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Abstract

State-of-the-art objective quality metrics designed for immersive content typically prior-
itize spatial distortions; therefore, they can omit temporal artifacts introduced by view
synthesis and dynamic scene rendering. Consequently, metrics such as the commonly used
peak signal-to-noise ratio for immersive video (IV-PSNR) are “temporally blind”, creating
a conceptual gap where temporally stable distortions cannot be distinguished from disrup-
tive temporal flickering. To address this limitation, we propose a temporal extension of the
IV-PSNR metric that incorporates motion information into the quality assessment process.
The method augments the traditional Y, U, and V color components with a fourth channel
representing motion vectors (M), enabling the proposed four-component IV-PSNRYUVM

metric to account for dynamic distortions introduced by view rendering. To evaluate the
effectiveness of the proposed approach, multiple configurations of motion integration were
tested, including metrics based solely on motion consistency, metrics combining motion
with texture, and several dense optical flow algorithms with different parameter settings.
Extensive experiments performed on immersive video sequences demonstrate that the
proposed four-component IV-PSNRYUVM achieves the highest correlation with subjectively
perceived video quality. These results confirm that combining texture with motion informa-
tion provides a benefit, making the proposal a valuable addition for real-world immersive
video systems.

Keywords: video quality; immersive video; video compression; view rendering

1. Introduction
While immersive video [1,2] is by far more advanced than traditional two-dimensional

video, the ultimate goal remains unchanged: delivering the highest possible quality of ex-
perience (QoE) by maximizing subjective satisfaction for users. Unfortunately, conducting
comprehensive subjective tests for quality assessment is a laborious and time-consuming
endeavor [3], rendering it highly impractical. Consequently, a natural alternative is to
employ objective quality assessment.

The field of objective quality evaluation is vast, especially within image and video
processing. In many scenarios, such as traditional two-dimensional video, cutting-edge
metrics effectively emulate the subjective perception of video quality, e.g., structural simi-
larity image assessment (SSIM) [4], video multi-method assessment fusion (VMAF) [5], or
learned perceptual image patch similarity (LPIPS) [6].

It is important to note that within the domain of traditional, two-dimensional video,
the significance of temporal consistency is well-established. Metrics such as video quality
model (VQM) [7] and spatiotemporal reduced reference entropic differencing (STRRED) [8]

Appl. Sci. 2026, 16, 274 https://doi.org/10.3390/app16010274

https://crossmark.crossref.org/dialog?doi=10.3390/app16010274&domain=pdf&date_stamp=2025-12-29
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5105-5090
https://orcid.org/0000-0002-7142-9416
https://orcid.org/0000-0001-7426-3362
https://doi.org/10.3390/app16010274


Appl. Sci. 2026, 16, 274 2 of 18

efficiently assess temporal changes to detect artifacts (e.g., flickering) which are invisible
in static frame analysis. Furthermore, advanced methods explicitly use the optical flow to
model the human visual system’s (HVS) sensitivity to motion. For instance, motion-based
video integrity evaluation (MOVIE) index [9] utilizes optical flow to efficiently evaluate
both motion and spatial distortions, while other approaches employ motion-compensated
strategies to weight structural similarity (motion-compensated SSIM, MC-SSIM) [10]. De-
spite these advancements in two-dimensional video, the distinctive nature of immersive
video, involving the reprojection of data captured by multiple cameras [11], sets it apart
as an exception. In this context, neither traditional spatial nor temporal objective quality
metrics do not perform very well. To account for the specific artifacts inherent to immersive
video, the PSNR for immersive video (IV-PSNR) metric has been introduced [3].

The IV-PSNR metric [3] is an extension of the classical peak signal-to-noise ratio
(PSNR), specifically designed for video quality assessment of immersive content. Unlike
basic PSNR, which simply computes pixel-wise differences, IV-PSNR accounts for the
characteristics of immersive content by incorporating and compensating corresponding
pixel shift (CPS) search (Figure 1) within local blocks, compensating small geometric mis-
alignments introduced by view synthesis. Additionally, IV-PSNR analyzes the global
component differences (GCD) between compared frames (Figure 1), providing a more reli-
able assessment for content with inter-view illumination variations. These techniques allow
the IV-PSNR metric to achieve a strong correlation with mean opinion scores (MOS), outper-
forming even more sophisticated state-of-the-art metrics in immersive video applications.

 

Figure 1. Schematic diagram of the IV-PSNR metric. Arrow color notation: grey—luma component
(Y); blue—first chroma component (U); pink—second chroma component (V); violet—global compo-
nent differences (GCD) vector (one value per Y, U, and V channels); orange—estimated corresponding
pixel shift (CPS) between two compared pictures (one value per pixel); light gray—metric values;
solid lines represent reference sequence; dashed lines represent tested sequence.

As presented in Figure 2, the basic version of the IV-PSNR metric exhibits a significantly
higher correlation with subjective quality evaluation (SROCC > 0.63) than other state-of-
the-art metrics in immersive video applications, including perceptual metrics like VMAF
(SROCC < 0.41) or LPIPS (SROCC < 0.55). This performance gap is caused by the fact
that traditional 2D quality metrics are not designed to assess specific geometric distortions
inherent to view synthesis. Consequently, since IV-PSNR is currently the most reliable
objective metric for this domain, we select it as the main baseline for our proposed temporal
extension, excluding less correlated metrics from further validation.

However, the primary goal of this work is to bridge the conceptual gap in the IV-
PSNR metric’s definition. The basic version of IV-PSNR [3] is “temporally blind” and
practically limits the analysis to a single frame (simply averaging frame-level scores when
assessing video sequence). Consequently, it cannot distinguish between a video with
stable distortions and one with significant, disruptive temporal flickering if their average
spatial quality is the same. This limitation is particularly valid in the considered context,
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as in immersive video, viewers freely navigate through a 3D scene, and even subtle
inconsistencies over time—such as flickering edges in input views and, what is crucial for
subjective quality [12], in depth maps—can strongly degrade perceived quality even if
individual frames have high quality.

K
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C

 

 SROCC 

Figure 2. Correlation between subjective quality and state-of-the-art objective quality metrics in
immersive video applications. Figure from [3].

Therefore, providing a methodologically sound way to incorporate motion analysis
is a necessary evolution of the tool, providing the mathematical framework to capture
temporal consistency, which should be a prerequisite for any reliable immersive video
quality assessment tool.

2. Temporal Extension of the IV-PSNR Metric
The goal of this work is to extend the IV-PSNR metric with information about changes

in the temporal characteristic of the measured sequence. The most widespread quality met-
rics used in immersive video applications (PSNR, SSIM, IV-PSNR, weighted-to-spherically
uniform PSNR (WS-PSNR) [13], LPIPS [6], and SSIM for immersive video (IV-SSIM) [14])
operate on a single image, and sequence quality is calculated by a simple average over
frames. Unfortunately, such an approach makes the abovementioned metrics insensitive to
the deterioration of motion consistency. Some temporal-related artifacts, like edge flick-
ering of objects, are highly disturbing to viewers and should be included in measured
subjective quality.

The proposed approach includes the motion field analysis [15] to evaluate sequence
motion consistency. This strategy aligns with state-of-the-art methodologies in traditional
video quality assessment (e.g., [9,10]), where incorporating optical flow has been shown
to be crucial for accurately modeling the human perception of temporal artifacts. The
motion field is determined using a dense optical flow (DOF) algorithm, and the optical
flow calculation is performed for both sequences (reference and tested). A visual difference
between motion fields calculated for the original and the distorted images is presented
in Figure 3.

Building on this, we propose to include the analysis of the similarity between the
temporal characteristics of two compared video files in the IV-PSNR metric calculation by
augmenting the typical Y, U, and V components with a fourth channel representing motion
vectors (M) derived using a dense optical flow algorithm.
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(A) Input view 
(B) View rendered using 

uncompressed input views 

(C) View rendered using heavily com-

pressed input views 

   

   

Figure 3. Example of motion fields calculated (using Farneback’s algorithm) for original (A) and
distorted (B,C) sequences; yellow boxes highlight regions with significantly different characteristics
of motion fields calculated for differently processed sequences.

2.1. Considered Dense Optical Flow Estimation Algorithms

The proposed temporal extension of the IV-PSNR metric relies on the accurate and
efficient estimation of dense optical flow (DOF) to assess motion consistency within
two compared video sequences. While there are numerous DOF algorithms, ranging
from classical optimization methods [16,17] to deep learning-based approaches [18,19], in
this paper, we focus on practical applicability, accessibility, and the ability to fine-tune
performance. For these reasons, we have considered two algorithms available through the
commonly used OpenCV library: Farneback’s algorithm [20] and the robust local optical
flow (RLOF) algorithm [21].

Farneback’s algorithm is a well-known global motion estimation technique that ap-
proximates the displacement field as a polynomial expansion. Its primary advantages
include its robustness to noise and its ability to capture large displacements, making it
suitable for a variety of video content, including immersive video. Furthermore, its imple-
mentation in OpenCV ensures public availability, facilitating reproducibility of the research.
The algorithm’s parameters, such as polynomial expansion degree, window size, number
of iterations, and number of pyramid levels, offer considerable flexibility for optimization.

The RLOF algorithm is another powerful dense optical flow method. Unlike global ap-
proaches, RLOF focuses on local motion estimation, which can be particularly beneficial in
scenes with complex or non-uniform motion patterns (e.g., in rendered views in immersive
video systems). Its robust characteristics imply insensitivity to outliers and illumination
changes, often found in immersive video sequences captured by a set of cameras. Similarly
to Farneback’s algorithm, the OpenCV implementation of RLOF provides an accessible
and well-documented tool. The algorithm’s configurable parameters, including regular-
ization weights and iteration counts, enable detailed tuning to meet specific application
requirements, thereby ensuring a balance between accuracy and computational cost.

In the context of this study, both algorithms can be integrated into the IV-PSNR
v6.0 software and used to compute dense optical flow fields, allowing us to analyze how
different DOF estimation algorithms influence the performance of the proposed temporal
IV-PSNR extension.
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2.2. Dense Optical Flow in IV-PSNR

As discussed earlier, conventional single-image quality metrics, by simply averaging
over the entire sequence, are insensitive to crucial temporal artifacts such as object edge
flickering, which significantly degrade the subjective quality of immersive video. To
address this limitation, the proposed approach extends the IV-PSNR metric by incorporating
information derived from motion consistency analysis, which is performed using a dense
optical flow algorithm.

Importantly, the temporal IV-PSNR extension does not require the use of a specific
DOF algorithm; both Farneback’s and RLOF produce the two-dimensional motion vector
fields, which can be used as an additional motion channel M, integrated into the metric
alongside the Y, U, and V components.

A crucial aspect of integrating DOF into any PSNR-based metric (including IV-PSNR)
is to adapt the calculation to work on two-dimensional motion vectors, since they typically
operate on scalar image components (e.g., luma and chroma values), calculating the sum of
squared differences (SSD) between two images. For a scalar component, the calculation
is straightforward:

SSDc = ∑
y

∑
x
(Rc(x, y)− Tc(x, y))2 ,

where Rc(x, y) and Tc(x, y) are values of a color component c of pixel (x, y) in the reference
(R) and tested (T) sequences, respectively.

To combine spatial distortions with motion-based distortions within a unified IV-PSNR
framework, we define the motion distortion term SSDM by analogy to SSDc. The SSDM

value is calculated based on two corresponding motion vectors from the reference motion

vector field (
−→
RM) and the tested motion vector field (

−→
TM) calculated for reference (R) and

the tested (T) sequences, respectively. Finally, the SSDM is defined as a sum of the squared

Euclidean distances between corresponding motion vectors
−−−−−→
RM(x, y) and

−−−−−→
TM(x, y) and is

described by the following equation:

SSDM = ∑
y

∑
x

∣∣∣∣∣−−−−−→RM(x, y)−
−−−−−→
TM(x, y)

∣∣∣∣∣
2

.

This formulation ensures that the motion component is fully compatible with the
existing SSD-based structure of the IV-PSNR metric and can be integrated as a fourth
distortion channel.

The integration of DOF into the IV-PSNR framework can be realized through several
methods, resulting in various approaches that leverage temporal characteristics to improve
objective quality assessment. Among these, the four-component IV-PSNR (Section 2.2.1)
constitutes the main contribution of this paper, jointly evaluating spatial and temporal video
aspects. For completeness, additional variants are also examined (Section 2.2.2). These
variants are anchor baselines, designed to isolate individual aspects of motion analysis
and demonstrate that relying on motion-only or motion-assisted algorithms does not fully
capture the whole spatiotemporal characteristics of immersive video.

2.2.1. Proposed Four-Component IV-PSNR: IV-PSNRYUVM

In this approach, the DOF field is computed for both the reference and the tested video
sequence. These DOF fields are treated as an additional, fourth component of the image,
supplementing three color components (i.e., Y, U, and V)—Figure 4. This allows for the
calculation of IV-PSNR for both the spatial and temporal aspects of the video, resulting in
the comprehensive IV-PSNRYUVM (with “YUV” in the name representing color components
and “M” representing the motion component) metric.
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Figure 4. Schematic diagram of the proposed IV-PSNRYUVM metric. Arrow color notation: grey—
luma component (Y); blue—first chroma component (U); pink—second chroma component (V);
violet—global component differences (GCD) vector (one value per Y, U, and V channels); green—
motion field component (M); orange—estimated corresponding pixel shift (CPS) between two com-
pared pictures (one value per pixel); light gray—metric values; solid lines represent current frame
reference sequence; dashed lines represent current frame tested sequence; dotted lines represent
previous frames of reference and tested sequence.

Since the motion field (M) and the three color components (Y, U, V) operate on different
numerical scales, their distortions cannot be combined directly. Luma and both the chromas
operate on quantized ranges determined by the bit depth of the input video (typically
8 or 10 bits). At the same time, dense optical flow values are expressed in pixel units and
are independent of bit depth. Without normalization, SSDM could either dominate the
combined metric or become negligible, depending on the video bit depth. To ensure that
all four components contribute in a comparable and bit-depth-independent manner, the
motion-related distortion SSDM is rescaled to match the dynamic range of the quantized
video components. Using 10-bit videos as the reference scale, the corrected distortion is
defined as:

SSD
′
M = SSDM · 2(b−10) .

This normalization does not assume that optical flow vectors scale with bit depth.
Instead, it equalizes the numerical dynamic range of all four components, enabling
a meaningful and stable weighted combination within the IV-PSNRYUVM metric.

A combination of the IV-PSNR values for each component is performed by using the
weighted average, following the concept from the original IV-PSNR metric. In IV-PSNR [3],
the weights are set by default to 4:1:1 for luma and two chromas, respectively. In the
proposed IV-PSNRYUVM, the weights are set to 4:1:1:M, where M is the weight for motion
vectors. While a broader range of M values (0.125, 0.25, 0.5, 1, 2, 4, 8, and 16) was initially
evaluated, the extreme weights consistently led to lower correlation with subjective quality.
Therefore, for clarity and conciseness, only the representative values M ∈ {1, 2, 4} are
reported in this paper.

2.2.2. Other DOF Integration Approaches

Two other variants are not alternative proposed metrics. Instead, they serve as anchors
designed to isolate the effect of motion analysis in IV-PSNR, helping to demonstrate that
the proposed four-component IV-PSNRYUVM metric is the most efficient and conceptually
justified approach.

A. DOF-Only IV-PSNR

The DOF-only approach focuses exclusively on the motion consistency. In this method,
the IV-PSNR metric is calculated solely on the DOF fields (Figure 5). The comparison is
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thus performed directly between the motion sequences of the reference and tested videos,
rather than their original texture content. This provides a dedicated measure of motion
distortion, making the metric highly sensitive to temporal inconsistencies and artifacts that
the texture-based quality assessment might overlook.

 

Figure 5. Schematic diagram of the proposed IV-PSNRM metric. Arrow color notation: grey—
luma component (Y); blue—first chroma component (U); pink—second chroma component (V);
green—motion field component (M); orange—estimated corresponding pixel shift (CPS) between
two compared pictures (one value per pixel); light gray—metric values; solid lines represent current
frame reference sequence; dashed lines represent current frame tested sequence; dotted lines represent
previous frames of reference and tested sequence.

In total, two versions of the DOF-only IV-PSNR were tested. In the first one, the DOF
is calculated for the luma component only. This metric uses a single M channel representing
motion information; thus, it can be named IV-PSNRM.

In the second approach, separate DOF is calculated for each color component of the
input video sequences. Then, motion field values for luma and two chroma components are
combined by using the weighted average (with typical IV-PSNR weights: 4:1:1)—Figure 6.
This metric uses three motion-related channels: MY, MU, and MV, and is named IV-PSNR3M.
This variant has been implemented in order to test whether basing the calculated DOF
on chroma components increases the correlation of the modified IV-PSNR metric with
subjective quality.

 

Figure 6. Schematic diagram of the proposed IV-PSNR3M metric. Arrow color notation: grey—luma
component (Y); blue—first chroma component (U); pink—second chroma component (V); all shades
of green—three motion field components (MY, MU, and MV); orange—estimated corresponding
pixel shift (CPS) between two compared pictures (one value per pixel); light gray—metric values;
solid lines represent current frame reference sequence; dashed lines represent current frame tested
sequence; dotted lines represent previous frames of reference and tested sequence.
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B. MotionCheck (DOF-Assisted Corresponding Pixel Shift Search)

The MotionCheck (MC) approach integrates DOF into the core of the correspond-
ing pixel shift mechanism of the IV-PSNR metric. While the final similarity between
two sequences is still computed based on the original input sequences, the process of
searching for the “most similar pixel within a colocated block” [3] is guided by the DOF
information. Specifically, the search for the best-matching pixel in the neighborhood, a key
step in IV-MSE calculation [3], uses the motion field images to identify optimal correspon-
dences. This means that the initial stage of the IV-PSNR calculation leverages DOF to find
the proper pixel displacement, while the subsequent quality measurement utilizes the pixel
values from the original video sequences.

This method, IV-PSNRMC (IV-PSNRYUV with MotionCheck, MC, Figure 7), aims to
make the quality assessment robust to temporal shifts and distortions without direct
assessment of the motion itself.

 

Figure 7. Schematic diagram of the proposed IV-PSNRMC metric. Arrow color notation: grey—luma
component (Y); blue—first chroma component (U); pink—second chroma component (V); violet—
global component differences (GCD) vector (one value per Y, U, and V channels); green—motion
field component (M); orange—estimated corresponding pixel shift (CPS) between two compared
pictures (one value per pixel); light gray—metric values; solid lines represent current frame reference
sequence; dashed lines represent current frame tested sequence; dotted lines represent previous
frames of reference and tested sequence.

3. Experimental Setup
The proposed approach, together with all the anchors, was evaluated using the results

of the “MPEG Call for Proposals on 3DoF+ Visual” [22]. Ideally, the proposed metric should
be evaluated on multiple diverse datasets to fully assess its robustness and generalization
capabilities. However, the availability of suitable databases is a major and well-recognized
limitation in immersive video quality assessment. To the best of our knowledge, there
is currently no publicly available immersive video quality assessment (VQA) dataset
containing MOS scores. Existing, state-of-the-art datasets fall into different categories
which only partially relate to immersive video, e.g., omnidirectional video (simple, single-
camera video 360 without any 3D reprojection) [23,24], static stereoscopic images [25], or
volumetric, object-centric video (focused on isolated, low-resolution point-cloud objects
instead of full scene-based immersive video) [26]. While other immersive video datasets
exist (e.g., [27] or MIV CTC sequences [28]), they are not VQA datasets as they do not
provide subjective quality scores.

Therefore, in this work, we evaluated the proposed temporal IV-PSNR extension on the
only available immersive video database. Importantly, this dataset remains representative
of the current state-of-the-art, as it contains multiview sequences encoded using seven
miscellaneous immersive video coding techniques, including two simulcast scenarios and
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five sophisticated algorithms combining the advantages of point cloud processing, different
methods of view rendering, edge filtering, depth map refinement, and noise modelling—
jointly reflecting various processing and coding artifacts, both spatial and temporal. All
sequences were encoded at four different bitrates in the range between 6.5 and 25 Mbps. In
total, mean opinion scores (MOS) were calculated for 280 test points [29].

According to the documentation in [29], a total of 49 participants took part in the
subjective quality assessment. All viewers were screened for visual acuity and color
blindness before the experiment. The evaluation was conducted using the absolute category
rating (ACR) methodology, consistent with MPEG’s standard testing procedures for video
coding. Each participant evaluated the content in four sessions of approximately 12 min
with mandatory breaks in between to avoid tiredness.

The stimuli were displayed on a 65-inch monitor with viewing conditions aligned
with the ITU recommendations for video quality assessment (including viewing distance,
room illumination, and background setup). The test set consisted of five diverse mul-
tiview video sequences, including both natural and computer-generated (CG) content,
captured using perspective and omnidirectional cameras. The sequences varied in visual
complexity, level of detail, motion characteristics, and resolution (ranging from FullHD
to 4K). This dataset—with several changes introduced during years of development of
the MPEG immersive video coding standard [28,30]—is still widely used in immersive
video research and provides a representative variety of artifacts—spatial, temporal, ge-
ometric, and rendering-related—making it suitable for evaluating the performance and
generalizability of objective quality metrics.

The proposal was compared with unmodified IV-PSNR [3], as it provides the highest
correlation with subjective quality in immersive video applications (cf., Figure 1 and [3]).
Moreover, we have included results for all the presented anchors in order to demonstrate
the versatility of the proposed modification.

In the experiment, metrics were compared using two rank-based correlation coeffi-
cients: SROCC and KROCC [31] (Spearman and Kendall rank-order correlation coefficient,
respectively—both computed with respect to subjective MOS scores). In total, nine variants
of metrics were compared:

• Three state-of-the-art metrics: PSNRY (PSNR calculated for luma component),
PSNRYUV (weighted average of PSNR for three color components Y, U, and V;
weights: 6:1:1—weight of luma six times higher than for both chroma components [3]),
IV-PSNRYUV (the basic IV-PSNR, which is by default calculated for three color compo-
nents with weights 4:1:1 [3]).

• IV-PSNR calculated on motion field sequences instead of textures (cf. the last row
of Figure 2): IV-PSNRM and IV-PSNR3M, with motion field calculated for luma (IV-
PSNRM), and motion fields calculated for all three color components (IV-PSNR3M),

• IV-PSNRMC, where the most similar pixel in the neighborhood is selected by compar-
ing motion fields, but the quality itself is calculated based on textures.

• Three versions of four-component IV-PSNR, where motion vectors M are added as
a fourth component, alongside color components Y, U, and V: IV-PSNRYUVM (with
weights equal to 4:1:1:1, 4:1:1:2, and 4:1:1:4).

The main baseline used for comparison is the original IV-PSNR operating on YUV
components (IV-PSNRYUV), as it has been widely adopted in immersive video research and
demonstrates the highest correlation with subjective quality (c.f., Figure 1 and [3]). Other
variants, such as PSNRY, PSNRYUV, and all the anchors defined in Section 2.2.2 are included
as additional reference points to illustrate the contribution of individual components and
to highlight the benefits of incorporating temporal motion information.

Parameters of the Farneback’s algorithm were set as presented in Table 1.
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Table 1. Used Farneback’s algorithm parameters.

Parameter
Experiment

Farneback with Two Levels Farneback with Five Levels

Pyramid scale 0.5 0.5

Levels 2 5

Window size 10 10

Iterations 2 2

Poly N 5 5

Poly sigma 1.2 1.2

For the RLOF algorithm, three experiments were performed. In each, a different
interpolation method was used (RIC, EPIC, and GEO). For all other RLOF parameters, the
default OpenCV values were used [32].

4. Experimental Results
This section presents the results of the experiments conducted to evaluate the proposed

temporally aware quality metric for immersive video. Several optical flow estimation
algorithms were tested to determine how motion-related information affects the correlation
between the objective and subjective quality.

4.1. Farneback’s DOF Algorithm

The first experiment was conducted using the dense optical flow algorithm proposed
by Farneback [20]. Two configurations were tested—using two and five pyramid levels—in
order to assess the impact of flow smoothness and motion detail on the metric’s correlation
with subjective quality.

Figure 8 presents the results of the experiments conducted using Farneback’s al-
gorithm with two levels of pyramid, as described in the previous chapter. They also
show the results for PSNRY, PSNRYUV, and IV-PSNRYUV for easier comparison. As we
can see, the IV-PSNRYUVM method showed considerable improvement over original
methods, especially the one weighted 4:1:1:4, where it outperformed IV-PSNRYUV by
0.031 and 0.023 for SROCC and KROCC, respectively. This indicates that DOF carries
information that helps in making the IV-PSNR algorithm more robust. The sole use of
DOF in IV-PSNRM, as well as in IV-PSNR3M, showed considerable improvement over
the pixel-based PSNRYUV method. Lastly, the IV-PSNRMC technique showed almost no
improvement in comparison to IV-PSNRYUV.

Changing Farneback’s algorithm levels from two to five resulted in a noticeable
decrease in correlation (Figure 9). IV-PSNRYUVM has shown results for SROCC and KROCC
drop below those of IV-PSNRYUV, for example. This applies to every variant of the metric
when compared to Farneback’s algorithm using only two levels, except IV-PSNRMC and
IV-PSNRM, which remained relatively the same (exact results for SROCC and a negligible
loss for KROCC).

Overall, Farneback’s algorithm with two pyramid levels yielded the highest correlation
between the proposed metrics and subjective scores. Increasing the number of levels
effected in a loss of fine motion detail, which negatively impacted metric performance.
These results suggest that smoothing moderate flow provides the best trade-off between
stability and motion detail, while strong smoothing may reduce the sensitivity of the metric
to perceptually relevant temporal changes.
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Figure 8. Correlation with subjective quality for the Farneback’s algorithm with two levels; each point
corresponds to one tested metric; higher KROCC and SROCC indicate stronger monotonic agreement
with MOS—and points closer to the upper-right corner represent better-performing metrics.
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Figure 9. Correlation with subjective quality for the Farneback’s algorithm with five levels; each point
corresponds to one tested metric; higher KROCC and SROCC indicate stronger monotonic agreement
with MOS—and points closer to the upper-right corner represent better-performing metrics.

4.2. RLOF DOF Algorithm

To further analyze the influence of motion estimation quality on the proposed metric,
a second experiment using the robust local optical flow (RLOF) algorithm [21] was con-
ducted. In this experiment, three different interpolation methods were tested: RIC, EPIC,
and GEO [32]. In general, RLOF offers higher robustness to noise and illumination changes
than Farneback’s method, making it a valuable reference for testing the stability of the
metric across diverse flow characteristics.
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The RIC interpolation, despite being the most advanced of the three available inter-
polation methods, showed the most significant loss of correlation with MOS. As shown
in Figure 10, the usage of motion vectors only in IV-PSNRM provided similar results com-
pared to Farneback’s methods. Although both methods yield similar results in an IV-PSNRM

scenario, RLOF with RIC interpolation performs considerably worse in all other cases
(i.e., including other image components—IV-PSNRYUVM).
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Figure 10. Correlation with subjective quality for the RLOF algorithm with RIC interpolation; each
point corresponds to one tested metric; higher KROCC and SROCC indicate stronger monotonic agree-
ment with MOS—and points closer to the upper-right corner represent better-performing metrics.

EPIC interpolation method (Figure 11) offered better results than RIC, despite being
less robust and faster. IV-PSNRYUVM with the weights 4:1:1:1 achieved similar results
to IV-PSNRYUV (with a negligible gain for SROCC); however, higher weights showed
a decline in achieved results for both SROCC and KROCC.
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Figure 11. Correlation with subjective quality for the RLOF algorithm with EPIC interpolation; each
point corresponds to one tested metric; higher KROCC and SROCC indicate stronger monotonic agree-
ment with MOS—and points closer to the upper-right corner represent better-performing metrics.
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The GEO interpolation method was the simplest of the three interpolation methods,
offering comparable results for IV-PSNRYUVM as well as IV-PSNRM to the EPIC interpola-
tion method (Figure 12), and providing negligible SROCC gain for the 4:1:1:1 weighting
scheme and losses for other scenarios.
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Figure 12. Correlation with subjective quality for the RLOF algorithm with GEO interpolation; each
point corresponds to one tested metric; higher KROCC and SROCC indicate stronger monotonic agree-
ment with MOS—and points closer to the upper-right corner represent better-performing metrics.

The results obtained with RLOF indicate that interpolation significantly affects the
correlation with subjective quality. While RIC interpolation led to noticeable degradation,
the simpler EPIC and GEO methods achieved comparable or even better results. This
implies that too complex flow smoothing may obscure motion details essential for proper
temporal quality assessment.

4.3. Comparison of Methods

The two previous subsections demonstrate that incorporating temporal information
into immersive video quality metrics can considerably improve their correlation with
human perception. However, the extent of this improvement strongly depends on the
chosen optical flow algorithm and its parameters.

To better understand how different variants perform, Figures 13–15 summarize the
overall correlation results for all tested metrics.

For IV-PSNRMC (motion-assisted pixel search, Figure 14), the correlation with MOS is
significantly higher, and the IV-PSNRMC calculated using all the DOF algorithms is com-
parable to IV-PSNRYUV. Again, all DOF variants perform similarly—the spread between
the best and the worst metric is smaller than 0.01, both for SROCC and KROCC. In other
words, changing the pixel search method to a motion-based one does not produce a decisive
improvement over the texture-only IV-PSNRYUV.

For IV-PSNRM (motion vectors only, Figure 13), all tested DOF methods produce very
similar results (the difference between the best and the worst configuration is equal to
only 0.005 for SROCC and 0.007 for KROCC). Importantly, IV-PSNRM performs about
0.04 worse than the baseline IV-PSNRYUV, indicating that motion-only measurement alone
is insufficient to outperform the texture-based quality assessment.
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Figure 13. Correlation with subjective quality: comparison of the IV-PSNRM metric calculated using
different DOF algorithms; each point corresponds to one tested metric; higher KROCC and SROCC
indicate stronger monotonic agreement with MOS—and points closer to the upper-right corner
represent better-performing metrics.
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Figure 15. Correlation with subjective quality: comparison of IV-PSNRYUVM metric calculated using
different DOF algorithms; each point corresponds to one tested metric; higher KROCC and SROCC
indicate stronger monotonic agreement with MOS—and points closer to the upper-right corner
represent better-performing metrics.

For the proposed IV-PSNRYUVM metric (Figure 15), the results are completely different,
and adding motion vectors as a fourth component substantially changes the outcome
depending on the DOF algorithm and its parameters. In particular:

• Farneback with two pyramid levels clearly outperforms IV-PSNRYUV (by 0.03 and 0.02
for SROCC and KROCC, respectively), i.e., this method provides the best correlation
with MOS among all tested configurations,

• RLOF with GEO and EPIC interpolations produces results comparable to IV-PSNRYUV

(no significant gain or loss),
• RLOF with RIC interpolation and Farneback with five pyramid levels perform signifi-

cantly worse than IV-PSNRYUV.

Taken together, these observations indicate two main conclusions. Firstly, the use of
motion-based information alone (IV-PSNRM) provides stable results, showing that motion
analysis reliably reflects temporal aspects of perceived quality of immersive video.

Secondly, when motion information is combined with texture components, as in
the proposed four-component IV-PSNRYUVM, the metric outperforms both the baseline
state-of-the-art IV-PSNRYUV as well as all other tested variants. While the observed gains
over IV-PSNRYUV reflect the diminishing returns typical for high-performing metrics, they
remain consistent. What should be highlighted, the degree of improvement depends on the
quality of the optical flow estimation, with the two-level Farneback’s algorithm yielding
the most perceptually consistent results.

4.4. Computational Complexity Consideration

Computation of the dense optical flow is known to be a computationally demanding
task. However, when a lightweight algorithm—such as Farneback’s method applied in our
implementation—the computational complexity becomes reasonably low.

Experimental assessment of computational complexity (evaluated by measuring
processing time) was performed by running DOF estimation on a multicore CPU with
16 threads running in parallel. Measurements show that a single frame of FullHD
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(1920 × 1080) sequence can be processed in ~382 ms (on average, c.f. Table 2), which
demonstrates that the temporal analysis of the video can be incorporated without introduc-
ing substantial overhead.

Table 2. Average DOF calculation time for five test sequences from the “MPEG Call for Proposals on
3DoF+ Visual” [22] test set. Times averaged over all test points and all frames. Times measured on
a PC machine equipped with Ryzen 9 5950X with 32 GB DDR 3200 MHz RAM.

Sequence Id SA SB SC SD SE

Resolution 4096 × 2048 2048 × 2048 4096 × 4096 2048 × 1088 1920 × 1080

DOF calc. time per frame 1616 ms 780 ms 3326 ms 414 ms 382 ms

DOF calc. time per pixel 193 ns 186 ns 198 ns 186 ns 184 ns

As presented, the DOF calculation time linearly scales with the resolution of a sequence,
requiring only ~190 ns per pixel.

Importantly, this runtime is small when compared to the typical processing required
in immersive video pipelines, where computationally expensive operations such as depth
estimation, multiview video coding, and view synthesis often dominate the total computa-
tional cost. In such a context, adding a 400 ms step per frame pair has a negligible impact
on overall processing time.

When comparing the proposed IV-PSNRYUVM calculation to the baseline IV-PSNRYUV,
the increase in the computational time is noticeable, but relatively small. When averaging
over all sequences, it is 35% slower.

Overall, by combining a computationally efficient DOF method with multithreaded
processing, the proposed temporally aware IV-PSNR extension remains practical, fast, and
easy to integrate into existing immersive video systems.

5. Conclusions and Future Work
In the paper, we have proposed an extension of the IV-PSNR metric [3], which includes

an analysis of compared sequences in the temporal domain by measuring motion consis-
tency, i.e., the similarity of the dense motion field in the reference and the tested sequence.
The proposed IV-PSNRYUVM is based on adding motion vectors as a fourth component M,
in addition to the three color components of the video: Y, U, and V.

The experimental results demonstrate that the proposed IV-PSNRYUVM increases
the correlation between objective and subjective quality in immersive video quality as-
sessment compared to the baseline IV-PSNR metric. Although the absolute gains are
modest, reflecting the diminishing returns characteristic of improving an already high-
performing baseline, the overall trend confirms that incorporating temporal motion con-
sistency has a positive effect on monotonic agreement with quality perceived subjectively.
Importantly, alternative motion-based extensions, such as IV-PSNR computed exclusively
on motion fields or IV-PSNR with DOF-assisted corresponding pixel shift search, led to
a noticeable degradation of the correlation. This implies that the proposed four-component
IV-PSNRYUVM variant provides the most effective way of incorporating motion information
into the IV-PSNR metric.

These findings validate the relevance of temporal motion consistency analysis for fu-
ture objective quality assessment frameworks. Considering that the proposal enhances the
original IV-PSNR metric, which itself already outperforms other state-of-the-art objective
quality metrics, it can be stated that the proposal is valuable and highly practical to be used
in real immersive video systems.

Finally, it should be clarified that the contribution of the paper is positioned not merely
as an improvement in metric performance, but also as a methodologically sound and repro-
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ducible research on temporal consistency analysis in IV-PSNR. We believe that bridging
the conceptual gap of the “temporally blind” IV-PSNR metric constitutes a meaningful
contribution to the immersive video quality assessment and could be a basis for future
works on including temporal consistency analysis in immersive video quality assessment.

Future work will focus on further increasing the efficiency of the proposed metric.
Since the four-component IV-PSNRYUVM has been shown to be the most promising direc-
tion, the work will focus on improving the DOF estimation by leveraging more advanced
motion estimation techniques, i.e., more accurate deep-learning-based DOF algorithms
(e.g., RAFT, FlowNet2). Furthermore, our future efforts will focus on several key areas
to enhance the metric’s generalizability and accuracy by investigating how temporal in-
formation can be incorporated more reliably across different motion patterns and content
types, with the goal of improving the robustness and stability of the metric in challenging
immersive and non-immersive scenarios. These steps aim to maximize the correlation
between our objective quality metric and subjective human perception for immersive
video applications.
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