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ABSTRACT In the paper, we analyze the properties of the stochastic process obtained as the result of
summing modulo 2 without carry of a finite number of stationary binary stochastic processes, some of which
do not satisfy the independence condition. The primary goal of the mathematical analysis is to determine
the formula for the minimum number of independent stochastic processes that will ensure the mean and
the covariance values between adjacent elements of the output process are acceptable to the user, regardless
of the number of dependent stochastic processes at the input. We assume that we do not know which of
the summed processes are dependent and which are independent. To the authors’ knowledge, this problem
has not been addressed in the literature so far, and it may be helpful when using the modulo 2 summation
of binary stationary independent random processes with binary dependent processes. Possible applications
include random sequence generation, cryptography, simulations, coding theory, etc.

INDEX TERMS Binary stochastic processes, binary random variables, sum modulo 2, XOR operation,
mean, covariance, random bit sequences.

I. INTRODUCTION
The sum modulo 2 without carry, or alternatively, exclusive
or (XOR) operation, is used in many formulas or functions.
The result of XORing (combining XOR) binary stochastic
processes is also a stochastic process, but the analytical
derivation of its properties is often complex. Most theoretical
results assume the independence of input processes, but even
in this case, mathematically finding all parameters of the ran-
dom process at the output is not simple. In this work, we focus
on the summation modulo 2 without carry of many binary
stochastic stationary processes. The cases of XOR combining
two binary variables, two correlated pairs of variables, and the
XOR operation of independent correlated pairs were consid-
ered in [1]. This analysis is limited to single random variables
and does not consider the influence of correlations between
an unknown number of random variables on the properties of
the output.

In this work, we assume that the XOR operation is per-
formed on R binary stationary stochastic processes, of which
N processes are independent and M dependent, and the
relation between N and M is unknown. Using mathematical
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transformations we determine formulas for the mean value
of the output process and for the value of covariance between
neighboring elements of this process. Then, we determine the
smallest number of input stochastic processes that must be
independent to obtain the mean and the covariance between
neighboring randomvariables of the output process within the
acceptable range, assumed earlier by the user, independently
of the number of dependent stochastic processes participating
in the XOR summation.

In Section II, we derive formulas for the bias and covari-
ance between adjacent elements of the binary stochastic
process resulting from XORing a finite number of station-
ary binary stochastic processes, where some processes are
dependent and some are independent. Section III outlines a
method to reduce the bias and covariance between adjacent
elements of the output process, particularly when the bias and
covariance values, and the number of dependent processes
are unknown. In Section IV, we present formulas to deter-
mine the minimum number of combined XOR independent
binary stationary stochastic processes necessary to achieve
and maintain the specified limits for the bias and covariance
between adjacent elements of the output process, regardless
of the number and parameters of XORed dependent pro-
cesses. The work concludes with a summary asserting that
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the introduced formulas and findings are applicable across
various scientific areas.

II. CORRELATION AND COVARIANCE BETWEEN
ADJACENT ELEMENTS OF BINARY STOCHASTIC PROCESS
OBTAINED AS THE RESULT OF SUMMING MODULO 2 OF
MANY BINARY STOCHASTIC PROCESSES
Suppose we are given R binary stochastic processes: X1 =

{X1,i},X2 = {X2,i}, . . . ,XR = {XR,i}, i = 0, 1, . . . [2]
which are summed modulo 2 without carry. This operation
can also be done using logical operation XOR, which is often
preferred due to the greater speed of producing the final
result. The result of XORing R binary stochastic processes
is also a binary stochastic process, denoted in the paper as
Y = {Yi}, i = 0, 1, . . .., where

Y = X1 ⊕ X2 ⊕ · · · ⊕ XR. (1)

The i-th binary random variable Yi is the XOR sum of R
binary random variables, i.e.

Yi = X1,i ⊕ X2,i ⊕ · · · ⊕ XR,i, i = 0, 1, . . . . (2)

In general, the random variables Xr,i, where r =

1, 2, . . . ,R, can exhibit diverse distributions for different r
and i values.

In this paper, we assume that among R stochastic processes
from (1), N processes are independent andM=R-N processes
are dependent. Notably, we cannot establish which pro-
cesses are independent or dependent, andwe lack information
regarding the specifics of this dependence, i.e., if processes
are dependent in pairs, triples, quadruples, etc. We assume
also that in the all combined processes the greatest covariance
occurs between adjacent elements, i.e., Xr,i and Xr,i+1, r =

1, 2, . . . ,R.
Given that the variables

{
X1,i,X2,i, . . . ,XR,i

}
can theoret-

ically be grouped into two independent sets – one containing
independent variables and the second containing dependent
variables – (2) can be written as

Yi = Ai ⊕ Bi, (3)

where Ai represents the XOR sum of N independent binary
variables, and Bi denotes the XOR sum of M dependent
binary variables at instant i. Both Ai and Bi are considered
binary random variables and A = {Ai} or B = {Bi} are binary
stochastic processes.

Let cA,i = C(Ai,Ai+1) be the covariance of variables
Ai and Ai+1 and cB,i = C(Bi,Bi+1) be the covariance of
variables Bi and Bi+1,where i = 0, 1, . . ... Also let E [Ai] =

µA,i, where E [Ai] is the expected value of Ai. Similarly,
E [Bi] = µB,i is the expected value of Bi. We search the value
of covariance

cY ,i = C(Yi,Yi+1) = C (Ai ⊕ Bi,Ai+1 ⊕ Bi+1) (4)

for i = 0, 1, . . ..
To compute the covariance cY ,i, we use formulas proposed

byR. B. Davies in a private paper published on the Internet [1]

(Section IV). When the random variable Yi is considered to
take values of 0 or 1, then f (Yi)=1-2Yi, and (4) takes the
following form [1]:

C (Yi,Yi+1) =
1
4
C (f (Yi), f (Yi+1)) . (5)

Substituting (3) into (5), we obtain

C (Yi,Yi+1) =
1
4
C (f (Ai ⊕ Bi), f (Ai+1 ⊕ Bi+1)) . (6)

Because Ai and Bi are independent and Ai+1 and Bi+1 are
independent, we obtain [1]

C (Yi,Yi+1) =
1
4
C (f (Ai)f (Bi), f (Ai+1) · f (Bi+1)) . (7)

Using (4), (7) can be written in the following form

C (Yi,Yi+1) =
1
4
E{[f (Ai)f (Bi) − E (f (Ai) f (Bi))]

[f (Ai+1)f (Bi+1) − E (f (Ai+1)f (Bi+1))]}

=
1
4
E{f (Ai)f (Ai+1)f (Bi)f (Bi+1)} −

1
4
E{f (Ai+1)f (Bi+1)

E[f (Ai)f (Bi)]} −
1
4
E{f (Ai)f (Bi)E[f (Ai+1)f (Bi+1)]}

+
1
4
E{E[f (Ai)f (Bi)]E[f (Ai+1)f (Bi+1)]} (8)

Using the independence of Ai and Bi, Ai+1 and Bi+1,
f (Ai)f (Ai+1) and f (Ai+1)f (Bi+1), and the property that
E[E(·)] = E(·), (8) simplifies to:

C (Yi,Yi+1) =
1
4
E[f (Ai)f (Ai+1)]E[f (Bi)f (Bi+1)]

−
1
4
E {f (Ai+1) f (Bi+1)E [f (Ai)]E [f (Bi)]}

−
1
4
E {f (Ai) f (Bi)E [f (Ai+1)]E [f (Bi+1)]}

+
1
4
E [f (Ai)]E [f (Bi)]E [f (Ai+1)]E [f (Bi+1)]

(9)

or

C (Yi,Yi+1)

=
1
4
E [f (Ai) f (Ai+1)]E [f (Bi) f (Bi+1)]

−
1
4
E [f (Ai+1)]E [f (Bi+1)]E [f (Ai)]E [f (Bi)]

−
1
4
E[f (Ai)]E[f (Bi)]E[f (Ai+1)]E[f (Bi+1)]

+
1
4
E[f (Ai)]E[f (Bi)]E[f (Ai+1)]E[f (Bi+1)]

=
1
4
E[f (Ai)f (Ai+1)]E[f (Bi)f (Bi+1)]

−
1
4
E [f (Ai)]E [f (Bi)]E [f (Ai+1)]E [f (Bi+1)] . (10)

We also obtain

4cA,i = C[f (Ai), f (Ai+1)] = E[f (Ai)f (Ai+1)]

− E[f (Ai)]E[f (Ai+1)] (11)
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or

E[f (Ai)f (Ai+1)] = 4cA,i + E[f (Ai)]E[f (Ai+1)]. (12)

Similarly,

4cB,i = C[f (Bi), f (Bi+1)] = E[f (Bi)f (Bi+1)]

− E[f (Bi)]E[f (Bi+1)]. (13)

or

E[f (Bi)f (Bi+1)] = 4cB,i + E[f (Bi)]E[f (Bi+1)]. (14)

Because

E[f (Ai)] = E(1 − 2Ai) = 1 − 2E[Ai] = µA,i (15)

and

E[f (Bi)] = E(1 − 2Bi) = 1 − 2E[Bi] = µB,i, (16)

(12) and (14) take the following forms, respectively

E[f (Ai)f (Ai+1)] = 4cA,i + (1 − 2µA,i)(1 − 2µA,i+1), (17)

E[f (Bi)f (Bi+1)] = 4cB,i + (1 − 2µB,i)(1 − 2µB,i+1). (18)

Substituting (15), (16), (17), and (18) into (10), we obtain

cY ,i = C (Yi,Yi+1) =
1
4
{[4cA,i + (1 − 2µA,i)(1 − 2µA,i+1)]·

[4cB,i + (1 − 2µB,i)(1 − 2µB,i+1)]

− (1 − 2µA,i)(1 − 2µA,i+1) · (1 − 2µB,i)(1 − 2µB,i+1)}.
(19)

Let us further assume stationarity of A = {Ai} and
B = {Bi}, i.e. that covariances cA,i = C(Ai,Ai+1), cB,i =

C(Bi,Bi+1) and expected values µA,i, µB,i assume values cA,
cB, µA and µB, respectively. Consequently, (19) takes the
following form:

cY =
1
4
{[4cA + (1 − 2µA)2][4cB + (1 − 2µB)2]

− (1 − 2µA)2(1 − 2µB)2}. (20)

or

cY = 4cAcB + cA(1 − 2µB)2 + cB(1 − 2µA)2. (21)

The expected value of variable Yi can be computed directly
from the formula proposed by R. B. Davies in [1]

µY ,i = E [Yi] = E [Ai ⊕ Bi] = µA,i + µB,i − 2µA,iµB,i
(22)

For stationary A = {Ai} and B = {Bi} it is that

µY = µA + µB − 2µAµB, (23)

Formula (23) can also be written as

µY =
1
2

− 21A1B, (24)

where 1A = µA − 0.5 and 1B = µB − 0.5 are biases
corresponding to processes A and B, respectively. From (19)

to (24), it follows that the bias and covariance between adja-
cent elements of process Y = {Yi}, depend on both the
parameters of independent and dependent processes. More-
over, in [1], it has been shown that even a small correlation
between combined XOR random variables can significantly
increase the bias of the output. Thus, in our case, this correla-
tion could cause the value of µB to deviate significantly from
0.5.

Let us notice, that dependent stochastic processes do not
influence µY and cY if and only if µA = 0.5 and cA = 0. In
such a case,µY = 0.5 and cY = 0, regardless of the quality of
dependent processes. This distinctive property of XOR oper-
ation finds common application in stream ciphers, where {Bi}
models the data bit stream and {Ai} is the sequence of inde-
pendent and identically distributed (i.i.d) random variables
with uniform distribution modeling a random bit sequence.
Consequently, regardless of the statistical properties of {Bi},
sequence {Yi} is the sequence of i.i.d. random variables with
uniform distribution [3], [4]. Achieving this state in a real
systems, e.g. in random bit generators exploiting entropy
sources like noise, metastable states, jitter in ring oscillators
(RO) etc., is challenging and requires additional processing
(see e.g. [5]).

In the subsequent part of the article, we investigate whether
and under what conditions we will obtain µY → 0.5 and
cY → 0, regardless of the quality of summed modulo
2 dependent stochastic processes when R is finite.
Since the quantity of dependent processes and the specifics

of their interdependence remain unknown and furthermore,
when XOR is applied, even a minor correlation between
dependent random variables can significantly increase the
bias of the resultant output random variable, we encounter
a challenge in estimating the values of parameters µB and cB.
Consequently, we must resort to assuming the worst values
for µB and cB while endeavouring to assess the values and
characteristics of changes in µA and cA values based on the
number of independent processes. It is important to take into
account that biases of the summed XOR binary independent
processes may be notable and the covariance of the adjacent
elements in each of the combined XOR processes might also
be significant.

III. REDUCTION OF BIAS AND COVARIANCE OF
ADJACENT ELEMENTS OF Y = {Y I} WITH OPTIMAL
DESIGN
To simplify calculations let us assume that independent pro-
cesses have indexes 1, 2, 3, . . . ,N . ThenµX ,i(1) = E [Xi(1)],
µX ,i(2) = E [Xi(2)], . . . , µX ,i(N ) = E [Xi(N )] are expected
values of random variables Xi(1), Xi(2),. . . , Xi(N ), respec-
tively. Similarly, cX ,i(1) = C [Xi (1) ,Xi+1 (1)], cX ,i(2) =

C [Xi (2) ,Xi+1 (2)], . . . , cX ,i(N ) = C [Xi (N ) ,Xi+1 (N )]
are covariances between adjacent bits in sequences
{Xi(1)}, {Xi(2)}, . . . , {Xi(N )}, i = 0, 1, . . . . The subsequent
steps of combining XORN random variables can be modeled
withN random variables Zi(n), n = 1, 2, . . . ,N , i = 0, 1, . . .,
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i.e.,

Zi(1) = Xi(1),

Zi(2) = Xi(1) ⊕ Xi(2),

Zi (3) = Xi (1) ⊕ Xi (2) ⊕X i (3) = Zi (2) ⊕ Xi (3) ,

...

Zi (N ) = Xi (1) ⊕ Xi (2) ⊕ . . . ⊕ X i (N ) = Zi (N − 1) ⊕

Xi (N ) = Ai. (25)

We search for expected values of subsequent Zi(n),
n = 1,2,. . . , N , i = 0, 1, . . ., i.e., µZ ,i(1) = E [Zi(1)],
µZ ,i(2) = E [Zi(2)],. . . , µZ ,i(N ) = E [Zi(N )] and
covariances cZ ,i(1) = C [Zi (1) ,Zi+1 (1)], cZ ,i(2) =

C [Zi (2) ,Zi+1 (2)], . . . , cZ ,i (N ) = C [Zi (N ) ,Zi+1 (N )].
Exploiting the reasoning described in the preceding

section, we derive that

µz,i (n+ 1) = E [Zi (n+ 1)] = E [Zi (n) ⊕ Xi (n+ 1)]

= µZ ,i(n) + µX ,i(n+ 1) − 2µZ ,i(n)µX ,i(n+ 1)
(26)

and

cZ ,i (n+ 1) = C (Zi (n+ 1) ,Zi+1 (n+ 1)) =
1
4
{[4cZ ,i(n)

+(1−2µZ ,i(n))(1 − 2µZ ,i+1(n))][4cX ,i(n+1)

+ (1 − 2µX ,i(n+ 1))(1 − 2µX ,i+1(n+ 1))]

− (1 − 2µZ ,i(n))(1 − 2µZ ,i+1(n))·

(1 − 2µX ,i(n+ 1))(1 − 2µX ,i+1(n+ 1))}, (27)

where n = 1,2,. . . , N−1.
Assuming stationarity of the combined processes, i.e., that

values of µX ,i(1) = E [Xi(1)], µX ,i(2) = E [Xi(2)],. . . ,
µX ,i(N ) = E [Xi(N )] and the values of cX ,i(1) =

C [Xi (1) ,Xi+1 (1)], cX ,i(2) = C [Xi (2) ,Xi+1 (2)], . . . ,
cX ,i(N ) = C [Xi (N ) ,Xi+1 (N )] do not depend on i = 0,1. . . ,
we have N expected values µX (1), µX (2) , . . . , µX (N ) and
N covariances cX (1), cX (2),. . . , cX (N ). Formula (26) then
reduces to

µZ (n+ 1) = µZ (n) + µX (n+ 1) − 2µZ (n)µX (n+ 1)
(28)

or

µZ (n+ 1) =
1
2

− 2
(

µZ (n) −
1
2

) (
µX (n+ 1) −

1
2

)
,

(29)

where µZ (1) = µX (1). For n = N−1 it is also that
µZ (N ) = µA.

Formula (27) takes the following form:

cZ (n+ 1) =
1
4
{[4cZ (n) + (1 − 2µZ (n))2][4cX (n+ 1)

+ (1 − 2µX (n+ 1))2]

− (1 − 2µZ (n))2(1 − 2µX (n+ 1))2}, (30)

where cZ (1) = cX (1) and cA = cZ (N ).

FIGURE 1. Areas of values for cX and µX , where cZ (N) tends to zero with
the increase of N (green), and areas where the absolute covariance value
increases (red).

The formulas (28)-(30) enable the calculation of expected
values and covariances between adjacent random variables of
the processes Z (n) = {Zi(n)} with the increase of the number
n of combined XOR independent binary stochastic processes,
where Z (N ) = A.

The form of (29) significantly influences the subsequent
analysis. Excluding extreme casesµX (n) = 0 orµX (n) = 1,
for n = 1, 2, . . . ,N − 1, the value of µZ (n) consistently
approaches 0.5 as n increases. This holds true regardless of
the bias values of independent processes as it was demon-
strated in previous studies such as [1], [6], and [7] for
independent random variables.

The computation of covariance values between adjacent
random variables at the output obtained as the result of sum-
ming modulo 2 only independent binary stochastic processes
is more challenging. For not all covariance values cX (1),
cX (2),. . . , cX (N ) and for not all expected values µX (1),
µX (2) , . . . , µX (N ), the covariance cA = cZ (N ) tends to
zero as N increases. Figure 1 illustrates areas of values for
cX and µX , where cZ (N ) tends to zero with increasing N
(green color) and areas where the absolute value of covari-
ance between adjacent binary random variables increases
(red color). For greater clarity it was assumed that cX (1) =

cX (2) =,. . . , = cX (N ) = cX and µX (1) = µX (2) =

, . . . ,= µX (N ) = µX . To better represent the nature of the
obtained mathematical relationships, the range of cX values
was expanded twice compared to the real range of changes in
cX in binary stochastic processes. If the computed covariance
exceeded 0.5 on the plot, it was assigned the value of 0.5. If it
was less than -0.5, it was assigned the value of −0.5.

Drawing observations from Fig. 1, we can note the follow-
ing: 1) if all cX (1), cX (2),. . . , cX (N ) are positive, there exist
pairs of initial covariances and expected values for which
increasing the number of independent processes combined
using the XOR operation will not reduce the covariance
values between adjacent binary random variables in the out-
put stochastic process; 2) if all cX (1), cX (2),. . . , cX (N ) are
negative but greater than -0.25, cZ (N ) always tends towards
zero with an increasing N ; 3) if one or more of the combined
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FIGURE 2. The regions of the cX and µX values for which cZ (N) approaches zero with the increase of N (green), as well as the
regions where the absolute covariance value grows (red) for different values of γ .

XOR independent processes have zero covariance between
adjacent elements, then the adjacent elements of the output
stochastic process also have zero covariance, and the process
itself is unbiased, regardless of the covariance values between
adjacent elements of the remaining processes and the values
of µX (1), µX (2) , . . . , µX (N ), The latter property is known
but was obtained with the use of a new methodology.

In real-world scenarios, particularly for larger N ,
independent stationary stochastic processes may exhibit
simultaneously positive and negative covariance values
between adjacent random variables. Let’s explore how this
impacts the value of cA = cZ (N ). To achieve this, pro-
cesses with positive covariances between adjacent elements

were combined XOR with processes with negative covari-
ances between adjacent elements. For simplicity, the same
covariance value was assigned to processes with positive
covariances, and random negative covariance values were
selected from the open interval (–0.25, 0). The expected
values of all component stationary stochastic processes were
kept identical. The outcomes are depicted in Fig. 2. The con-
tribution of γ processes with initially negative covariances
was incrementally increased by 10%, starting from a value of
10%. The total number of processes was set to N = 700.

Analysing graphs from 2a to 2e, we can observe that as the
proportion of processes with negative covariance increases,
the range of values for cX and µX ,where cZ (N ) tends to
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FIGURE 3. The dependency of the expected value µY of the output
process Y={Y i} as a function of expected values µA and µB (a) and the
projection of the surface from figure (a) onto the plane (µB,µA).

zero, undergoes rapid expansion. For 40% or more partici-
pation of processes with negative covariance, it encompasses
all cX values within the interval (-0.25, 0.25) and all µX
values within the interval (0, 1). Since even for relatively
small N , real binary and independent stochastic processes
have positive and negative covariance values between adja-
cent pairs, combining them using XOR operations will result
in covariance reduction in most cases. Thus, witnessing an
increase in covariance values after applying XOR operations
in real-world conditions is theoretically possible but difficult
to observe.

Figs. 1 and 2 show a scenario in which only independent
binary stochastic processes are combined using XOR. Sup-
pose we combine the process Z (N ) = A with the process
resulting from combining XOR dependent binary stochastic
processes, denoted as B in this paper. In that case, the final
result depends on the properties of A and B simultaneously.
The closer the covariance of process A is to zero and the
expected value is to 0.5, the less influence process B has on
the mean value and the covariance between adjacent elements
of Y . In Fig. 3, the impact of the expected values µA and
µB on the expected value µY of the output process Y is
illustrated. If µA or µB equals 0.5, the output will always be
an unbiased, i.e., with µY= 0.5. If µB takes extreme values

of 0 or 1, then µY = µA for µB= 0, and µY = 1 − µA for
µB = 1. If process A is biased (µA deviates from 0.5), the
bias of process B not only does not increase the bias of Y
compared to A but may even reduce it, except for extreme
cases of µB= 0 or µB = 1. For example, with µA= 0.6 and
µB= 0.15, according to formula (23), we get µY =0.57 or
1Y= 0.07, resulting in bias less than the bias 1A= 0.1 of
process A obtained by combining XOR independent stochas-
tic processes. In summary, if independent processes produce a
biased A, dependent processes will reduce the bias of process
Y , making it less biased than A. The degree of this reduction
depends on both µA and µB values.

The influence of the covariance and the expected value
of B on the covariance between adjacent elements of Y is
more complex, as illustrated in Figs. 4 and 5. The left-hand
plots depict the shape of the surface on which the values
of covariance cY align with changes in the covariance and
expected value of process B for selected pairs of covariance
and expected value of process A. The values of these pairs
are obtained by combining XOR independent processes. The
color of the surface corresponds to the numerical values of cY .
The right-hand plots are projections of the obtained surfaces
onto the plane (µB,cB). The graphs in Fig. 4 are obtained
for positive values of cA, while the graphs in Fig. 5 are for
negative cA. In both cases, the absolute values of covariance
were identical.

Analyzing the graphs from Figs. 4 and 5, the following
conclusions can be formulated:

1) If XORing independent processes yields processAwith
low covariance cA, whether positive or negative, and
with a small bias µA, the dependent processes do not
significantly impact the covariance value cY (graphs 4a
and 5a).

2) If the covariance cA of A is close to zero but the bias
µA is significant, dependent processes can significantly
alter the covariance value cY . The final outcome is
significantly influenced by the covariance value cB of
B, while the impact of the expected value µB on cY is
small (see graphs 4b and 5b).

3) If the covariance cA of A significantly deviates from
zero, and the biasµA of this process is small, dependent
generators can significantly alter the covariance value
cY . The final result is significantly influenced by both
the covariance value cB and the expected value µB
(graphs 4c and 5c).

4) If the covariance cA of A significantly deviates from
zero, and the biasµA is large, dependent generators can
significantly alter the covariance value cY . The final
result is significantly influenced by both the covariance
value cB and its expected value µB. Regarding point 3,
the range of µB and cB values that can yield cY close to
zero is very small (graphs 4d and 5d).

5) Negative values of covariance cA expand the range of
µB and cB values for which cY can be close to zero,
in comparison to positive values of cA.
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FIGURE 4. The covariance cY of Y as a function of the expected value µB and the covariance cB of the B - positive values of cA; (a) cA = 0.01,
µA = 0.51; (b) cA = 0.01, µA = 0.85; (c) cA = 0.15, µA = 0.01; (d) cA = 0.15, µA = 0.85.

IV. MINIMAL NUMBER OF INDEPENDENT GENERATORS
THAT PROVIDE ACCEPTABLE BIAS AND COVARIANCE
Considering the user’s standpoint, a key information is the
minimum number of processes that must be independent to

obtain Y = {Yi}, with acceptable bias and covariance between
variables Yi and Yi+1, regardless of the bias and covariance
values of process B. Notice that the value of µB can sig-
nificantly deviate from 0.5 because even a small correlation
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FIGURE 4. (Continued.) The covariance cY of Y as a function of the expected value µB and the covariance cB of the B - positive values of cA;
(a) cA = 0.01, µA = 0.51; (b) cA = 0.01, µA = 0.85; (c) cA = 0.15, µA = 0.01; (d) cA = 0.15, µA = 0.85.

between stochastic processes combined with XOR operation
can introduce substantial bias to the output [1]. From the
previous section, we know that the bias of B not only does
not increase the bias of Y but can even decrease it, compared
to the bias of A. The boundary case when B cannot reduce the
bias of Y occurs for µB = 0 or µB = 1. In this scenario, (23)
takes the form:

µY =
1
2

±

(
µA −

1
2

)
=

1
2

± 1A, (31)

where the plus sign is obtained for µB = 0, and the minus
sign for µB = 1.

Calculating the number of independent processes that will
ensure acceptably low covariance between variables Yi and
Yi+1, is significantly more challenging, as cY depends on
four parameters. To simplify the analysis, we assume that the
covariance between adjacent variables is very high for the
dependent processes. As negative values of cB yield a more
favorable situation than positive ones, the worst-case scenario
for binary stochastic processes occurswhen cB = 0.25. In this
case, (21) takes the form:

cY = cA + cA(1 − 2µB)2 + 0.25(1 − 2µA)2 (32)

or

cY = cA + 12
A + 4cA12

B, (33)

where 1A = µA − 0.5 and 1B = µB − 0.5. Note that the
covariance value cY does not depend on the sign of the biases
1A, 1B.
Formulas (29)-(33) can be utilized to determine the min-

imum number of independent processes that will ensure an
acceptable bias and covariance values between adjacent ele-
ments of process Y , regardless of the number of dependent

processes. Assuming the worst-case scenario, i.e., that depen-
dent processes operate with the most unfavorable covariance
and bias values, i.e., cB = 0.25, µB = 0 (1B = −0.5) or
µB = 1 (1B = 0.5), we obtain

cY = 2cA + 0.25(1 − 2µA)2, (34)

and

cY = 2cA + 12
A. (35)

The utilization of (29)-(35) illustrates the following exam-
ple.

Example
Let’s assume that the acceptable bias of Y is ±0.001,

meaning that µY is expected to belong to the symmetri-
cal and closed interval [0.499, 0.501]. Let’s also assume
that the acceptable covariance between adjacent elements
of Y is ±0.001, meaning that cY belongs to the symmetri-
cal and closed interval [−0.001, 0.001]. Furthermore, let’s
assume that combined XOR processes have the same bias,
i.e., µX (1) = µX (2) = . . . = µX (N ) = µX and
µZ (1) = µX (1), equal to the least favorable observed value
in a real system. Similarly, let’s proceed with covariance
values, i.e., cX (1) = cX (2) = . . . =, cX (N ) = cX and
cZ (1) = cX (1), where cX is the least favorable observed
value in a real system.

Consider four pairs of µX and cX values: (0.55, 0.1),
(0.55, 0.15), (0.85, 0.1), and (0.85, 0.15). Tables from I to
III show the values of µA, µY , cA and cY with precision to
five decimal places for the first three pairs. The fourth pair
consists of numbers for which µA tends to 0.5 but cA does not
converge to zero. The numerical results are presented for N
ranging from 1 to 15. All calculations were performed using

171464 VOLUME 13, 2025



M. Jessa, J. Nikonowicz: Summing Modulo 2 of Stationary Binary Stochastic Processes

FIGURE 5. The covariance cY of the Y as a function of the expected value µB and the covariance cB of the B - negative values of cA; (a) cA = −0.01,
µA = 0.51; (b) cA = −0.01, µA = 0.85; (c) cA = −0.15, µA = 0.01; (d) cA = −0.15, µA = 0.85.

32-bit arithmetic, rounding the results presented in the tables
to five decimal places.

In the case of the pair µX = 0.55, cX = 0.1, achiev-
ing a bias within the ±0.001 range is possible with 4 or
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FIGURE 5. (Continued.) The covariance cY of the Y as a function of the expected value µB and the covariance cB of the B - negative values of cA;
(a) cA = −0.01, µA = 0.51; (b) cA = −0.01, µA = 0.85; (c) cA = −0.15, µA = 0.01; (d) cA = −0.15, µA = 0.85.

TABLE 1. Subsequent values of µA, µY , cA and cY for µX = 0.55,
cX = 0.1.

more binary stationary stochastic processes operating inde-
pendently. To attain and maintain a covariance value within
the ±0.001 range, we must combine XOR at least 7 binary
stationary stochastic processes, regardless of the number and
parameters of dependent binary stationary stochastic pro-
cesses. It is noteworthy that the absolute value of the bias 1Y
and the covariances cA and cY monotonically approach the
limiting value of 0 as N increases.
When µX = 0.55, cX = 0.15, the situation is similar, but

to achieve a covariance within the range of ±0.001, we need
at least 13 binary stationary stochastic processes operating
independently.

TABLE 2. Subsequent values of µA, µY , cA and cY for µX = 0.55.
cX = 0.15.

A slightly different situation arises for the pair µX = 0.85,
cX = 0.1. Although in this case µY tends toward 0.5 and
cY toward 0, the monotonic trend is not observed for the
covariance cA. To achieve a bias within the range of ± 0.001,
combining XOR at least 18 independent binary stationary
stochastic processes is necessary. Obtaining a covariance
within the range of ±0.001 requires the independent oper-
ation of at least 51 binary stationary stochastic processes.

Upon reviewing the current findings, it is evident that
combining binary stationary stochastic processes through
XOR operations can significantly reduce the bias and
covariance between adjacent elements of the process
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TABLE 3. Subsequent values of µA, µY , cA and cY for µX = 0.85.
cX = 0.1.

Y = {Yi}, i = 0, 1, . . .. This holds true regardless of
the parameters of dependent binary stochastic processes and
regardless of their number. To achieve this, we needN ≥ Nmin
independent stationary stochastic processes, where Nmin can
be calculated using formulas proposed in this paper. The
value ofNmin depends significantly on the bias and covariance
between adjacent elements of dependent processes. However,
it’s not guaranteed (see Fig. 1) that for all possible bias and
covariance values between adjacent elements of indepen-
dent binary stationary stochastic processes combined with
XOR operation, we will obtain zero covariance cA and cY
for N → ∞.

V. CONCLUSION
In this paper, it has been shown that summing modulo 2 with-
out carry of a finite number of stationary binary stochastic
processes can be an efficient method for reducing bias and
covariance between adjacent elements of binary stochastic
processes. The existing mathematical formulas for bias or
covariance reduction with the XOR operation assume the
independence of random variables and can be found only in
a few papers. This article presents a theoretical analysis of
XORing binary stochastic processes where none of the inde-
pendent processes is unbiased with zero covariance between
adjacent elements, and scenarios where an unknown number
of binary stochastic processes do not meet the independence
condition. This situation is typical of many applications, e.g.,
in cryptography, when sources of true random bits imple-
mented on the same board or circuit are often dependent or
susceptible to attacks. The derived formulas and diagrams
presented in this paper can also be used to reduce the cor-
relation between adjacent bits in sequences used in many
non-cryptographic applications. The next step of the research
could be to check whether the reduction of the bias and
covariance values described in the paper, resulting fromXOR
combining binary sequences, some of which do not satisfy the

independence criterion, implies an equally effective improve-
ment of the statistical properties of the output sequences in
real systems. Well-known statistical test suites, such as NIST
SP 800-22, Test U01, or Dieharder, could be used for this
assessment.
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