DERS). Comparing to full-pixel-precise 

depth maps generated with the original unmodified DERS, the gains are even higher and 

are about 2dB of PSNR in average. All of the PSNR gains have been measured as quality of 

virtual view synthesized generated with use of the given depth map over the tested sequence 

set. As for complexity, the proposed technique provides reduction of about 3.7Ĭ of 

computation time, related to direct quarter-pixel-precise depth estimation using the original 

(unmodified) DERS technique. 

In Section 3.8 developments of the author in area of depth estimation related to 

enhancement of the temporal consistency of stereoscopic depth maps have been shown.  

A novel approach is proposed in which temporal consistency of the estimated depth is 

increased by application of noise reduction technique in the input video, a priori to the depth 

estimation itself. Two noise reduction techniques has been developed by the author in order to 

provide proof of the presented concept - Still Background Noise Reduction (SBNR) and 

Motion-Compensated Noise Reduction with Refinement (MCNRR). Although the developed 
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noise reduction techniques are fairly simple, they have provided evidence that the proposed 

approach brings substantial gains. 

In results it has been shown that visual quality of the input video has been improved. 

Further, results of experiment with depth estimation have been shown. It has been noticed that 

although the proposal does not provide gains in case of objective PSNR metric, the subjective 

evaluation, of the views synthesized basing on the depth maps generated with use of the 

proposed noise reduction technique, shown that application of the proposal provides gain of 

about 0.7 to 1.2 MOS points (Mean Opinion Score). Finally, temporal consistency of 

generated depth maps has been verified with use of Pearson Linear correlation coefficient and 

with use of video coding (MVC). Both of the tests has shown that the application of the 

proposed noise reduction methods increase temporal consistency of the estimated depth. For 

instance, the gains in compression of depth maps are about 30% (Bjßntegaard metric, in 

average over the tested sequence set, retaining the same synthesized views quality) related to 

the compression of depth maps estimated with the original, unmodified Depth Estimation 

Reference Software. 

The abovementioned summary end the part of the dissertation related to depth estimation. 

Further, Chapter 4 and 5 will focus on area of depth coding. 
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Chapter 4. State-of-the-art in depth map coding 

The 3D video systems are evolving from simple stereoscopic systems to sophisticated 

second-generation systems that provide more realistic perception of the 3D space [247]. 

Prospective applications of the second-generation 3D video systems include autostereoscopic 

displays, variable-baseline-distance systems as well as the free-viewpoint television 

[250][251]. The second-generation 3D video systems need efficient representations of 3D 

scenes. Practical description of a 3D scene is multiview video plus depth (MVD) [252], i.e. 

multi-viewpoint video together with the corresponding depth maps estimated during the 

process of content production. 

In this chapter an overview of coding tools that involve depth will be provided. Then, 

techniques that are directly related to the dissertation, which is representation of the depth for 

coding, will be highlighted. 

 

4.1. Coding tools that involve depth 

The new generation of 3D video is a subject of research in many laboratories around the 

World and is a very fast developing field. From 2006, Motion Picture Experts Group (MPEG) 

of ISO/ITU founded a new multiview/FTV/3DV activity [248][249][144][250][251] targeted 

at developing a framework and technology that will be a part of a future 3D standard. Thanks 

to MPEG, many research centers around the world cooperate in order to develop an agreed 

technology. These works include multiview coding, depth estimation depth coding etc. It can 

be said, that works of MPEG (and further JCT-3V) participants reflect the current state-of-

the-art in the area of multi view video and 3D-TV.  

The first step of MPEG towards 3D video was Multiview Video Coding (MVC) 

technology completed in 2009. MVC, described as annex H of ISO/IEC 14496-10:2012 and 

ITU Rec. H.264 video coding standard, is an extension of AVC (Advanced Video Coding) 

technology, extending it with ability to transmit multiple videos in a more efficient way that 

exploits inter-view similarities. This is attained by usage of well-known motion-compensation 

prediction mechanism, adapted as inter-view disparity compensation. Such approach is  

a balanced compromise between higher codec complexity and compression efficiency. The 

gains of MVC over AVC simulcast are about 30% for the dependent views 

[2][7][76][148][149]. The base (non-dependent) view of MVC is coded in the same way as in 

AVC and thus this view single view of MVC is backward compatible with AVC. 
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The MVC standard itself does not enable coding of supplementary depth data. The works 

of MPEG group on development of AVC/MVC extensions, allowing coding of depth maps, 

have been proceeding in parallel to the development of this dissertation. In particular, ñMVC 

Extension for Inclusion of Depth Mapsò (MVC+D) coding technology has recently been 

included in Annex I of ISO/IEC 14496-10:2012 and ITU Rec. H.264 video coding standard. 

Another, more advanced AVC/MVC extension, called ñAVC compatible video-plus-depth 

extensionò is currently (end of 2013) going through balloting stage of standardization in 

ISO/IEC and ITU committees. The description, as annex J of ISO/IEC 14496-10:2012 and 

ITU Rec. H.264, is expected to be finalized in 2014. 

Another thread of scientific works in MPEG group is development of a new generation of 

2D (monoscopic) video coding technology, named High Efficiency Video Coding (HEVC). 

HEVC provides substantial gains over AVC, ranging from 40% to 60% [253]. It is worth to 

notice that such gains are higher than those of MVC over AVC. In context of multiview/3D 

video coding, it means that it is more efficient to employ HEVC simulcast (for each view 

independently) rather than to use MVC [76]. 

On the other hand, usage of inter-view coding tools (like those in MVC) in HEVC can 

bring even higher gains. Therefore, multiview extension of HEVC (in a way similar as MVC 

is an extension of AVC) is long-time target of scientific works around the world and in the 

MPEG group. 

During the above-mentioned works, the compression of depth was identified as an 

important research task. This task is somewhat different from the task of video compression 

where the goal is to compress visual data in such a way that the decoded video is possibly 

similar to the input video. On the contrary, depth is not watched by a viewer but it is used to 

synthesize virtual views needed for an autostereoscopic display or in a free-viewpoint 

television system. So, mostly the decoded depth quality is expressed by the quality of the 

synthesized views.  

The developments in area of depth compression include coding methods which have 

various levels on compatibility with legacy technologies defined by standards. 

In work [254] authors analyze coding of depth with use of wavelet transform with use of 

techniques developed for JPEG2000. Although the technique could be extended with 

mechanism applicable for efficient compression of depth video sequences instead of still 

pictures, at the presented stage such feature was missing. This lack of research has been filled 

in work [255], where authors propose complete coding system, along with analysis of impact 

of wavelet compression on image-based rendering synthesis of virtual views. The results are 
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promising, yet still, authors did not address the problem of compatibility with existing coding 

standards. 

In work [256] it is suggested that wavelet coding with motion compensated prediction can 

provide good efficiency when used for coding of mixture of homogenous regions and sharp 

edges, like in the case of depth maps. Similar concepts are developed in works [257][258], 

where usage of adaptive wavelets with tree-based partitioning is proposed. Although the 

authors mention promising compression performance, the proposed approach is not  

a compelling solution, because it uses coding technology which is incompatible with existing 

video coding standards, both regarding to the syntax and technology. 

In work [259], depth coding in AVC is considered, which incorporates skip-mode selection 

decision based on distortion analysis. The authors show that thanks to their approach not only 

the coding performance is improved but also temporal consistency of the reconstructed depth 

is enhanced. 

 

4.2. State-of-the-art directly related to the proposals in the dissertation 

The techniques that are more aligned with state-of-the-art in video compression include 

platelets [260][261][262] wedgelets [265][266]. In work [260] platelets have been proposed 

for medical applications. Authors of paper [261] have proposed platelets as an efficient depth 

coding tool and have developed this approach over years [262][263]. In such, depth coding is 

integrated with existing coding pipeline based on macroblocks and coding units as a special 

coding mode. The general idea is that inside of given coding region (e.g. macroblock, coding 

units) the depth is modeled as a flat plane called platelet. Independently, usage of platelets is 

considered in [133] in context of MVC codec. 

Wedgelets are extension of the idea of platelets, where given block is represented with 

more planes, separated by edges. The foundations of such idea have been given in [264], 

where partitioning schemes have been theoretically considered. The application of platelets to 

depth coding can be found in [265] and further developed form in [266]. In those works, 

depth coding is also integrated with coding pipeline as a coding mode. In particular, the depth 

can be modeled as a single plane (platelet) or two planes separated by a discrete edge whose 

location is signaled in the bitstream. In work [267] a contour-based coding of depth is 

proposed. In such, edges in the depth maps are identified and then their positions are signaled 

in the bitstream. The proposal relates to intra-coding only, but provides interesting gains. 
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In the standardization expert groups like MPEG, VCEG and JCT-3V, there is strong 

expectation to use the existing coding tools as much as possible for coding of depth.  

The basic compression tools are usually capable of processing 8-bit samples, and they use 

uniform quantization, i.e. the quantization with the constant quantization step that might be 

changed for some data structures like slices and macroblocks or coding units. Such uniform 

quantization is characteristic for both basic modern video standards: the AVC [111] and the 

new one ï the HEVC [121]. On the other hand, it can be intuitively understood that exact 

depth is very important for foreground objects while small depth degradations in far 

background are mostly well tolerated by the human visual system. Therefore, non-uniform 

quantization would probably be appropriate for depth coding. Therefore, in order to preserve 

conformance with the standards like AVC and HEVC, we propose to process the depth values 

using a non-linear function. Such processing together with uniform quantization is equivalent 

to the requested non-uniform quantization. 

The idea of depth processing using non-linear transformation of the depth-sample values is 

not a new one. It was already considered in [268] but with no particular relation to 

compression. The authors consider the influence of the depth representation on the attained 

visual quality only. 

In [269], a non-linear transformation of sample values was used to obtain finer depth 

quantization in the background, i.e. a non-linear transformation was used in the opposite way 

to that proposed in this dissertation. Although, the authors show that the overall objective 

quality of a virtual view synthesized with use of their proposal is increased, it is missed that it 

is the gains are coming from the background areas (for which the depth is represented more 

precisely) and no analysis on impact of the foreground objects and thus on the visual quality 

is done. 

In paper [270] author also propose depth coding tool abased on non-uniform representation 

but unlikely in the dissertation, the depth prediction signal is transformed instead of the depth 

values. 
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Chapter 5. Proposed non-linear depth representation for 

coding 

In this Chapter, research conducted by the author in area of depth coding will be presented. 

In particular the concept of depth representation will be studied. First a proof-of-concept idea 

will be presented, using a simple non-linear function. Then an original theoretical derivation 

for non-linear representation of depth will be provided. The result will be shown in form of 

both subjective and objective assessment. Finally, adoption of proposed non-linear depth 

representation to video coding technology standards developed by ISO/IEC MPEG group is 

highlighted. 

 

5.1. The idea of non-linear depth representation 

The straightforward approach to depth map transmission is to use uniformly quantized 

disparity values, normalized to range 0é255, called depth (3). That would also be a quite 

good method if the application of the transmitted data is unknown. However, in the case of 

next generation 3D video systems, considered in this dissertation, the transmitted depth map 

is used to synthesize virtual views. Therefore, mostly, the decoded depth quality is expressed 

by the quality of the synthesized views.  

Mentioned, straight-forward linear representation of depth with uniform quantization of 

disparity, unfortunately does not match the properties of the human visual system that is 

more tolerant to disparity errors in the background of a synthesized scene (Fig. 62) than 

to errors in the foreground. Therefore, the author has developed a coding scheme which 

resembles non-uniform quantization, so that distant objects are quantized more roughly than 

the closer ones.  

In the standardization expert groups like MPEG, VCEG and JCT-3V, there is strong 

expectation to use the existing coding tools as much as possible for coding of depth. The basic 

compression tools, is characteristic for both basic modern video standards: the AVC [111] and 

the new one ï the HEVC [121], are usually capable of processing 8-bit samples, and they use 

uniform quantization, which is not optimal for coding of depth for the purpose of virtual view 

synthesis. Therefore, in order to preserve conformance with the standards like AVC and 

HEVC, it is proposed to process the depth values using a non-linear function. Such processing 

together with uniform quantization is equivalent to the requested non-uniform quantization 

(Fig. 63). 
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Fig. 62. Exemplary artifacts resulting from linear quantization in coding of depth maps, 

especially visible for objects in the foreground, marked in red. 

a) ñPoznan Hall 2ò sequence, b) ñUndo Dancerò sequence, c) ñPoznan Streetò sequence. 

 

 

a) b)

c)
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Fig. 63. Non-uniform quantization realized by a transform Ὂ performed on depth values  on 

the input of the coded and inverse transform Ὂ  on the output of the codec. 
 

 

Assume that distance to a point on a real object is ᾀ. Practical limitations yield that for all 

objects in a scene the depth values are within a final interval, i.e. ᾀ ᾀ ᾀ  where 

ᾀ  and ᾀ  are the distances to closest and the farthest object in a scene. The depth data 

are usually stored as disparity Ὠ which is proportional to the inverse of ᾀ [159]: 

 

  Ͻ Ⱦ   , (57) 

 

 

where ɿ  is 255 for typically used 8-bit depth samples.  

 

For uniform quantization, this representation has the following advantage: a higher depth 

resolution of nearby objects is obtained. In order increase this effect, an additional non-linear 

transformation is proposed to be performed on the depth-sample values:  

 

† Ὂ(58) ,     

 

where † is the transformed depth and ὊϽ is a non-linear function, e.g. as shown in Fig. 64 for 

the most common case of 8-bit representations.  

 

 

Fig. 64. Non-linear depth transformation performed before coding. 
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The transformation (58) is performed on depth samples before coding. Now, the depth 

coding itself is performed on the internal values † instead of the external values ɿ. This non-

linear transformation influences prediction errors and their linear transforms (mostly DCT-

like) that are used in the course of the intra-frame and inter-frame coding. The transform 

samples are quantized and this process is influenced by the proposed non-linear depth 

transformation. 

After transmission, the process is reversed with inverse non-linear function Ὂ Ͻ so that, 

basing on reconstructed transformed depth †ᴂ, reconstructed linearly quantized normalized 

disparity ᴂ is retrieved: 

ᴂ Ὂ †ᴂ (59) 

 

In the next subsection a simple proposal for non-linear transformation (58) and inverse 

non-linear transformation (59) will be presented. This simple proposal will provide a proof of 

concept of non-linear depth representation idea. 

 

5.2. Proof of concept proposal for non-linear transformation  

The first proposal for non-linear depth transformation proposed by the author is based on 

the idea of gamma-correction well known from luminance coding in classical video systems. 

It is proposed to use non-linear disparity representation in the codec, so that each sample 

value is defined by the following power-law expression: 

 

†


άὥὼ



Ͻ†άὥὼ (60) 

 

where   and †  are the maximal values of  and †, respectively (e.g. 255 for 8-bit 

precision).  

In such way, closer objects are represented more accurately than the distant ones and thus 

quantization is non-uniform. The defined non-linear transformation has been successfully 

employed in Poznan University of Technology response to ñCall for Proposals for 3D Video 

Coding Technologyò [129] issued by MPEG. It was shown experimentally that already simple 

choice  ρȢσ (for small QP values) and  ρȢφ (for large QP values) gives good results. 

Obviously, a reciprocal operation is performed after decoding the disparity map: 

ᴂ
†ᴂ

†άὥὼ

ρȾ

Ͻάὥὼ (61) 
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The initial proposal for non-linear depth transform (60) has been implemented by author as 

a part of codec developed by Poznan University of Technology, Chair of Multimedia 

Telecommunications and Microelectronics, which has been submitted to "Call for Proposals 

on 3D Video Coding Technology" issued by MPEG group in 2011 [129]. This proposal has 

been rated very high among other proposals and was found to be one of the best performing 

proposals in HEVC category. The excellent results attained by the proposed codec, provoked 

a deeper analysis of the share of gains provided by particular tools [271][272], cited in the 

graphs below (Fig. 65 - Fig. 68). 

 

 
 

Fig. 65. Subjective test results for Poznan Street sequence. 

 

 

 

 
 

Fig. 66. Subjective test results for Poznan Hall 2 sequence. 
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Fig. 67. Subjective test results for Undo Dancer sequence. 

 

 
 

Fig. 68. Subjective test results for GT Fly sequence. 

 

 
 

Results of this analysis (Fig. 65 - Fig. 68) show that sole application of non-linear depth 

transformation described by equation (60) leads to improvement of the subjectively assessed 

quality of the reconstructed video by about 1 MOS (Mean Objective Score point). It can be 

noticed that this also correspond to about one third of the overall subjective gains provided by 

the whole codec (with all coding tools) over HEVC simulcast coding of multiview test data.  

Promising results of resolution of CfP [129] issued by ISO/IEC MPEG and results of 

further evaluation presented in the dissertation, provided a proof-of-the-concept for proposal 

of non-linear depth transformation. This has motivated author to do a more structured 

approach to the subject. The devised formulation is presented in the next subsection. 
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5.3. A theoretical approach to selection of non-linear transformation  

In this subsection a theoretical derivation for non-linear depth transformation will be 

provided. The requirement is that distant objects are quantized more roughly than the closer 

ones. Therefore, the assumption is that the quantization step ί decreases with increasing of 

disparity . Also, the expectation is that the quantization step ί changes uniformly across 

the whole disparity range. 

For the sake of simplicity of derivation, instead of considering values of  and † (within 

range π to   and π to †  respectively) and transform function Ὂ, letôs consider 

transform function Ὂ and values of  and †ǿ normalized to range [0..1] so that: 





              Ƞ               †ǿ

†

†
Ȣ (62) 

 

For small values of  (far objects) the quantization step ί is assumed to be large, while for 

large values of  (close objects) the quantization is expected to be fine:  

 

ί ὃϽὩ Ͻȟ  (63) 

 

where  is a constant parameter (e.g.  πȢυ υȢπ is a typical choice used in the preliminary 

experiments). As the sum of all the quantization steps should cover the whole unit interval: 

 

ρ ίὯὨὯ ὃϽ Ὡ ϽὨὯ
ὃ


ϽὩ ρ  , (64) 

 

where Ὧ is the integration variable used instead of  or †ǿ, and the parameter ὃȡ 
 

ὃ


Ὡ ρ
 . (65) 

 

Thus, the inverse non-linear depth transformation: 

 

 Ὂ †ǿ ήὯὨὯ  ὃϽ Ὡ ϽὨὯ
ὃ


ϽὩ Ͻ ρ . (66) 

 

and after some mathematical operations: 

 


ὃ


ϽὩ Ͻ ρ , (67) 
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ὃ
Ͻ ρ Ὡ Ͻ , (68) 

  
 

ÌÎ 


ὃ
Ͻ ρ Ͻ†ǿ , (69) 

  

 

ρ


ϽÌÎ 



ὃ
Ͻ ρ †ǿ . (70) 

 

and by substitution of ὃ and some further simplification: 

†ǿ
ρ


ϽÌÎ ρ




Ὡ ρ

Ͻ(71) .  

 

†ǿ Ὂ
ρ


ϽÌÎρ Ͻρ Ὡ  . (72) 

 

Finally, if the original notation with (not scaled) variables , † and Ὂ is used, we can get the 

desired forward transformation: 
 

 

† Ὂ
†


ϽÌÎρ




Ͻρ Ὡ  . (73) 

 

The results attained with use of transformation (73) lead not only to comparable subjective 

gains as in the case of power-law-based expression (60) but also provide objective gains 

(measured by PSNR). This fact, has been brought to the attention of MPEG group [49] for 

consideration as a tool for a new generation coding technology standards. 

 

5.4. Approximation of non-linear depth transformation 

One of the requirements, considered by experts during evaluation of proposed tools, like 

non-linear depth representation tool by the author, is that standards should be defined in a 

flexible way. Therefore it would be not feasible to define a single arbitrary transform 

function, e.g. defined by (60) or (73). In order to fulfill this requirement, the author has 

proposed that the shape of the plot of function ὊϽ is directly given to the encoder, 

transmitted in the bitstream and then decoded by the decoder.  

The authorôs proposal of non-linear depth representation has been accepted and it 

was decided (e.g. [114][117]) that the non-linear transformation function will be linearly 

approximated in the intervals. It was accepted that only a set of the equidistant deviations 
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from the diagonal will be signaled in the bitstream (see Fig. 69) [49]. These deviations are 

defined solely by the deviation vector: ύ ύȟύȟȣȟύ . 

 

Fig. 69. Transformation definition by equidistant deviations ύ and the linear approximation 

in the intervals. In this example deviation vector ύ is 4 element vector. 
 
 

 

The advantages of such approximation of non-linear depth transformation are as follows: 

- Shape of the transform may be optimized individually by the encoder. 

- Further developments may bring new ideas about the definitions of the transformation. 

- The proposed approximation can be easily calculated using fixed-point arithmetic. 

- The transformation can be switched off if in particular case it does not bring any gain. 

 

In particular, it has been noticed that if the distribution of normalized disparity ŭ samples is 

concentrated around small part values of range πȣ   usually it is better to switch off the 

non-linear depth transformation. Such abnormal depth distributions are identified basing on 

expected value Ὁȟ  of normalized disparity map ȟ:  

 

Ὁȟ
ρ

ὡϽὌ
ȟ 

ᶰȣᶰȢȢ

      , (74) 

 

where ὡ and Ὄ correspond to the width and the height of the image, respectively. 

Therefore it is beneficial to disable non-linear depth transformation, when Ὁȟ  is below 

a predefined Ὁ  value (that was set to 100 in the experiments with 8-bit samples). This 

relatively simple condition can be used for automatic switching the tool on and off for 

individual sequence: 
 

ὉὲὥὦὰὩ ὔὈὙ 
ὪὥὰίὩὭὪ Ὁɿȟ Ὁ

ὸὶόὩὭὪ Ὁɿȟ Ὁ
      . (75) 
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The mentioned advantage of flexibility of non-linear depth representation proposal, already 

have led to development done author and other research centers [273]. 

In the next subsection, experimental evaluation of the Non-linear Depth Representation 

coding tool, submitted by the author for consideration of ISO/IEC MPEG group, will be 

presented. 

 

5.5. Experimental results for depth map coding 

The non-linear depth representation tool (under the name of NDR) has been submitted to 

ISO/IEC MPEG group and has been evaluated by international experts in a series of 

Exploration Experiments e.g. [237][238][60][63]. These Exploration Experiments compare 

several tools related to given subject (e.g. depth coding) on the common ground environment, 

constituted in Common Test Conditions (CTC) [236] document. Each submitted result must 

be confirmed by at least one independent research center in order to be considered. Basing on 

such evaluation, only the best and the most interesting tools are adopted to the standard under 

development. 

The experiments have been done for depth coding extensions of the AVC standard 

[114][115][116][117][118][119], which have been under development at that time ï MVC+D 

and AVC-3D. 

In all experiments, the transformation defined in equation (73)  has been used with 

parameter  ρȢψ. The transformation was implemented by approximation with 41 nodes, 

i.e. deviations have been defined for 39 nodes (for two boundary nodes, for normalized 

disparity  π and  ςυυ, the deviation is always 0). The deviation vector ύ (see Fig. 69) 

which has been used is as follows: 
 

ύ ςȟτȟχȟψȟρπȟρςȟρτȟρφȟρχȟρωȟςπȟςρȟςςȟςσȟςτȟςυȟςφȟςφȟςχȟςχȟςχȟ 
ȟςχȟςχȟςχȟςφȟςφȟςυȟςτȟςσȟςςȟςπȟρωȟρχȟρυȟρσȟρρȟωȟφȟσ]. 

 (76) 

 

The final results have been submitted to MPEG in [57] and have been independently cross-

checked by Samsung Corporation [274]. The Nonlinear Depth Representation (NDR) tool has 

been turned on in the case of three sequences from the set (GT Fly, Kendo and Balloons), 

while for others (Poznan Street, Poznan Hall 2, Undo Dancer, Newspaper) it has been turned 

off due to application of the rule described in equation (75) with value of the Ὁ  = 100. 

 The results are summarized in Table 15 and Table 16. The average gains in bitrate (dBR) 

as well as in PSNR (dPSNR) were calculated using Bjßntegaard measures [127]. 3 views and 

3 depth maps are coded and results for respective bitstream components are presented. 
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The gains were calculated for the following cases (A, B, C and D), which are reflected in 

headings of Table 15 and Table 16: 

A. Video-only bitrate (depth bitstream not included) and average PSNR for 3 views. 

B. Depth-only bitrate and PSNR for depth (average for depth maps for 3 views). 

C. Total bitrate for 3 views and 3 depth maps and average PSNR for 3 decoded views. 

D. Total bitrate for 3 views and 3 depth maps and average PSNR for 3 decoded views 

and 6 views synthesized in spatial position in between the coded views (Fig. 70). 

 

 

Table 15. Bjßntegaard gains in bitrate and PSNR due to application of non-linear depth 

representation in HP profile. 3 views and 3 depth maps are coded and results for respective 

bitstream components are presented. 

Sequence 

A. B. C. D. 

Multiview video 
coding 

Depth coding 
3 views with  
depth maps 

3 views with depth maps 
and 6 synthesized views 

dBR [%] dPSNR [dB] dBR [%] dPSNR [dB] dBR [%] dPSNR [dB] dBR [%] dPSNR [dB] 

GT Fly 0.00 0.00 -21.93 1.37 -1.25 0.05 -0.11 0.00 

Balloons -0.01 0.00 -25.87 1.34 -3.27 0.17 -2.59 0.13 

Kendo 0.00 0.00 -25.76 1.64 -5.28 0.28 -4.13 0.20 

Average 
(3 seqs.) 

0.00 0.00 -24.52 1.45 -3.27 0.17 -2.28 0.11 

Poznan Street 

Zero gains - Nonlinear Depth Representation is disabled due to equation (75) 
Poznan Hall 2 

Undo Dancer 

Newspaper 

Average 
(all 7 seqs.) 

0.00 0.00 -10.51 0.62 -1.40 0.07 -0.98 0.05 

 
 

Table 16. Bjßntegaard gains in bitrate and PSNR due to application of non-linear depth 

representation in EHP profile. 3 views and 3 depth maps are coded and results for respective 

bitstream components are presented. 

Sequence 

A. B. C. D. 

Multiview video 
coding 

Depth coding 
3 views with depth 

maps 
3 views with depth maps 
and 6 synthesized views 

dBR [%] dPSNR [dB] dBR [%] dPSNR [dB] dBR [%] dPSNR [dB] dBR [%] dPSNR [dB] 

GT Fly 1.36 -0.05 -23.87 1.49 0.63 -0.02 0.74 -0.02 

Balloons 0.44 -0.02 -21.79 1.13 -1.35 0.06 -1.18 0.05 

Kendo 0.19 -0.01 -20.35 1.30 -3.41 0.15 -3.13 0.14 

Average 
(3 seqs.) 

0.66 -0.03 -22.00 1.31 -1.38 0.06 -1.19 0.06 

Poznan Street 

Zero gains - Nonlinear Depth Representation is disabled due to equation (75) 
Poznan Hall 2 

Undo Dancer 

Newspaper 

Average 
(all 7 seqs.) 

0.28 -0.01 -9.43 0.56 -0.59 0.03 -0.51 0.02 
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Fig. 70. The arrangement of the views: the v are marked in black while the views synthesized 

in the receiver are marked in gray. 

 

The overall bitrate reduction with respect to the case D is up to 4.13% while there is no 

measurable increase of complexity.  In average, the gains are 0.98% (HP profile) and 0.51% 

(EHP profile) when the has been done for all of the test sequences ï also those that do not 

fulfill the requirements for the depth distribution as described in Chapter 5, eq. (64) (for these 

sequences the transformation was switched off). Only in the sequences in which the transform 

has been turned on are considered, the gains are 2.28% (HP) and 1.19% (EHP). 

Please note that those mentioned gains are coming from coding tools for depth solely, 

while depth is about 10% of the whole bitstream. A more optimistic interpretation of the 

results, presented in column B of Table 15 and Table 16, shows that the bitrate of the depth 

itself has been reduced by 10.51% (HP) and 9.45% (EHP) when considering average over 

all test sequences and 24.52% (HP) and 22.00% (EHP) when the average is calculated only 

over the test sequences that use the proposed tool. 

Also subjective tests [57] have been performed in order to compare visual quality of the 

synthesized views produced from the compressed depth maps both in the presence and in the 

absence (ñanchor referenceò) of non-linear depth representation (for the same bitrate). For the 

tests, 32 subjects have assessed the quality of stereo clips (2 subjects needed to be rejected) 

using the single stimulus method.  

The subjects have been presented a couple of tests in Double Stimulus Impairment Scale 

(DSIS) method [128]. First, the reference (stereo pair synthesized from uncompressed 

original) sequence was shown. Then, a tested case was shown - this could be randomly either 

one of: 

¶ 3D-ATM  [120] anchor, or  

¶ 3D-ATM with proposed Non-linear Depth Representation. 

The tested sequence has been always coded at constant bitrate: from the highest (R4) to the 

lowest (R1), reflecting Common Test Condition (CTC) [46][236] and general methodology 

developed by MPEG for exploration experiments (EE) [238]. 

The presented stereo pair was composed from two synthetic views, around the base view. 

After each test, subjects gave their scores reflecting quality. The sessions were performed 

during the MPEG meeting in Geneva. 
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The results for various bitrates (R1 ï R4) are depicted in Fig. 71, together with 95% 

confidence intervals. The bitrates have been selected according to MPEG guidelines for 

individual test sequences [46][236]. The results show that non-linear depth transformation 

improves coding efficiency, although some of the confidence intervals overlap. 

 
 

 
Fig. 71. Results of subjective evaluation of Nonlinear Depth Representation (NDR).  

 One of the cases (Balloons sequence, R3 rate-point, Anchor) is shaded because the results is 

not reliable due to presentation problems that have occurred during the viewing. 
 

 

 

 

One of the cases (Balloons sequence, R3 rate-point, 3D-ATM Anchor) is shaded because 

the results is not reliable due to presentation problems that have occurred during the viewing 

ï one of the presented views from stereo-pair had artifacts not related to the experiment, 

which has influenced ratings given by the viewers inadequately. 

 

5.6. Adoption of non-linear transformation in international coding 

standards 

Each tool that is proposed to be a part of a standard under development is thoughtfully 

tested and questioned by the experts. The considered aspects include provided compression 

gains, computational complexity, configurability, implementability, etc. 

One of the strongest expectations for coding of depth is to use the existing coding tools as 

much as possible. The proposed Non-linear Depth Representation (NDR) tool conforms that 

requirement in both of two major scenarios of depth coding that have been formulated until 

now: 
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1. Depth is compressed independently from multiview video in a sense that depth does 

not influence coding and decoding of multiview video. Such an approach is used in the 

depth coding extensions of the multiview coding techniques: MVC [113] and 

MV-HEVC (MHVC) [122]. For MVC, this approach is supported by ATM-HP test 

model software. 

2. Depth values are used in the course of video coding and decoding, e.g. for view-

synthesis prediction. Such an approach is used in the 3D video coding proposed as 

extensions of the AVC [117][118][119] and HEVC [123] standards. For AVC, this 

approach is supported by ATM-EHP test model software. 

 

In the first approach (Fig. 72), the transformations do not influence any encoding or 

decoding process. Therefore the information about non-linear depth transformation may be 

transmitted in the SEI (supplementary enhancement information) messages. The depth coding 

extension [114][115][116] of MVC [112] has already incorporated depth representation 

information SEI message that optionally may be used to transmit the information about depth 

transformation. 

 

 

Fig. 72. Independent depth coding:  and † denote the original normalized disparity map and 

transformed, non-linearly represented values,  ᴂ and  †ᴂ are decoded (reconstructed) values 

and ὓόὰὸὭὺὩύ and ὓόὰὸὭὺὭὩύᴂ are original and decoded multi-view video, respectively. 
 

 

 

 

 

Fig. 73. Depth-dependent coding: :  and † denote the original normalized disparity map and 

transformed, non-linearly represented values,  ᴂ and  †ᴂ are decoded (reconstructed) values 

and ὓόὰὸὭὺὩύ and ὓόὰὸὭὺὭὩύᴂ are original and decoded multi-view video, respectively. 
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In the second approach (Fig. 73), the encoding and decoding of multi-view video exploits 

the information about depth. A good example of such a depth-dependent operation is view-

synthesis prediction. Such prediction needs the values of  (normalized disparity) rather than 

† (transformed representation). Therefore the values of the external representation  must be 

used in the course of multiview video encoding and decoding (see Fig. 73). 

Therefore, in both cases, the proposed Non-linear Depth Representation (NDR) tool is 

compliant with existing coding technology concepts and do not impose any overhead ï both 

related do encoder nor decoder complexity.  

The advantages of the proposed Non-linear Depth Representation (NDR) tool and positive 

verification, performed by independent research centers in MPEG group, resulted in adoption 

of the proposed NDR tool to new 3D extensions of  ISO/IEC 14496-10 and ITU Rec. 

H.264 international video coding standards, describing new generation of 3D video coding 

technologies, known under names of MVC+D and AVC-3D. The first one has already been 

included as Annex I of AVC specification. The second one is expected to be finalized in 2014 

and to be included as Annex J of AVC specification. 

Table 18 and Table 17 show the syntax that has been adopted to those standards, 

describing to MVC+D [114][115][116] and 3D-AVC [117][118][119] video coding 

technologies, respectively. The parts related to adopted NDR proposal have been marked in 

gray. 

In the case of MVC+D (Table 17), the coding is depth-independent Fig. 72 and therefore 

NDR tool has been adopted in form of a special Supplemental Enhancement Information 

(SEI) message. The value of 3 of field depth_representation_type in the bitstream indicates 

that Nonlinear Depth Representation tool is turned on. In such case, field 

depth_nonlinear_representation_num_minus1 is signaled with the encoded size of deviation 

vector ὺ. Next all elements of deviation vector ὺ are transmitted. Thanks to that, the shape of 

non-linear transformation function can be reconstructed at the decoder (see Fig. 69). 

In the case of AVC-3D (Table 18), the coding is depth-dependent (Fig. 73) and therefore 

NDR tools has been adopted in Depth parameter set unit. The syntax of the signaling is very 

similar as in the case of MVC+D with exception that the Depth Representation tool is turned 

on by value of nonlinear_depth_representation_num field greater than 0. 
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Table 17. Adopted syntax of Non-linear Depth Representation (marked in gray) in MVC+D 

coding technology in [114] Annex I ñMultiview and Depth video codingò of  

ISO/IEC 14496-10:2012 and ITU Rec. H.264 video coding standards.  

I.13.1.3 - Depth representation information SEI message syntax. 

Syntax element C Descriptor 
depth_representation_info( payloadSize ) {   

 all_views_equal_flag 5 u(1) 

 if( all_views_equal_flag = = 0 ) {   

  num_views_minus1 5 ue(v) 

  numViews = num_views_minus1 + 1   

 } else   

  numViews = 1   

  z_near_flag 5 u(1) 

  z_far_flag 5 u(1) 

  if( z_near_flag | | z_far_flag ) {   

   z_axis_equal_flag 5 u(1) 

   if( z_axis_equal_flag )   

     common_z_axis_reference_view 5 ue(v) 

 }    

 d_min_flag 5 u(1) 

 d_max_flag 5 u(1) 

 depth_representation_type 5 ue(v) 

. . .  

 if( depth_representation_type = = 3 ) {   

  depth_nonlinear_representation_num_minus1 5 ue(v) 

  for( i = 1; i <= depth_nonlinear_representation_num_minus1 + 1; i++ )   

   depth_nonlinear_representation_model[ i ] 5 ue(v) 

 }    

}    
 

Table 18. Adopted syntax of Non-linear Depth Representation (marked in gray)  in AVC-3D 

coding technology. The related specification is currently being finalized [118] as Annex I   

of  ISO/IEC 14496-10:2012 and ITU Rec. H.264 video coding standards. 

J.7.3.2.13 - Depth parameter set RBSP syntax. 

Syntax element C Descriptor 
depth_parameter_set_rbsp( ) {    

 depth_parameter_set_id 11 ue(v) 

 pred_direction 11 ue(v) 

 if(  pred_direction  = =  0  | |  pred_direction  = =  1 ) {    

  ref_dps_id0 11 ue(v) 

  predWeight0 = 64   

 }    

 if(  pred_direction  = =  0 ) {    

  ref_dps_id1 11 ue(v) 

  pred_weight0 11 u(6) 

  predWeight0 = pred_weight0   

 }    

 num_depth_views_minus1 11 ue(v) 

. . .  

 depth_param_additional_extension_flag 11 u(1) 

 nonlinear_depth_representation_num 11 ue(v) 

 for( i = 1; i <= nonlinear_depth_representation_num; i++ )   

  nonlinear_depth_representation_model[ i ] 11 ue(v) 

 if(depth_param_additional_extension_flag  = =  1 )   

  while( more_rbsp_data( ) )   

   depth_param_additional_extension_data_flag 11 u(1) 

 rbsp_trailing_bits( )   

}    
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5.7. Summary of achievements in the area of depth coding 

In this Chapter, a novel non-linear transformation has been proposed for representation and 

coding of the depth. First a proof-of-concept proposal has been presented, with use of  

a simple non-linear function, based on the idea of gamma-correction, well known from 

luminance coding in classical video systems. The verification of this preliminary proposal has 

been performed in with use of a codec developed by Poznan University of Technology, Chair 

of Multimedia Telecommunications and Microelectronics. This codec has been submitted to 

"Call for Proposals on 3D Video Coding Technology" (CfP) [129], issued by MPEG group in 

2011, and has been rated very high among other proposals. Promising results of the codec in 

the resolution of CfP and also further results of subjective evaluation, created a motivation for 

more advanced proposal. The devised, theoretical approach yielded with a novel formulation 

of non-linear transformation for depth representation.  

The final proposal has been evaluated experimentally with use of coding technology 

implemented in MPEG Reference Software for AVC-based 3D video coding technologies 

[120] ï MVC+D and AVC-3D. It has been shown that application of the proposed non-linear 

depth representation provides substantial subjective gains of about 0.3 to 1 MOS point 

(depending on the case in the tested sequence set) and considerable bitrate reduction ï in 

average up to about 25%  bitrate reduction of the depth component of the bitstream. 

Finally, adoption of the proposed non-linear depth representation to new 3D 

extensions of  ISO/IEC 14496-10 and ITU R ec. H.264 international video coding 

standards has been highlighted. It is worth to notice, that the idea of proposed non-linear 

depth representation is a subject of pending patent by PoznaŒ University of Technology in 

Poland [105] and in USA [98]. 
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Chapter 6. A new 3D video coding technology 

In 2011 ISO/IEC MPEG group has issued a "Call for Proposals on 3D Video Coding 

Technology" (CfP) [129]. The aim of the CfP, was to challenge the available state-of-the-art 

3D compression technologies and to reveal the best one as a starting point for further works. 

Research centers and companies which has shown interest include: Microsoft, Samsung, 

Sony, LG, Qualcomm, Orange Labs, Nokia, Ericsson, Disney Research, Fraunhofer Institute 

for Telecommunications - Heinrich Hertz Institute, or universities like Aachen University 

(Germany), Nagoya University (Japan), National Institute of Information and 

Communications Technology (NICT, Japan), Gwangju Institute of Science and Technology 

(GIST, China), Zhejiang University of Science and Technology (China), Electronics and 

Telecommunications Research Institute (ETRI, Korea) and also Poznan University of 

Technology - Chair of Multimedia Telecommunications and Microelectronics (Politechnika 

PoznaŒska, Katedra Telekomunikacji Multimedialnej i Mikroelektroniki - KTMiM , Poland). 

This Chapter describes compression technology proposed by PoznaŒ University of 

Technology that has been presented in the response to the call of MPEG. The novelty of this 

proposal consists in new coding tools and in the selection of the tools resulting from extensive 

experiments. The technology has been described in MPEG document  [66] and in conference 

contributions [11][12][9]. Some of the tools have been already described in the conference 

papers [14][10][282][283][284]. In paper [1] a detailed description has been provided.  

The author of this dissertation was one of the members of the team that has developed 

the proposal from Poznan University of Technology. As in-depth description of the proposed 

codec has been shown in works mentioned above, in this dissertation,  

only a brief description is provided, with focus on the original achievements of the author 

in that area. 
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6.1. Comparison with other state-of-the-art codecs 

In the ñCall for Proposals on 3D Video Coding Technologyò [129] two categories have 

been defined - AVC-compatible and HEVC-compatible. The most of the major MPEG group 

participants has provided their contributions - in total there were 12 contributions in AVC 

category and 11 in HEVC category. All of the proposals have been assessed both subjectively 

and objectively by independent research laboratories [275][276]. Results that has been shown 

in the end of 2011 revealed that there were three spectacular winners: Nokia Research Center 

[277] (winner in AVC category), Heinrich Hertz Institute (HHI) [278][279] in cooperation 

with Disney Research Labs [280] (winner in HEVC category)  and Poznan University of 

Technology - Chair of Multimedia Telecommunications and Microelectronics (ñPolitechnika 

PoznaŒska, Katedra Telekomunikacji Multimedialnej i Mikroelektronikiò - KTMiM , Poland) 

ï co-winner in HEVC category.  

The proposal was rated very high, getting a second place just after technology provided 

by Fraunhofer Institute for Telecommunications - Heinrich Hertz Institute (HHI - in few 

configuration variants) - Fig. 74. Other participants of the competition (that ranked worse) 

decided not to reveal their exact identity, which remains hidden under ñPxxò code-names. 

 

 

 

 

Fig. 74. Outranking of the CfP [129] proposals from various participants. Other participants 

of the competition that ranked worse did not revealed their identity which remains hidden 

under ñPxxò code-names. 
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In brief [276][281], all of the best performing proposals of the competition use very similar 

approaches. Differences in tools are summarized in Table 19. Those can be categorized into 

the following categories: 

¶ Base coding technology - the technology that is used for backward compatible coding 

of a single base view. This is AVC or HEVC. 

¶ Disparity compensated prediction - a tool which is used for prediction of dependent 

views with the reference to the base view, similar to well-known motion-compensated 

prediction. Typically, a toolset similar to MVC has been used. 

¶ Base view coding order - order in which components (video and depth) of the base 

view are coded, which also constitutes the possible coding dependencies between 

them. Noticeably, in all of the proposals, video is coded before the depth. 

¶ Dependent view coding order - order in which components (video and depth) of 

subsequent dependent views are coded, which also constitutes the possible coding 

dependencies between them (e.g. video-coded-first or depth-coded-first ) 

¶ Depth image resolution - spatial resolution in which depth component is coded. Full 

resolution means, that the depth is coded with the same spatial resolution as the base 

video. Reduced resolution means that the coded depth is decimated i.e. 2Ĭ. 

¶ Depth coding tools - enhanced set of tools dedicated for coding of the depth. 

¶ View-synthesis prediction - usage of view-synthesis for provision of additional 

prediction mechanisms.  

¶ Inter -view filtering  - filtering tool that processes video or depth data in inter-view 

domain. Those include tools that refine videos or depths with use of information 

exchange between the views. 

¶ Noise modeling - tools that allow representation of a noise in the video as a separate 

layer. 

¶ Prediction between components of MVD ï existence of prediction mechanisms that 

operate between the component types - e.g. the depth is predicted from the video or 

the video is predicted from the depth. 

¶ Camera arrangement constraints - constraints which are imposed on spatial 3D 

positions of the coded views. In many cases, only linear alignment of cameras along  

a straight-line (Fig. 12b) is allowed. 
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Table 19. Comparison of similar coding tools used in the winning technologies of the ñCall 

for Proposals on 3D Video Coding Technologyò [129]. 

Proponent            
Tool 

Nokia 
Research 

Center [277] 

Poznan University 
of Technology  
- KTMiM  [66] 

Heinrich Hertz 
Institute (HHI) 

[278][279] 

HHI + Disney 
Research Labs 

[280] 

Base coding 
technology 

AVC HEVC HEVC HEVC 

Disparity 
compensated 
prediction  

MVC MVC-like MVC-like MVC-like 

Base view coding 
order 

Video,  
then Depth 

Video,  
then Depth 

Video,  
then Depth 

No depth, 
Video only. 

 

Instead, so 
called "warps" 
are coded and 
the depth is 

derived at the 
decoder. 

 

Dependent view 
coding order 

Depth,  
then Video 

Depth,  
then Video 

Video,  
then Depth 

Depth image 
resolution 

Reduced Full Full 

Depth coding tools - 
Non-linear Depth 
Representation 

Wedgelets 

View-synthesis 
prediction 

Prediction 
mode  

Prediction mode, 
motion prediction 
and disocclusion 

coding 

Disparity 
vector 

derivation 
- 

Inter-view filtering 
Joint-view 

filter 
Unified depth 
representation 

- - 

Noise modeling  - 
Spectral and spatial 

noise modeling 
- - 

Prediction 
between 
components of 
MVD 

- 
Video-QP 

adjustment basing 
on Depth 

Depth-map 
generation, 
Motion field 
inherence 

- 

Camera 
arrangement 
constraints 

Linear 
arrangement 

only 
Not constrained 

Linear 
arrangement 

only 

Linear 
arrangement 

only 

 
In Table 19 it can be noticed that the promising results of proposal from Poznan University 

of Technology results from thoroughgoing selection of coding tools, comparable with those 

existing in other proposals. Also, it can be noticed that some of the tools are present solely in 

the proposal from Poznan ï e.g. non-linear depth representation, noise modeling or not 

constrained camera arrangement. Some of those tools will be described in the following 

Sections of the dissertation. 
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6.2. The structure of the proposed 3D video codec 

The proposed codec is compliant with the requirements that were defined by MPEG in the 

Call for Proposals (CfP) [129] [66] for HEVC-compatible category. These requirements 

resulted from studies of potential applications. In particular, one of the views ï called the base 

view ï is coded in compatibility with HEVC syntax, which allows extraction of a base view 

by a legacy decoder. The remaining views are called the side views. These side views and all 

depth data are coded with the use of new proposed tools [1].  

Fig. 75 presents such scheme in example of coding of MVD data, composed of 3 video 

streams and 3 depth streams. 

 

 

 

Fig. 75. Overall structure of the proposed 3D video codec, showing compatibility with HEVC 

syntax for the base view. 
 

 

 

It may be pointed out that encoding and decoding of the side views and depth maps exploit 

information from the already coded views, which are used as references. Such hierarchical 

view coding structure, similar to Multiview Video Coding (MVC) [113], is used for both 

video and depth.  

In fact, only contents of the base view are coded as a whole. In the side views, only  

a very small part of the image is transmitted at all. The remaining, not transmitted parts are 

reconstructed basing on the contents of the base view, with use of virtual view synthesis 

DIBR (Depth Image Based Rendering) technique. Such approach is called Disoccluded 

Region coding [1][12]. 
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All of the proposed tools are integrated with the MVC structure and basic low-level HEVC 

compression tools like intra-frame prediction, inter-frame motion-compensated prediction, 

transform coding, in-loop filtering and others.  

 

 

Fig. 76. The proposed 3D video encoder structure. 
 
 

 

 

 

Fig. 77. The proposed 3D video decoder structure. 
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The detailed structure of the proposed coder and the decoder has been visualized in  

Fig. 76 and Fig. 77, respectively. These figures present a more general look on the codec, 

where arbitrary number of video streams, depth streams and other, can be transmitted.  

The specific tools that are used in the 3D video codec are described below, with the 

achievements of the author of the dissertation highlighted.  

Detailed explanation of the tools used in the codec can be found in [1][2][11][12]. 

 

6.3. Authorôs contribution  in the proposal of the new 3D video codec 

The author of the dissertation has substantially contributed to the development of the 3D 

video codec in the following ways: 

- The author contributed in formulation of the overall structure of the codec. 

- The author had decisive voice in the selection of the tools that have been finally 

included in the finally proposd codec. 

- The author co-developed the coding approach based on Layer separation by 

proposing the original idea and providing noise reduction algorithm (MCNRR, 

described in Subsection 3.8.2 of the dissertation).  

- The author had participated in the proposal of Unified Depth Representation tool, 

among others by incorporating the Mid-Level Hypothesis algorithm, described in 

Subsection 3.7 of the dissertation. 

- The author proposed and implemented Non-linear Depth Representation tool that 

already has been described in Chapter 5 of the dissertation. 

 

6.3.1. Layer separation 

The proposed 3D video coding technology use an approach, similar to Scalable Video 

Coding (SVC) or to wavelet coding, in which input video is spitted into layers (Layer 

Separation - Fig. 76) in the spatial frequency domain. Each layer presents different level of 

details and all layers represent the input video. 

In the case of our proposal, the input video is split into two layers: 

- low-frequency texture video layer (similar to base layer in SVC), which contains 

content that can be efficiently coded with classic predictive coding. 

- high-frequency residual layer, which contains high frequency residual content that can 

be represented jointly for several views. 
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Both layers are transmitted to the decoder and after decoding are summed together in order 

to produce reconstructed video. 

The separation of layers occurs at the very beginning of the processing as a result of noise 

reduction technique, already described in the dissertation (Subsection 3.8.2 of the dissertation) 

under the name of Motion-Compensated Noise Reduction with Refinement (MCNRR).  

The process yields low-frequency texture layer which is fed to video texture encoder. 

The high-frequency layer is modeled as a non-stationary random process. There are two 

components of the model that need to be encoded (Fig. 78): spatial energy distribution (SDE) 

and spectral envelope. The spatial energy distribution is estimated for each frame. For this 

purpose, a frame from the high-frequency layer is divided into rectangular non-overlapping 

blocks. In each of those blocks energy is measured. Energy values, associated with respective 

blocks, constitute a frame of spatial energy distribution, whose resolution is smaller than 

resolution of the input video. 

 

Fig. 78. High-Frequency Residual Layer Representation in the encoder. 
 

 

This estimated spatial distribution of energy is used in order to normalize the high-

frequency residual layer.  

The second coded component of high-frequency residual layer is spectral envelope. It is 

estimated from energy-normalized high-frequency subband using a technique similar to LPC. 

The resulting set of separable IIR filter coefficients (in horizontal and vertical direction) is 

encoded using LAR coefficients (log-area-ratio [285]) with 8-bit representation. A set of such 

filter coefficients is estimated for each frame and transmitted to the decoder. 

Parameters of the noise model are highly correlated among the views. The frames of the 

spatial distribution of energy of all views are mapped through view synthesis to a position of 

the base view, and then averaged. This operation results in only one joint spatial distribution 
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of energy (SDE). Similarly, the energy envelopes of all of the views are averaged, resulting in 

one joint spectral envelope.  

In a decoder, pseudo-random white noise is generated and then modulated by the 

upsampled spatial energy distribution transmitted in the bitstream and then filtered with IIR 

filters that reflect the envelope of the original high-frequency layer spectrum. The resultant 

video, which resembles the original high-frequency subband, is added to the reconstructed 

low-frequency layer in order to restore the high-frequency components. 

 

6.3.2. Unified Depth Representation 

Another tools used in the encoder is Unified depth representation (Fig. 76). It is used to 

inter-change the depth information between the views. 

As mentioned before, the idea behind the proposed technology is that only the base view 

(video and depth) is coded directly as a whole. In side views only the disoccluded regions are 

coded, while the remaining parts are reconstructed from the available views using DIBR 

technique. In such an approach, the amount of depth information in side-views is considerably 

reduced. Unfortunately, if the view synthesis algorithm uses inconsistent depth maps, it 

renders very annoying artifacts in the synthesized video. Because the amount of coded depth 

data is limited, it is necessary to adjust the input set of depth maps in such a way, that the 

single depth map related to the base view contains as much information as possible.  

For that reason, the first step of the proposed 3D video compression algorithm is the depth 

map inter-view consistency refinement that produces Unified Depth Representation (named 

Consistent Depth Representation in [1]).  

The refinement technique employs Mid-Level Hypothesis, described in the Subsection 3.7 

and in [14]. This algorithm increases precision and accuracy of the artificially estimated depth 

maps and enhances alignment between the depth and the corresponding texture. 

 

6.3.3. Non-linear Depth Representation 

The 3D video codec from Poznan University of Technology has included the non-linear 

depth representation tool proposed by the author in a form that has been presented in  

Section 5.2 of the dissertation. 

The results presented there (Fig. 65 - Fig. 68 on page 123) and also in [271][272] show that 

sole application of non-linear depth transformation described by equation leads to 

improvement of the subjectively assessed quality of the reconstructed video by about 1 MOS 
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point (Mean Objective Score). It can be noticed that this also correspond to about one third of 

the overall subjective gains provided by the whole codec (with all coding tools) over HEVC 

simulcast coding of multiview test data.  

 

6.4. Experimental results for the new 3D video codec 

The proposed 3D video coding technology has been submitted to "Call for Proposals on 

3D Video Coding Technology" issued [129] by ISO/IEC MPEG. All of the proposals have 

been assessed both subjectively and objectively by independent research laboratories. The 

results of this evaluation have been shown in Fig. 74 at the beginning of Chapter 6. 

In this subsection, experimental results that allow to estimate the overall compression 

performance of the technology, as well as to estimate the efficiency of the individual tools, 

are presented. This is done using subjective and objective tests of decoded video quality. The 

methodology resembles the one used by MPEG. A set of 8 MultiView plus Depth (MVD) test 

sequences has been used (Table 1 on page 24, Table 2 on page 26). Four of them were in 

1920Ĭ1080 (Full-HD) resolution (Poznan Hall 2, Poznan Street, GT Fly and Undo Dancer). 

Other four test MVD sequences were in the 1024Ĭ768 (XGA) format. For the sake of brevity, 

results will be presented for the 1920Ĭ1080 sequences only.  

 

 
 

Fig. 79. The arrangement of the views: the views being coded are marked in black,  

while the views ñvò being synthesized in the receiver are marked in gray. 
 

 

For the experiments, 3 views from each sequence (video and depth) have been encoded at 

four different bitrates. Then the sequences have been decoded, and based on the decoded data 

six virtual views have been synthesized. These six virtual views (Fig. 79 ï "v1", ... ,"v6") 

have been uniformly placed between the original views (Fig. 79ï "1", ... ,"3") selected for 

coding (Table 2 on page 26). Similarly, six virtual views at the same spatial positions (Fig. 79 

ï "v1", ... ,"v6") from the uncompressed data have been synthesized in order to provide a 

reference for assessment. PSNR values (luminance) have been calculated (Table 20, Table 21, 

Fig. 80 left) and basing on them, average bitrate reductions versus HEVC simulcast were 

calculated using the Bjßntegaard formula [127]. It can be noted, that synthetic references were 

used instead of the video captured by real cameras because our aim was to assess the quality 
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degradation caused by the coding technology, not caused by the view synthesis algorithm 

itself. 

For the view synthesis of the virtual views at positions "v1" to "v6" (Fig. 79 ), algorithm 

implemented in ISO/IEC MPEG Synthesis Reference Software [124] [125] has been used, 

with the default configuration. 

In all cases, original (not pre-preprocessed) sequences have been used as references for 

quality measurement ï both objective (PSNR) and subjective (MOS). 

The subjective tests have been carried out [271][272] in accordance with the general rules 

of ITU Recommendation BT.500 [128]. A total number of 62 young persons were viewing 

each stereo pair (composed from virtual views "v3" and "v4", see Fig. 12) on a 46ôô Hyundai 

S465D polarization monitor. The Double Stimulus Method was selected for the subjective 

quality assessment that followed the rules used by the MPEG for evaluation of the proposals 

for the 3D video coding technology in 2011  [66].  

In our experiments, the number of subjects involved was higher than in the official MPEG 

evaluation. The high number of subjects yielded that 95% confidence intervals were very 

small i.e. of order of Ñ(0.1õ0.25). Therefore, those intervals were not depicted on the plots 

(Fig. 80 right). 

Fig. 80 in the left column, shows objective evaluation results (PSNR versus bitrate ï 

BD-rates - in Table 20) and Fig. 80 in the right column, show subjective evaluation results 

(11-point MOS versus bitrate - BD-rates ï Table 21), for virtual synthesized views for all four 

tested Full-HD sequences.  

Please note that both subjective and objective quality assessments lead to somewhat similar 

conclusions. Application of Non-linear Depth Representation (Table 20 and Table 21 ï 

column A) may result in more than 20% bitrate reduction.  

View-synthesis inter-view prediction combined with MVC-toolset (Table 20 and Table 21 

- column C) yields about 50ï60% bitrate reduction. Disoccluded Region Coding implemented 

in a standard HEVC without the MVC toolset provides similar bitrate reductions (column B) 

of about 45%. The discrepancy between the results obtained by subjective and objective video 

quality assessment is the most noticeable in the case of Poznan Hall 2 sequence (S01) which 

probably results from low quality of associated depth maps.  

The application of all devised tools except the Joint High-Frequency Layer Representation 

results in 50% or more of bitrate reduction (Table 20 and Table 21 - column D). When High-

Frequency Layer coding is used, we can consider two cases: column E - when the high 

frequency layer is modeled but finally not reconstructed, which is more reliable for objective 
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evaluation (PSNR comparison with synthetic noise would be irrelevant) - the gains here are 

about 50% (objective quality measures) and over 60% (subjective quality assessment). 

 

 

Table 20. Average bitrate reductions calculated as Bjßntegaard rates for luminance  

PSNR [dB] versus original (not preprocessed) sequences. 
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Poznan Street -27.2 -55.7 -56.8 -58.0 -62.8 -59.8 

Undo Dancer  -29.1 -57.0 -58.0 -60.9 -61.1 -60.7 

GT Fly -23.2 -48.8 -49.4 -54.0 -55.4 -53.7 

Average -24.8 -45.4 -47.6 -49.1 -49.1 -49.5 
 
 
 
 

Table 21. Average bitrate reductions calculated as Bjßntegaard rates for Mean Opinion Score 

(MOS) versus original (not preprocessed) sequences. 
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Poznan Hall 2 -24.5 -65.2 -67.2 -69.4 -70.1 

Poznan Street -35.7 -67.5 -72.2 -72.6 -74.8 

Undo Dancer  -8.0 -52.3 -57.4 -61.4 -62.7 

GT Fly -29.6 -62.0 -69.0 -68.8 -67.2 

Average -24.5 -61.7 -66.4 -68.1 -68.7 
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Fig. 80. Objective (left) and subjective (right) evaluation results for Full-HD test sequences. 

 

 

33

34

35

36

37

38

39

40

41

150 250 350 450 550 650 750

PSNR [dB]

bitrate [kbps]

PoznanHall 2

0

1

2

3

4

5

6

7

8

9

10

150 250 350 450 550 650 750

MOS

bitrate [kbps]

PoznanHall 2


























































































































































































